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Abstract

Aim: For trees, wood density is linked to competing energetic demands and therefore reflects

responses to the environment. Climatic trends in wood density are recognized, yet their contribu-

tion to regional biogeographical patterns or impact on forest biomass stocks is not understood.

This study has the following two objectives: (O1) to characterize wood density–climate trends for

coarse (i.e., angiosperm versus gymnosperm) and fine (i.e., within-species) taxonomic units and test

a predictive model that incorporates these trends into a model that assumes range-wide wood

density is constant; and (O2) to assess the impact of climate-driven intraspecific variation on forest

biomass stocks for major tree species.

Location: We use an assemblage of eastern U.S. tree species for assessing climatic trends (O1),

and then apply fitted models to forest inventory data spanning the eastern U.S.A. to assess

impacts of forest carbon estimation procedures (O2).

Methods: We compared hierarchical models fitted to the full data to characterize wood density/

climate gradients and to assess the impact of within-species variation (O1). Then, we compared

predictions of biomass stocks from the climate-variable model with those of the static model using

the Forest Inventory and Analysis (FIA) database (O2).

Results: We found among- and within-species trends related to temperature and moisture

regimes, with differing responses between angiosperms and gymnosperms. Incorporating within-

species variation in wood density increases the carbon stock of the study region by an estimated

242 Tg when compared with a species-only model.

Main conclusions: Intraspecific variation in wood density across species ranges suggests that cli-

mate influences investment in stem wood within tree species and contributes to biogeographical

patterns in wood density in the eastern U.S.A. This variation impacts forest biomass stock assess-

ments, and thus contributes refinements to the U.S. National Greenhouse Gas Inventory. In

addition, our work highlights the potential for combining trait data and forest inventory to infer

forest ecological processes at broad spatial scales.
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1 | INTRODUCTION

Stem wood specific gravity (i.e., the average dry weight of wood per

unit green volume, hereafter referred to as ‘wood density’, WD) is a

fundamental plant trait that is correlated with many aspects of the life

history of woody plants. Wood density is negatively correlated with

both mortality rates and growth rates (Kunstler et al., 2016; Woodall,

Russell, Walters, D’Amato, Zhu, & Saatchi, 2015) across a broad range

of angiosperm and gymnosperm tree species. Various hypotheses for

these relationships have been suggested, including that greater wood

density confers increased resistance to mechanical breakage (Niklas &

Spatz, 2010), greater competitive effects (Kunstler et al., 2016),

increased resistance to pests and disease (Chave et al., 2009) and

reduced maintenance costs because of reduced trunk surface area

(Anten & Schieving, 2010; Larjavaara & Muller-Landau, 2010). Regard-

less of the underlying mechanism, the relationship between wood den-

sity and growth or morality rates implies a trade-off that is ordinated

along a wood density gradient (Poorter et al., 2008), and as such, wood

density has been described as the central trait of a ‘wood economics

spectrum’ that links physiological processes, such as water transport, to

the growth and productivity of forested ecosystems across scales

(Chave et al., 2009). These relationships make biogeographical patterns

in wood density important for understanding broad-scale variation in

growth and life history within and among species, with implications for

models and management strategies that address future global change

scenarios (Swenson et al., 2012).

Beyond these ecological implications, wood density is an important

component of live and dead tree biomass estimation procedures and

thus impacts the accuracy of national biomass assessments, as well as

overall forest carbon stocks developed as part of greenhouse gas

inventories. Many nations conduct biomass stock assessments with

national forest inventory (NFI) data where tree-scale biomass models

are used to make individual predictions based on common forest inven-

tory measurements. In these contexts, volume conversion (VC)

approaches are frequently applied, where stem biomass is estimated as

the product of stem volume and wood density. VC approaches are

used within the U.S. NFI as well as in the inventories of many European

nations to ensure consistency between national volume and biomass

stock assessments (Neumann et al., 2016; Woodall, Heath, Domke, &

Nichols, 2011). Given that allometric relationships between stem diam-

eter/height and tree size (i.e., volume) are relatively static (Enquist &

Niklas, 2001), differences in wood density account for much of the var-

iation in biomass model performance across multiple eco-regions and/

or forest types (Woodall, Miles, & Vissage, 2005). Understanding geo-

graphical variation in wood density has the potential to have a positive

impact on the accuracy and precision of forest biomass stock assess-

ments and associated national greenhouse gas inventories (NGHGIs).

