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Estimation of wood volume and biomass is an important assignment of any National Forest Inventory. However,
the estimation process is often expensive, laborious and sometimes imprecise because of small sample sizes rela-
tive to population variability. Remote sensing techniques are an option to assist in surveying large areas by providing
data that can be related to the forest attribute of interest through mathematical models of relationships. Light
Detection and Ranging (LiDAR) is a technology that can provide data that are closely related to forest wood volume
and biomass. With these data, linear regression is often used to estimate forest attributes. If the relationship pro-
vides evidence of nonlinearity, a transformation in the variables can be considered. However, modern computation
allows fitting nonlinear regression models without transformations of the variables. Nonlinear least squares (NLS)
techniques also give more freedom to assure satisfaction of natural conditions such as non-negativity and/or lower
and upper asymptotes. Like any estimation technique, NLS is subject to overfitting when using a large number of
predictor variables. Because NLS is more computationally intensive than linear regression, stepwise selection techni-
ques may require considerable programming effort. We compared three methods to select predictor variables for
nonlinear models of relationships between forest attributes and LiDAR metrics, two of them based on genetic algo-
rithms (GAs) and one based on random forest (RM). GAs were implemented to optimize a cost function that yields
root mean square error or the Akaike Information Criterion (AIC), while RM was based on variable importance in
decision trees. A model with the predictor variable most correlated with the response variable was also considered.
We compared the results of overall estimation for two datasets using the model-assisted, generalized regression
estimator and concluded that the combination of GAs and AIC was the most efficient and stable procedure for
selection of variables. We attribute this result to the penalty that AIC applies to models with large numbers of vari-
ables, which leads to a more efficient model with a minimum loss of information.

Introduction
Wood volume (or biomass) estimates at local, regional and global
levels are fundamental for estimation of carbon stock and for
evaluating an ecosystem’s response to climatic changes and
anthropic influences (Hese et al., 2005, Ni-Meister et al., 2010).
Among the many reasons for estimating forest carbon stock, two
are motivated by climate change considerations: (1) agreements
with the United Nations Framework Convention on Climate
Change (UNFCCC) and (2) the carbon credit market (Brown 2002).

For large area estimation, estimates are usually calculated by
aggregating the values of volume/biomass for individual trees at
the plot level. Plot data are then added or averaged to produce
large area estimates (McRoberts and Westfall 2014). Individual
tree predictions of wood volume and biomass are commonly
based on allometric models that use diameter at breast height

(DBH), total height (h) and, sometimes, wood density (d) as pre-
dictor variables. If these models are species specific tree species
is typically one more predictor variable. For some sampling strat-
egies, also an additional diameter at a certain height percentile is
included (Cormier et al., 1992, Chave et al., 2005, Vallet et al.,
2006, Ni-Meister et al., 2010, Zianis and Seura 2005). For inven-
tory purposes, the final product is an inference in the form of a
confidence interval (CI) for a population parameter such as mean
volume or biomass per unit area. The CI can be constructed by
adding/subtracting an amount to the sample mean (X̄). This
amount is based on standard error (SE) –the square root of the
ratio between variance and sample size. Assuming a confidence
level of 95%, the CI assumes the form of ¯ ± ×α( − )X t n2; 1 SE, where

α( − )t n2; 1 is the two tailed percentile of t-distribution, for a given
significance level (α) and degrees of freedom ( −n 1). In particu-
lar, models for which prediction accuracy is a measure and
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maps for which accuracy assessments are measures are only
intermediate products enroute to this inference.

Remote sensing techniques can be used to obtain estimates
for areas that are not sampled. Among these techniques, data
based on microwave (synthetic aperture radar — SAR) and
optical sensors (i.e. multi- and hyper-spectral) can enhance
large scale inferences (McRoberts et al., 2010). However, Light
Detection and Ranging (LiDAR) data –as such photogrammetric
3D data based on stereo imagery –are considered more inform-
ative, because they provide metrics that can be used to predict
the vertical structure of the forest/area of interest (Chen et al.,
2006, Zhao et al., 2011, Yao et al., 2011, Zhao et al., 2012). In
practical applications of LiDAR data, georeferenced sample units
can be used, in a first stage, to develop empirical models of
relationships between field measurements and the derived
LiDAR metrics (Næsset 2002). In a second stage, these models
are applied for the entire area of interest, predicting the forest
attributes based only on LiDAR metrics.

The use of LiDAR for estimation of forest attributes is under
development around the world. (Nelson 2013) provided a list of
important studies concerning this issue. Of interest, (Nelson
et al. 1988) constructed linear models to estimate height, vol-
ume and biomass and (Næsset 2002) proposed a two stage
procedure to predict forest stand characteristics using airborne
laser scanning (ALS) and field inventory data. The results of
these studies provided evidence that regression models using
ALS data can be used to improve estimation of parameters
related to forest variables such as volume and biomass.

Two issues are of concern when estimating volume using lin-
ear regression. The first is negative or extremely large predictions
with no effective biological meaning. As an alternative to linear
models, (McRoberts et al. 2013a) suggested using a nonlinear
asymptotic logistic model, which is constrained by the lower hori-
zontal asymptote of y = 0 and by an upper asymptote that can
be estimated using the sample data. The second issue is the
selection of predictor variables, which may cause overfitting of
the model and increases the probability of poor predictions. This
phenomenon often occurs with large numbers of highly corre-
lated predictor variables that can cause the model to reflect the
noise and peculiarities rather than the general trend in the data
and to adversely affect the quality of the predictions when apply-
ing the fit model to a new dataset (Kohavi and Sommerfield
1995, Santos et al., 2009). For multiple linear regression models,
stepwise variable selection procedures are commonly used
(Næsset 2002, 2011, Ene et al., 2012, Lu et al., 2012, Zhao et al.,
2012, He et al., 2013). For nonlinear regression models, the
approach is more laborious and difficult to implement. Another
issue with stepwise algorithms is related to its inefficiency when
predictor variables are strongly correlated, which is the case of
ALS height and density metrics (Harrell 2013). McRoberts et al.
(2013a, 2013b) provided an iterative approach based on the
pseudo-R2 value as an alternative to stepwise procedures.

The advent of machine learning techniques introduced a new
paradigm into the data mining process, and these techniques
can be used to select subsets of predictor variables that opti-
mize criteria such as the Akaike Information Criteria (AIC) or
root mean square error (RMSE). One of these techniques is gen-
etic algorithms (GAs) (Goldberg and Holland 1988, Holland
1992). With this approach, a population of k subsets, each of
which includes a random combination of predictor variables, is

constructed; the model is then fit for each subset, and an opti-
mization criterion such as RMSE or AIC is calculated. An iterative
process based on biological genetics and evolution is then used
to construct a new population of subsets. According to
(Broadhurst et al. 1997), after i iterations, the subset that
returns the most optimal value for the criterion is selected as
the most suitable subset of predictor variables.

Another technique that can be used is random forest (RF)
(Breiman 2001). This algorithm constructs an ensemble of predic-
tion trees and through bootstrapping of the training data, one pre-
diction is assigned to each bootstraped sample. The final prediction
is computed as the mean over the predictions of the single trees
(Strobl et al., 2008). Different than the GA, this technique does not
return the optimal subset of predictor variables, but rather returns
each variable’s ‘importance’ in the prediction procedure, which can
be used to select predictor variables for the regression model.

Thus, the objective of the study was to compare estimates of
means and variances as the defining components of CIs for
mean wood volume and biomass per unit area for the variable
selection techniques for two ALS datasets, one from Norway and
one from Italy. Models were constructed by fitting nonlinear
regression models with subsets of five predictor variables
obtained using three approaches: (1) GA with RMSE as the criter-
ion, (2) GA with AIC as the criterion, (3) RF to select variables with
the greatest importance. Also, to provide comparison, (4) models
were constructed using all predictor variables and (5) only the
predictor variable most highly correlated to the response variable.

Given the multidimensionality of the predictor variable space
used for ALS-assisted estimation of volume, this study focused
on a consistency analysis of the selected subsets of predictor
variables and their impact on large scale inferences in the form
of CIs for population parameters such as mean volume or bio-
mass per unit area. We were motivated to conduct this study
because no comparison among methods for variable selection
for LiDAR-assisted forest inventories regarding CIs is known to
have been reported, especially when using methods that were
developed in a different field (i.e. machine learning) for which
statistical inference is not the primary interest. In addition, we
proposed an original iterative procedure that addresses the sta-
bility of the methods, providing evidence of reliability under differ-
ent datasets. Finally, we assessed issues of technical efficiency of
the methods, keeping in mind implementation aspects like con-
vergence and randomness. To accomplish this task, we used an
exhaustive ‘brute-force’ search for the optimal subset of vari-
ables. This subset was used as basis to evaluate the quality of
our proposed selection algorithm. The novel features of the study
are the comparison of the approaches to select variables with
respect to the CI that they produce rather than an intermediate
product such as a measure of prediction accuracy, the assess-
ment of stability and efficiency by means of an iterative approach
and the investigation of RF to select variables for regression with
variables of the same type varying in many levels.

Data
Norwegian data
Data were acquired in the municipalities of Åmot and Stor-
Elvdal in Hedmark County, Norway as part of an operational for-
est inventory (Figure 1) (McRoberts et al., 2013a).

Methods for variable selection in LiDAR-assisted forest inventories

113



A PA31 Piper Navajo aircraft carried the Optech ALTM 3100
laser scanning system (Optech, Canada) used in the study. The
ALS data were acquired between 15 July 2006 and 12 September
2006 from a height above ground of ∼1700m with average air-
craft speed of 75m/s. The pulse repetition frequency was 50 kHz,
the scan frequency was 31Hz, the maximum scan angle was 16,
which corresponded to an average swath width of ∼975m, the
mean footprint diameter was ∼50 cm, and the average point
density was 0.7 pulses/m2. Only echoes with heights greater than
2m were considered. To match the 250m2 size of the field plots,
the study area was tessellated into square 250m2 cells that
served as population units. For each plot and population unit,
heights corresponding to the 10th, 20th, …, and 100th percentiles
of the distributions were calculated and denoted h1, h2, …, and
h10, respectively. Densities were calculated as the proportions of
echoes with heights greater than 0%, 10%, …, and 90% of the
range between 2m above ground and the 95th height percentile
and were denoted d0, d1, …, and d9, respectively.

Norwegian National Forest Inventory circular field plots of
250m2 located at the intersections of a 3 km × 3 km grid were
used to acquire field measurement data (Tomter et al., 2010). On
each plot, all trees with DBH (1.3m) of at least 5 cm were calli-
pered. An average of 10 sample trees per plot was selected with
probability proportional to stem basal area, to provide measured
heights. Heights for the remaining trees were predicted using
height-DBH models (Vestjordet 1967, Fitje and Vestjordet 1977).

The volume of each sample tree was estimated using species-
specific volume models with DBH and either measured height or
predicted height as predictor variables (Braastad 1966, Brantseg

1967, Vestjordet 1967). The effects of uncertainty in these model
predictions have been demonstrated to be negligible for studies
in Sweden and Finland (Ståhl et al., 2014), in Austria (Berger
et al., 2014), in Norway (Breidenbach et al., 2014), in Brazil
(McRoberts et al., 2015) and in Oregon (Shettles et al., 2015).

The total plot volume (VOL) was estimated as the sum of
volume estimates for individual trees. A variogram analysis indi-
cated no meaningful spatial correlation among plot VOL obser-
vations. To minimize the effects of forest change between the
plot observation dates and the 2006 date of the ALS acquisition,
only the 145 plots measured between 2005 and 2007 were
used for this study. The study area includes 1259 km2 and fea-
tures altitudinal variations ranging from 204 to 1134m above
sea level (asl) with a mean of 570m asl. The dominant tree spe-
cies are Norway spruce (Picea abies (L.) Karst.) and Scots pine
(Pinus sylvestris L.) (McRoberts et al., 2013b).