The importance of plant traits in governing the distribution of spe-

cies across geographical and climatic gradients has long been recog-

nized (Schimper, 1898). Several studies have documented general

relationships between wood density and climate, as well as other

resource gradients, such as soil fertility, across broad spatial extents

(Chave, Muller-Landau, Baker, Easdale, & Webb, 2006; Lawton, 1984;

Muller-Landau, 2004; Preston, Cornwell, & DeNoyer, 2006; Wiemann

& Williamson, 2002). Given the substantial among-species variation in

mean wood density (Chave et al., 2006; Swenson & Enquist, 2007),

much of this variation is thought to arise from species and/or commu-

nity sorting along environmental gradients (McGill, Enquist, Weiher, &

Westoby, 2006). Dynamics like this have been well documented for

the tropics (Chave et al., 2006), where very high diversity necessitates

a functional rather than a species-specific approach, but interspecific

trends in wood density also influence productivity–climate relation-

ships in Northern Hemisphere forests (Woodall et al., 2015). In temper-

ate regions, such relationships may be driven by trade-offs between

competitive ability and resistance to cold and/or drought stress

(Kunstler et al., 2016), with overall biogeographical trends influenced

by both interspecific variation and broad differences between gymno-

sperms and angiosperms. For example, the prevalence of gymnosperm

species at high latitudes has been attributed to their ability to maintain

higher growth rates and therefore invest in fast-growing low-density

wood when subject to stresses associated with cold climates (i.e.,

freeze–thaw dynamics, nutrient limitation) that limit the growth of

angiosperms that are more competitive in warmer climates (Hacke,

Sperry, Pockman, Davis, & McCulloh, 2001; Sperry & Sullivan, 1992).

Wood density also plays a role in drought resistance at broad scales,

with greater occurrence of species characterized by denser wood

within both taxa in arid environments (Rueda, Godoy, & Hawkins,

2017). These biogeographical patterns have motivated the develop-

ment of biomass modelling systems that attempt to capture phyloge-

netic relationships in wood density, either through using it as a

covariate (Chave et al., 2014) or through designing allometric models

where species are grouped using trait-based relationships (Chojnacky,

Heath, & Jenkins, 2013). By integrating ecological information into tra-

ditional biometrical frameworks for predicting biomass, such

approaches have promise for refining tree size–stem density relation-

ships (Woodall et al., 2005) as well as the verifiability of national forest

biomass stocks developed from NFIs.

Despite these advances, substantial uncertainty surrounding forest

biomass stock estimates persists (Breidenbach, Ant�on-Fern�andez,

Petersson, McRoberts, & Astrup, 2014; Chave et al., 2014; Clough,

Russell, Domke, & Woodall, 2016; McRoberts & Westfall, 2014), sug-

gesting a need to characterize additional sources of error in predictive

models. Considering that species or functional groups are typically

assigned an average trait value within NFIs, range-wide variation of

wood density within species may represent one such source. Within-

species variation in wood density has not been well explored despite a

growing literature recognizing the role of intraspecific variability in

plant traits, with some studies suggesting that within-species variation

may be as great as among-species variation for a host of plant traits

(Messier, McGill, & Lechowicz, 2010; Vil�a-Cabrera, Martínez-Vilalta, &

Retana, 2015). Intraspecific variation, whether arising from differentia-

tion among populations into regional genotypes or from phenotypic

plasticity, is increasingly recognized as a potentially important contribu-

tor to functional responses within ecosystems at a range of spatial
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scales (Anderegg, 2015). Wood density is a relatively conservative plant

trait (i.e., it exhibits limited intraspecific variation) at the global scale

(Siefert et al., 2015), but evidence suggests there may still be some

relationship between it and climate. Wood density is believed to con-

tribute to greater drought and freeze–thaw tolerance in many species

(Hacke et al., 2001), and chronologies developed based on annual vari-

ation in latewood density of individual trees can be used for tempera-

ture reconstruction (Briffa et al., 1998; Fritts, 2001). Moisture

availability, quantified using aridity indices, has been previously used in

other studies assessing the impacts of climatic variation on tree growth

and biomass accumulation (i.e., Foster, Finley, D’Amato, Bradford, &

Banerjee, 2016) as well as in the development of biometrical models of

other plant traits, such as biomass allocation to leaves and roots (Reich

et al., 2014). However, the relative contribution of interspecific and

intraspecific variation to regional climatic gradients in wood density,

along with the impacts of accounting for trends both among and within

species on forest biomass estimation procedures, have not been

assessed.