Italian data

The Italian study area is located in the south-west part of
Molise Region, Italy (Figure 2).

ALS data were acquired for scientific purposes related to
ITALID project — Use of LiDAR data to study Italian forests — in
June 2010 (Scrinzi et al., 2013). The survey, carried out by
Partenavia P68 aircraft equipped with a Optech Gemini sensor,
covered 36 380 ha. The maximum scan angle was of 15°, with a
frequency of 70 kHz. The average point density is of 3.5 points/
m2 and it varies from 9 points/m2 in forested and multilayered
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Figure 1 Norwegian study area and sampling design.
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areas, to less than 1 point/m2 in the bare ground or flat terrain.
Twenty-two ALS height and density metrics were calculated.
Canopy density metrics were the proportions of all returns above
1.3m, the proportion and the count of returns between 1.3 and
10m. Canopy cover was the proportion of first returns above
1.3m to all first returns. Canopy height metrics were the same
as those described for the Norwegian data. Height summary
statistics such as minimum, maximum, average, standard devi-
ation, coefficient of variability, kurtosis, skewness and canopy
relief ratio (Parker and Russ 2004) were also calculated. All ALS
metrics were calculated for 23m × 23m cells of approximately
531m2 and that served as population units. As for Norway, this
configuration was adopted to match the size of the field plots.

The field data were acquired from 62 field plots spatially dis-
tributed using two-phase unaligned systematic sampling (Chirici
et al., 2016). The study area was tessellated into 437 hexagons,
each with area of 1 km2 and a point was randomly selected in
each hexagon serving as centre point for the plot (Figure 2). Each
plot consists of two concentric plots of 4 and 13m radius. The
DBH of all the trees with DBH ≥ 2.5 cm within the 4m radius
area, and trees with DBH ≥ 9.5 cm in the 13m radius area were
collected. The height of at most 10 trees was measured in a sub-
sample of trees in the plot. The sample trees were selected
according to the three DBH-largest trees, the five trees nearest to
the plot centre and the two trees whose species or DBHs were
less frequently observed. The heights of the remaining trees were
estimated for the main species using the DBH-Height models fit
with the gathered data. For each tree, VOL was estimated by
national double-entry tables (Castellani et al., 1984). As for the
Norwegian data, the uncertainty in these predictions can be con-
sidered negligible. The value of the biomass was estimated by:

= × × ( )B VOL BEF WBD 1

where B is the biomass (t/ha), BEF is the biomass expansion fac-
tor and WBD is the wood basic density (t/m3). The values of BEF
and WBD were extracted from (Federici et al. 2008).

Forests were found in 205.18 km2, covering about the 64% of
the area. The forested area is dominated by Turkey oak (Quercus
cerris) at 61.17 km2 (29.81% of the forested area), Downy oak
(Quercus pubescens) for 58.86 km2 (28.69%), Hop Hornbeam
(Ostrya carpinifolia) for 36.32 km2 (17.70%), Beech (Fagus sylva-
tica) for 18.54 km2 (9.04%) and Holm oak (Quercus ilex)
14.12 km2 (6.88%). Hygrophilus forests, plantations, pioneer
deciduous vegetation, shrublands, synanthropic forests and
Chestnut forests complete the forest landscape.

Methods
The analyses are based on three statistical assumptions: (1)
there is a finite population of N units (cells) in the form of
squares of size 250m2 for Norway and 531m2 for Italy; (2)
there is an equal probability sample of n cells and (3) ALS
metrics are available for all plots and cells.

Because the final product of a forest inventory is an inference
in the form of a CI for a population parameter, comparisons
among the proposed variable selection techniques (described
below) were made with respect to this CI ( ¯ ± ×α( − )X t n2; 1 SE),
rather than an intermediate product such as a measure of predic-
tion accuracy. Nevertheless, prediction accuracy is used to select
variables and is therefore reported for informational purposes.

Variable selection methods

Genetic algorithm

GAs are stochastic optimization techniques that are conceptually
based on biological genetics and evolution (Goldberg and Holland
1988, Holland 1992). This approach searches for the subset of
predictor variables that optimizes a cost function defined by the
user. Although there is no guarantee of finding the optimal pre-
dictor variable subset (Garey and Johnson 1979), locally optimal
solutions can be found in a feasible computational time.

Let X be the ordinated set of all the predictor variables and
β( )f x ,i be a function that returns a value to be optimized (cost

function). The basic building steps for all GAs can be summar-
ized as follows (Broadhurst et al., 1997):

(1) A population of k subsets is constructed, each one containing a
random combination of predictor variables (genes).

(2) Each subset is considered a binary string [0,1] with 1’s
meaning that the variable xi is ‘selected’ in the subset and
0’s meaning ‘not selected’. This is called a ‘chromosome’.

(3) A weighted random selection is applied to the population of
chromosomes, selecting two of them (parents). The weights
are proportional to the cost function response, meaning
that chromosomes that yield near optimal (or locally opti-
mal) responses have greater probabilities to be selected.

(4) The parent chromosomes are partitioned and recombined,
creating a ‘child’ that carries a mix of parents’
characteristics.

(5) A probability function is assigned to each child, adding the
possibility of mutation (changes between 0’s and 1’s).

(6) Steps 3–5 are repeated j times and the cost function is eval-
uated for each new chromosome.

(7) The whole process is replicated until a criterion is satisfied
or until a pre-defined number of iterations is completed.

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

! !

!
!

!

!
! !

!

!
!

!

!
! !

!

!

!

!

!
!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!
!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!
!

!

!
!

!
!

!

!
!

!
!

!

!

!
!

!

!

!
!

!
!

!

!
!

!

!
!

!
!

!

!
!

!

!
!

!
!

!

! !

!
!

!
!

!
!

!

!

!

!

! !
!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

! !

!
!

!

!
!

!

! !

! !
!

!

!

!

! !

!

!
!

!
!

!
!

!

!
!

!

!

!

!
!!

!

!
!

!

!

#
#

#
#
#

#

#

#

#

#

#
#

#

#

#

# #

#

#

# #

#

#

#

#
#

#
#

# #

#

#
#

#

#

#

#
#

#

#
#

#

##
#

#

#

#

#

#

#
##

#

# #

#

#

#

#

#

#

414000

414000

421000

421000

428000

428000

435000

435000

442000

4420004
5
8

0
0
0
0

4
5
8

0
0
0
0

4
5
8
5
0
0
0

4
5
8
5
0
0
0

4
5
9
0
0
0
0

4
5
9
0
0
0
0

4
5
9
5
0
0
0

4
5
9
5
0
0
0

4
6
0
0
0
0
0

4
6
0
0
0
0
0

4
6
0
5
0
0
0

4
6
0
5
0
0
0

0 3 12 Kilometers

Legend

Study Area

NON FOREST

FOREST

! 1st Phase Points

# 2nd Phase Points

L
a
ti
tu

d
e
 (

m
)

Longitude (m)

6

Figure 2 Italian study area and sampling design.

Methods for variable selection in LiDAR-assisted forest inventories

115



Selection of predictor variables using GA was reported as suc-
cessful by other studies related to different areas like medicine,
economy and chemistry (Broadhurst et al., 1997, Vinterbo and
Ohno-Machado 1999, D’heygere et al., 2002, Paterlini and
Minerva 2010, Cateni et al., 2011). Regarding forestry, the stud-
ies of (Haapanen and Tuominen 2008), (Latifi et al. 2010),
(Tuominen et al. 2013) and (Garcia-Gutierrez et al. 2014) corrob-
orate these results, especially when using remotely sensed
data. However, we did not find any study that uses the iterative
approach proposed here, so no information about stability and
efficiency among a large number of datasets were reported in
the aforementioned papers.

In this study, the GA approach was used to optimize two cost
functions, one based on minimization of AIC and denoted GAAIC

and the other based on minimization of RMSE and denoted
GARMSE.

Random forests

RF is an algorithm that belongs to the family of ensemble meth-
ods used for both classification and regression problems, based
on model aggregation ideas (Genuer et al., 2010). The basic
mechanics of RF consist of combining many binary decision
trees constructed using several bootstrapped samples where
the final prediction/classification is the average over this ‘forest’
(Breiman 2001). Because this study is focused on applied regres-
sion to predict volume values, only RF for prediction is
considered.

Let X be the set of all the predictor variables and β( )f X, a lin-
ear multiple regression model that relates the response variable,
VOL/biomass, with the predictors variables (ALS Metrics). In this
framework, the basic routine for a RF algorithm follows (Hastie
et al., 2009):

(1) A population of t bootstrapped samples (or subsamples) is
created from the training dataset.

(2) For each sample obtained in (1), a decision tree ( ≤ ≤ )T i t1i
is created.

(3) Each Ti is grown by recursively repeating these steps in each
node of the tree:
(a) Random selection of m predictor variables, among p

available.
(b) Pick the most suitable variables/subset of predictor

variables.
(c) Split the node into two daughter nodes.

(4) Step (3) is repeated until a minimum node size defined by
the user is reached.

(5) Output the ensemble of trees { }Ti t1.
(6) Predictions are the average of the predictions all over the

ensemble, which means:

∑ˆ = ( ) ( )
=

y
t

T X
1

2
i

t

iRF
1

In the step (3.b) of RF algorithm, variables are selected using a
random permutation process. Basically, when the ith tree is
grown, a sample (that was not used when growing the tree) is
passed down the tree, and the prediction accuracy is recorded.
Then the values for the mth variable are randomly permuted in

this sample, and the accuracy is again computed. Decrease in
accuracy provides evidence that the mth variable is significant.
In fact, according (Hastie et al., 2009), the randomization effect-
ively avoids the effect of a variable, much like setting a coeffi-
cient to zero in a linear model.

Besides the prediction process, RF returns predictor variable
importance which, as the GA, give insights into which predictor
variables should be included in the regression model. The
‘importance’ of a given variable is computed based on the
increase in mean square error for a tree in the forest when the
observed values of this variable are randomly permuted in the
samples (Genuer et al., 2010). In this context, an advantage of
this approach is that it covers the impact of each predictor vari-
able in two ways: individually and interacting with other vari-
ables. However, in a multidimensional space where the variables
are highly correlated, the true variable importance can only be
assessed by a conditional approach (Strobl et al., 2008). This
procedure avoids the permutation test to give more weight to
highly correlated predictor variables that are not obviously inde-
pendent. Although computationally intensive, this was the pro-
cedure adopted in this study, because a principal component
analysis showed that the height percentiles are correlated with
each other and the density percentiles are correlated with each
other. However, height percentiles are not correlated with the
density percentiles, which splits the set of predictor variables in
two well-defined subsets.

Studies using RF to select predictor variables for regression
are not so common. Most of them are related to the use of RF
for classification in remote sensing approaches. Investigations
regarding regression issues were conducted by (Genuer et al.
2010) and (Hapfelmeier and Ulm 2013). These studies success-
fully used RF to select predictor variables, although no analysis
was conducted to assess the efficiency of the method in com-
parison with other methodology.

Inference methods

The simple random sampling estimator

The most widely used estimator of a population parameter is
the simple random sampling (SRS) estimator (Hansen et al.,
1983). This statistic is characterized as probability-based (or
design-based) because it is derived from the probabilities of
selection of population units into the sample. Probability-based
estimators rely on three assumptions: (1) the sample is con-
structed using a probability-based randomization scheme; (2)
each population unit has a positive and known probability of
being selected and (3) the observation of the response variable
for each population unit is a fixed value (McRoberts et al.,
2013b). This estimator can be calculated with or without
replacement. For our study, we used the SRS estimator as a spe-
cial case of the Horvitz-Thompson (HT) estimator with equal
probability sampling with replacement.

The SRS estimators for means and their variances are

∑μ̂ = ( )
=n
y

1
3

i

n

iSRS
1

and
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μ

μ
( ˆ ) =

∑ − ˆ
( − )

( )= y

n n
VAR

1
4i

n
i

SRS
1 SRS

2

where n is the sample size and yi is the observation of VOL/bio-
mass in the ith sample unit.

The SRS estimator has some advantages:

(1) It is easy to calculate, because it only uses the sampled
data, with no need to fit a model or some other statistical
procedure.

(2) It is intuitive, in the sense that it only uses a common arith-
metic mean, and its variance is well stabilized by the Central
Limit Theorem.

(3) It is unbiased under any probability sampling design, which
means that μ μ[ ] =E SRS and μ μ[ ( )] = ( )E VAR VARSRS .

The disadvantage of the SRS estimators is that the variances
can be large, mainly when the sample size is small and/or the
population is highly variable (McRoberts et al., 2013a). However,
because it is unbiased, the SRS estimator was used in this study
for comparison with the model-assisted estimators used with
the different subsets of predictor variables.

When applying the estimator for SRS variance under a sys-
tematic design, the variance of the SRS mean estimator is
usually over-estimated (Särdnal et al., 1992), but the estima-
tor of the mean is still unbiased — this is the primary interest
here.

The generalized regression estimator

The generalized regression estimator (GREG) used in this
study to estimate the population mean using all the data
available for this population is also classified as probability-
based, because it relies on the same assumptions as the SRS
estimators.

This particular estimator is often called ‘model-assisted’
because it uses a model based on auxiliary data to improve esti-
mation. (Särdnal et al. 1992) provided the following model-
assisted estimators for the mean and the variance of a popula-
tion parameter:

∑ ∑μ̂ = ˆ − ( ˆ − ) ( )
= =N

y
n

y y
1 1
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i

N

i
i

n

i iGREG
1 1

and

 ∑μ ϵ ϵ( ˆ ) =
( − )

( − ¯) ( )
=n n
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1
1

6
i

n

iGREG
1

where N is the population size, ŷi is the prediction of VOL/bio-
mass for each population unit, using equation (1), n is the sam-
ple size, yi is the observation of volume in the ith sample unit
and ϵ = ˆ −y yi i i. The term ∑ ( ˆ − )= y y

n i
n

i i
1

1 in equation (4) is the
aforementioned correction for estimated bias.

Despite its label, GREG can be used with any modelling appro-
ach that produces reliable predictions, including non-parametric
techniques (Zheng and Little 2003, Lehtonen et al., 2005, Breidt and
Opsomer 2009).

Nonlinear logistic regression model

The nonlinear logistic regression model used to describe the
relationship between plot-level ground VOL/biomass values and
the ALS metrics has the mathematical structure (McRoberts
et al., 2013a):

( )β α ϵ= ( ) =
+

+ ( )
β β+∑ =

y f x ,
1 e

7i i
x

i
.j

J
J ij0 1

where i indexes plots or population units, yi is the observed
VOL/biomass, αs and βs are parameters to be estimated, xij is
the jth ALS metric and ϵi is the residual error. This asymptotic
model was selected for this study because of two primary
advantages: (1) it does not produce negative values, because
the predictions are limited by the asymptote y = 0; (2) large
values are constrained by the parameter α that can be initially
estimated as the maximum value in the sample data
(McRoberts et al., 2013b). These two assumptions are valuable
for purposes of retaining the biological relevance of the
predictions.

To assess the quality of fitness of this model, the classical R2

is not entirely appropriate, because the assumptions underlying
R2 are not fully satisfied when using nonlinear models
(Anderson-Sprecher 1994). Keeping that in mind, an efficiency
measure *R2 (often called pseudo-R2) was used, calculated as
(Vanclay and Skovsgaard 1997), described by

( )
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where =*R 12 for a ‘perfect’ fit; =*R 02 indicates that the model
is no better than a simple average and <*R 02 reveal a poor
quality of fit.

Analysis
For both datasets, we performed the following analyses.

As an initial procedure, the SRS estimates were calculated,
for comparison with the GREG estimates and to assess the value
of the auxiliary data for reducing the variance of the population
estimates.

To start the process of variable selection, a principal compo-
nent analysis was conducted to investigate the degree of multi-
variate correlation among the predictor variables.

To proceed with the variable selection, the analysis was con-
ducted according to the following steps:

(1) Using SRS with no replacement, the plot-level dataset was
split into two disjoint subsets labelled as calibration dataset
and validation dataset, for further reference. These subsets
contained, respectively, 70% and 30% of the total of
sampled plots (Zhang 2005).

(2) Using the calibration dataset, the methods for variable
selection aforementioned were applied.

(3) Steps (1) and (2) were repeated 100 times, always changing
the seed that starts the random processes involved. The
number of iterations was selected following a critical ana-
lysis of the stability of the results with no effective changes
found beyond 100 replications.
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(4) The five predictor variables with largest relative frequency
for GAAIC and GARMSE and with the largest mean importance
value for RF were chosen as the ‘most suitable subset’ for
each method.

(5) The predictor variable most highly correlated with the
response variable was chosen to compose the ‘single vari-
able subset’.

(6) All the variables were chosen to compose the ‘all variables
subset’.

Using the outputs of the variable selection procedures, the para-
meters of the nonlinear logistic regression model provided by
equation (6) were estimated using the nonlinear least-squares
(NLS) algorithm and the calibration dataset.

The validation dataset was used to assess the accuracy of
the model predictions, through the computation of *R2 and
RMSE. The underlying regression assumptions were verified
through visual inspection of Q − Q and residuals versus predic-
tions graphs. Lack of fit was assessed visually through a graph
of VOL/biomass observations versus VOL/biomass predictions.
Because lack of fit in the model can lead to false positive results
in the analysis of the performance of the selected predictor vari-
ables, a statistical test of hypothesis was conducted. A simple
linear model was fit to VOL/biomass observations as the
response variable and VOL/biomass predictions as the predictor
variable. In the absence of lack of fit, the points in the graph of
this model should lie along the 1:1 line. An F-test for comparing
estimates of the intercepts and slopes jointly to (0,1) was con-
ducted, providing approximate results because no account is
made for the uncertainty in the predictions that serve as the
predictor variable (Vanclay and Skovsgaard 1997, McRoberts
et al., 2013a).

Once the model presented no evidence of lack of fit, the
GREG estimates were calculated using the models with the dif-
ferent sets of predictor variables. The results were compared
with the SRS estimates with emphasis on the absolute values of
the estimated means (μ̂GREG) and their respective standard

errors ( μ μ( ˆ ) = ( ˆ )SE VARGREG GREG ). Also, the standard deviations
of these statistics over the 100 replications can be used as a
measure of the stability of model predictions. In addition, to
assess the efficiency of the GREG estimator when compared
with SRS estimator, the relative efficiency coefficient (RE) was
calculated as,




μ

μ
= ( ˆ )

( ˆ )
( )RE

VAR

VAR
9SRS

GREG

Because RE is the ratio between the variances of μ̂SRS and μ̂GREG,
values greater than 1 are evidence of greater precision in the
estimates.

Finally, because GAAIC presented the most efficient and
accurate results, the behaviour of this algorithm among itera-
tions was explored. A ‘brute-force’ procedure was implemented
to find the most suitable variable subset among the 524 287
possible combinations for the Italian dataset. Having the fitting
statistics for this subset of variables, the GA procedure was eval-
uated with respect to number of iterations, stability and conver-
gence to near-optimal results.

Results
Model accuracy
The results of variable selection are shown in Table 1. Because
the selection procedure was repeated 100 times, the mean
values of *R2 and RMSE are reported with their respective stand-
ard deviations. These values were obtained by applying the fit
models to the 30% of the data that were not used to estimate
the parameters of the models, in each iteration. This iterative
procedure was used to evaluate the robustness and stability of
the variable selection algorithms. Robustness was assessed by
verifying the presence or absence of outliers in the *R2 and RMSE
distributions, while stability was assessed using the standard
deviation of these statistics.

According to Table 1, regarding the Norwegian dataset, the
mean *R2 s were larger for the subsets of variables (min = 0.64;
max = 0.74) than for all variables (0.56). Among the selection
methods, RF produced the smallest *R2 , providing evidence that
this technique is not the most reliable approach for selecting
variables. In the other hand, the largest *R2 was produced by
GAAIC (0.74). This value is ∼15% largest than the value produced
by RF. Also, while the mean RMSE for all variables was the lar-
gest (56.6) and for RF, it was the second largest (52.35), mean
RMSE for GAAIC was the smallest (43.68). This results indicates
that the overall estimates for the nonlinear model fit with the
five variables selected by GAAIC are more accurate and more
precise than the estimates using all the variables. This also sug-
gests the presence of overfitting when no variable selection is
done.

Regarding Italian dataset, GAAIC also increased the perform-
ance of the regression model, corroborating the findings for
Norwegian dataset. Although *R2 , RMSE and *SDR2 for GAAIC sub-
set were quite similar to values for the single variable subset,
the standard deviation for RMSE was ∼32% smaller for GAAIC,
providing evidence of stability in this procedure through different
calibration and validation datasets. In addition, the results of
variable selection in the Italian dataset were less consistent
than the results for Norwegian dataset. Firstly, special attention
should be paid to the results of the regression with all variables
for which *R2 was negative (−0.31) and was accompanied by a
large RMSE (85.26). Standard deviations for these statistics were
large, also. These results provide strong evidence of a greater

Table 1 Results of variable subset selection using the field
measurements in Norwegian and Italian datasets

Selection Norway Italy

*R2 RMSE *SDR2 SDRMSE
*R2 RMSE *SDR2 SDRMSE

None 0.56 56.60 0.24 14.73 −0.31 85.26 1.42 36.26
GARMSE 0.69 48.56 0.14 9.89 0.40 54.26 0.38 14.14
GAAIC 0.74 43.68 0.14 10.69 0.55 46.47 0.30 8.19
RF 0.64 52.35 0.15 11.20 0.43 55.83 0.48 12.46
Single var. 0.67 50.57 0.10 8.14 0.54 46.49 0.25 11.99

† *R2 and RMSE are means; *SDR2 and SDRMSE are the standard deviations
of the respective statistics over 100 iterations. Values obtained using the
validation dataset (30% of the data).
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degree of overfitting in this dataset than in the Norwegian data-
set, probably because of the greater biological variability in the
Italian forest. Also, overall RF results were the less efficient
again when compared with the methods based on GA, specially
GAAIC. *R2 for GAAIC (0.55) was 27% largest than *R2 for RF
(0.43). Regarding RMSE, the value was 20% smaller for GAAIC.
Similar proportions were found for the stability measurements.
The results of both analyses corroborate the hypothesis that,
among the methods used, GAAIC yielded the most reliable
results concerning accuracy.

Figure 3 shows the VOL observations versus VOL predictions
(Italy) and biomass observations versus biomass predictions
(Norway) for the nonlinear logistic model calibrated with the
subset of variables selected by GAAIC and with all variables. The
dashed line represents the theoretical 1:1 observed versus pre-
dicted line for the full model. In the absence of lack of fit, the
points in these graphs should lie along this straight line. The F-
test for comparing estimates of the intercepts and slopes jointly
to (0,1) indicated no significant differences for the models with
selected subsets of variables by GAAIC, which indicates no
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Figure 3 (a) VOL observations versus nonlinear logistic model VOL predictions for Norwegian dataset; (b) biomass observations versus nonlinear
logistic model biomass predictions for Italian dataset.
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important lack of fit of the models to the data. Also, the accur-
acies obtained using our models are comparable to accuracies
achieved by other LiDAR/biomass/volume studies (Næsset 2002,
Latifi et al., 2010, Lu et al., 2012, He et al., 2013, McRoberts
et al., 2013a, 2013b, McRoberts and Westfall 2014, McRoberts
et al., 2014). The most important result was that the full model
was inefficient for predicting biomass based on *R2 . Although
visually explicit, conduction of the F-test led to the rejection of
null hypothesis, providing more evidence that the estimates of
this model are less reliable than estimates for model with fewer
predictor variables. Graphs for other subsets were quite similar.

Population parameters inference (SRS estimator)

The SRS estimator yielded a value of μ̂ = 88.99 m haSRS
3 with a

standard error of μ( ˆ ) =SE 8.30 m haSRS
3 for the entire study

area in Norway. These values were used for comparison for the
results obtained with the GREG estimator with different subsets
of predictor variables, especially for comparison of variances.

For the entire Italian study area, we obtained
μ̂ = 108.15 t haSRS with a standard error of μ( ˆ ) =SE 11.20 t haSRS .
Before the analyses, four plots were considered outliers and
excluded from the analysis. The outlier status is likely because of
forest harvest that occurred between the ALS acquisition and the
field survey.

Note that the dependent variable for the Italian dataset is
biomass rather than volume, but the results corroborated the
findings for the Norwegian dataset. In fact, overfitting in the
models for the Italian dataset is much more evident and leads
to less meaningful predictions when considering all the vari-
ables. The analyses were conducted exactly in the same way as
for the Norwegian dataset. The difference in the dependent vari-
ables occurred because the two datasets where collected for
different studies. This difference is negligible with respect to the
overall results for two reasons: (1) volume is closely related to
biomass because it is the basis for biomass assessment and (2)
the similarity between the results for the two study area sug-
gests that the proposed methodology is equally efficient,
regardless the response variable that is being estimated.

Discussion
Regarding the Norwegian dataset, the results of RF variable
selection and the model with one predictor variable were the
less accurate and efficient, concerning SE and relative efficiency
(Table 2). The results for RF corroborate the hypothesis of (Strobl
et al. 2007) that RF variable importance is not reliable when
variables of the same type vary in many levels in the present
sample. These authors used a series of simulations to show that
RF algorithm may artificially prefer suboptimal predictor vari-
ables in two scenarios: when predictor variables vary in their
scale of measurement or when variables of the same type vary
in their number of categories. The former does not occur here.
The latter is exactly the case of height and density returns, that
are stratified in percentiles, creating many ‘levels’ for the same
variable, which leads to a suboptimal selection of variables by
RF technique.

Concerning the model with one predictor variable, the one
most highly correlated to VOL (d9) was an efficient predictor

when interacting with others, but it did not have enough infor-
mation to be used alone in the model. Under this view GARMSE is
a good choice. Again, the model with no variable selection pro-
duced the largest standard deviations, almost twice the stand-
ard deviations for the models with selected variables. This is a
strong evidence that overfitting occurred, affecting the robust-
ness of the model over different calibration and estimation
datasets and leading to poor predictions. Given this result,
extreme caution should be exercised when using a model with
all variables included.

The GREG estimates for the Norwegian area were smaller
than the SRS estimates for all the combinations of variables
(min = 76.54m3/ha; max = 81.94m3/ha). Also, the means and
SEs were not statistically different among 100 iterations. This
result is expected when using regression models, because par-
ameter estimates for predictor variables that are unrelated to
the response variable are usually not statistically significantly
different from zero and, therefore, have little effect on the mod-
el predictions.

Relative efficiency increases when using the variables
selected by GAAIC but not for GARMSE. This may occur because
RMSE is more closely related to *R2 than is AIC.

The standard deviations of  μ( ˆ )VAR GREG and RE, analysed
together with the parameters estimates, are the main result
of this study. GAAIC yielded the second smallest value for
SD( μ( ˆ )VAR GREG ) and the third smallest value for SDRE. This indi-
cates that the model with variables selected by GAAIC is ∼65%
more stable with respect to estimates of SEs and ∼75% more
stable with respect to RE than the full model. This result is more
evident when considering that GAAIC produced the largest RE
and the second smallest  μ( ˆ )VAR GREG . The single variable subset
was the most stable (∼95% more stable with respect to the full
model), but both μ( ˆ )VAR GREG and RE were the largest. This result
may be explained by the fact that because this subset has only
one variable (d9), it leads to more similar results over the 100
iterations, but more imprecise predictions at each iteration.

Given these results, GAAIC is the more reliable method for
selecting variables with respect to stability, reducing overfitting
in an stable way, increasing the efficiency of the estimates and
producing small SEs. This result may occur because of the pen-
alty term in the AIC algorithm; while RMSE always leads to few-
er parameters, AIC tends to select the most efficient and
informative model based on the assumption that the model is a
good reflection of reality (Sileshi 2014).

Table 2 Results of VOL estimation for Norwegian dataset using the
nonlinear logistic regression model with predictor variables selected by
different methods

Selection μ̂GREG  μ( ˆ )VAR GREG RE SD( μ( ˆ )VAR GREG ) SDRE

None 81.84 3.67 5.29 0.41 1.01
GARMSE 81.94 3.91 4.51 0.11 0.25
GAAIC 80.10 3.61 5.31 0.09 0.25
RF 76.54 4.42 3.54 0.14 0.19
Single var. 79.10 4.63 3.22 0.03 0.05

†RE is the relative efficiency (related to SRS estimator) and SD
( μ( ˆ )VAR GREG ) and SDRE are the standard deviations of the respective sta-
tistics over 100 iterations.
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Regarding the Italian study area (Table 3), the smallest value
for the GREG estimator was obtained from the full model
(μ̂ = 104.92 t haGREG ). As for Norway, means and SEs were not
statistically different among the 100 iterations.

Results of this analysis were similar to the results for the
Norwegian analysis, with GAAIC producing larger RE and smaller
 μ( ˆ )VAR GREG . Also, GAAIC was more stable over the 100 iterations.
Regarding stability, SD( μ( ˆ )VAR GREG ) for GAAIC was ∼60% smaller
than the second smallest one (GARMSE) and for SDRE, GAAIC

yielded a value ∼30% smaller than the single variable subset.
For all the statistics, the full model presented the less reliable
values, probably a direct consequence of strong overfitting.

GA implementation and efficiency

Based on the statistics aforementioned, GAAIC produced the most
suitable subset of variables among the assessed methods. Our
analyses included a search for the most suitable subset over all
possible subsets. This procedure is computationally intensive
because of the extremely large number of combinations and
should be avoided in operational use. The analysis was conducted
only with the Italian dataset, because we found more conver-
gence problems in these data than in the Norwegian dataset.

Table 4 shows the fitting statistics when applying the non-
linear model to different variable subsets with different sizes.
These statistics were calculated using all the data to fit and test
model, so we are not assessing overfitting based on this
approach. Note that the same combination, for each number of
variables, produces the largest *R2 , the smallest RMSE and the
smallest AIC. Based on that, Table 4 shows the optimal results
for each size of predictor variables subsets. As expected *R2

increased and both RMSE and AIC initially decreased with the
inclusion of more variables. A different behaviour happened
when fitting the model with 18 and 19 variables. This fact may
occur for two reasons: (1) the number of variables is large when
compared with the sample size and (2) the last variable
included (P99) is highly correlated (r > 0.95) with seven other
variables (37%), which inhibits convergence of the NLS routine.
So, excluding these two last cases, Table 4 indicates that *R2 has
an asymptote of ∼0.83, which is reached with eight variables.
Our main goal here is to show that there is a threshold for the
maximum number of predictor variables with little to be gained
beyond the threshold.

Given this result, to assess the efficiency of the GAAIC algo-
rithm, we evaluate the number of iterations necessary to find
the near optimal solution. Two aspects must be mentioned
here: (1) the GA procedure is based on a random starting value
so the number of iterations is usually different among runs and

Table 4 Goodness-of-fit statistics over all possible subsets of
independent variables

Variables Largest *R2 Smallest RMSE Smallest AIC

1 0.77 40.83 601.89
2 0.79 39.82 599.96
3 0.79 39.78 600.78
4 0.80 39.42 600.67
5 0.81 38.99 600.30
6 0.82 38.10 598.52
7 0.82 37.82 598.55
8 0.83 37.87 599.55
9 0.83 38.21 601.42
10 0.83 38.45 602.95
11 0.83 38.70 604.47
12 0.83 39.10 606.43
13 0.83 39.46 608.21
14 0.83 40.11 610.80
15 0.83 40.58 612.82
16 0.83 41.32 615.55
17 0.83 41.99 618.03
18 0.82 42.66 620.43
19 0.72 54.15 648.63

†The number of variables means that the optimal particular combin-
ation of that number of predictor variables produces the values in the
other columns.
†RMSE values were calculated concerning the number of variables
included in the nonlinear model.

Table 3 Results of biomass estimation for whole area of Italian dataset
using the nonlinear logistic regression model with predictor variables
selected by different methods

Selection μ̂GREG  μ( ˆ )VAR GREG RE SD( μ( ˆ )VAR GREG SDRE

None 104.92 8.88 2.89 7.88 1.50
GARMSE 108.51 5.70 3.95 0.53 0.56
GAAIC 108.54 5.34 4.43 0.22 0.32
RF 108.05 5.53 4.21 0.58 0.69
Single var. 108.80 5.66 4.02 0.80 0.45

†RE is the relative efficiency concerning SRS estimator and SD
( μ( ˆ )VAR GREG and SDRE are the standard deviations of the respective sta-
tistics over 100 iterations.
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Figure 4 Results of GA procedure for select variables optimizing AIC.
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(2) the optimal solution may not be found, although near opti-
mal solutions are expected.

After 100 iterations with different seeds, the mean number of
iterations necessary for the GA procedure to converge was ∼15
iterations, yielding an AIC value of 607.5, with four variables
retained. The results of this experiment are shown in Figure 4.
Green dots represent the smallest AIC value for each generation
of subsets, while blue dots represent the mean of the subsets. A
visual analysis of the means shows that the GA procedure has a
high degree of stability, corroborating the analytical results found
previously and reported using the standard deviation of the
results over all iterations with different training and test datasets.

Conclusions
Five conclusions may be drawn from these analysis. First, appro-
priate selection of predictor variables contributes to forest
inventory by shortening CIs. In particular, if appropriate selection
of the predictor variables reduces CI width, then that the sam-
ple size could be reduced considerably without affecting the CI.
Alternatively speaking, appropriate selection of the predictor vari-
ables is equivalent to increasing the sample size by a comparable
amount, noting that sample size is proportional to variance, not
SE. In this study, GAAIC shortened the CI ∼15% and 10% for
Norwegian and Italian datasets, respectively, compared with SRS
estimator. In the NFI context, this can represent cost efficiency
regarding the sampling effort. Second, overfitting is an inherent
phenomenon when fitting models with a large number of vari-
ables and leads to poor predictions when applied to an independ-
ent estimation dataset. Thus, procedures for selecting the most
suitable subset of variables are necessary, especially when using
ALS data that produce a large number of correlated metrics.
Third, models with fewer predictor variables tend to be more
stable over different calibration and validation datasets, even if
the overall estimated means did not change too much. These
insignificant differences in means probably are related to the
property of regression models that assign parameter estimates
that are not significantly different from zero to variables that are
unrelated with the response variable. In addition, decreases in the
standard deviation of mean estimates over the replications are
obtained when using models with fewer predictor variables.
Fourth, RF variable importance is not reliable when variables of
the same type vary in many levels in the present sample. Because
this is likely to occur with LiDAR data, extra attention is required
when using this technique for selection of variables. Fifth, the GA
with a cost function that minimizes the Akaike Information
Criteria was the most efficient and most stable method for select-
ing the subsets of variables among the tested algorithms. We
attribute this result to the penalty that this criterion applies when
adding parameters, a feature that leads to a more parsimonious
model with a minimum loss of information. That is not the case
for RMSE, which always tends to decrease with the addition of
new variables and leads to inclusion of predictor variables that
are not significantly correlated with the response variable.
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