This study uses an emerging dataset of wood density observations

across forests of the eastern U.S.A. to address the following two broad

objectives: (O1) to characterize wood density trends related to temper-

ature and moisture availability for coarse (i.e., angiosperm versus gym-

nosperm) and fine (i.e., within-species) taxonomic units and test the

predictive accuracy of a wood density model that represents these

trends; and (O2) to assess the impact of incorporating climate-driven

intraspecific variation when quantifying forest biomass stocks for major

tree species. To address O1, we proceed with the following hypothe-

ses: (H1) wood density will be positively related to temperature in gym-

nosperms and negatively related in angiosperms, owing to the better

resistance of the former to stressors associated with cold climates (i.e.,

freeze–thaw, nutrient limitation) and the competitive advantage of the

latter in warmer regions (Brodribb, Pittermann, & Coomes, 2012;

Richardson et al., 2013; Sperry & Sullivan, 1992); (H2) wood density

will be negatively related to moisture availability for both taxa, given

the role WD plays in preventing drought-induced cavitation (Brodribb

et al., 2012); and (H3) prediction of WD will be improved by accounting

for both interspecific variation and intraspecific trends with mean tem-

perature and aridity. Given the role wood density plays in mediating

factors related to temperature (i.e., freeze–thaw dynamics), moisture

availability (i.e., drought tolerance) and their interaction (i.e., whole-tree

carbon allocation), we consider range-wide trends in variables related

to both factors: mean annual temperature and an aridity index. To

address O2, we assess the impact of incorporating climate-driven

trends in WD into the estimation of forest carbon stocks for 10 com-

mon tree species of the eastern U.S.A.

2 | METHODS

2.1 | Data

We obtained wood density data from the United States Forest Service

(USFS) legacy database (LegacyTreeData, 2016), a large compilation of

individual tree attribute data for a range of commercially and

ecologically important species within the U.S.A. These data have been

compiled for the purposes of designing and validating improved bio-

mass models for U.S. tree species (Radtke et al., 2017; Weiskittel et al.,

2015) and are therefore a prime resource for assessing variation in tree

traits. We used estimates of ‘basic’ wood specific gravity, which is

defined as a unitless ratio of stem wood over dry weight per unit of

green wood volume, divided by the density of water (Williamson &

Wiemann, 2010). The dataset used here consisted of 11,842 observa-

tions of wood density from 83 species, collected at 505 unique sam-

pling locations (Figure 1; Supporting Information). These data were

compiled from 37 different studies across the eastern U.S.A.

Although the legacy data present a robust sample of wood density

measurements, they are not uniformly distributed across space and tax-

onomic units. For example, the data show a geographical bias towards

the southeastern U.S.A., with fewer samples in the north. In addition,

major genera, such as Pinus, Acer and Quercus, are well represented,

whereas less abundant taxa either have few samples or may not be

represented at all. We use the full dataset to address our hypotheses

related to climatic trends in wood density, but focus on the five gym-

nosperm and five angiosperm species that are best represented in the

legacy data for the purposes of assessing impacts of within-species cli-

mate trends on carbon stock assessments (Supporting Information).

This subset represents a diverse sample of wide-ranging, ecologically

and commercially important tree species of the eastern U.S.A. and

therefore presents a reasonable baseline for assessing the importance

of climate-driven variation in wood density for improving the accuracy

of forest carbon inventories.

To address our hypotheses, we develop models that predict wood

density based on two covariates: (a) mean annual temperature (MAT;

in degrees Celsius); and (b) an aridity index (AI), given the association

these variables have with freeze–thaw cycles and drought. For MAT,

we use an interpolated surface drawn from 30-year averages in the

WorldClim database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Moisture availability is represented by an aridity index (AI5mean

annual precipitation/potential evapotranspiration), from the Consor-

tium for Spatial Information (CGIAR-CSI) Global-PET database (Zomer,

Trabucco, Bossio, van Straaten, & Verchot, 2008). In this index, a higher

AI corresponds to a wetter climate. These data are derived from

WorldClim data and are therefore harmonized with the MAT data used

in our study and available at the same scale. In preliminary analyses, we

considered a wider suite of climatic variables related to temperature

and precipitation extremes and seasonality (Supporting Information),

but concluded that observed wood density trends with these variables,

examined using graphical checks and summary statistics (R2), were not

significantly different from those observed with MAT and AI (i.e., all

temperature and all precipitation variables were generally correlated).

2.2 | O1, H1–H2: Evaluating and comparing climate

trends between gymnosperms and angiosperms

To assess differences in the wood density response to climate between

gymnosperms and angiosperms, we fitted Bayesian linear regression

models to pooled observations for both taxa. These models were
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specified with weakly informative normal priors on the regression coef-

ficients [�N(0, 5)] and half-cauchy priors on the data-level variances

[�Cauchy(0, 2.5); Gelman, 2006]. Mean trends for both taxa with MAT

and AI were assessed graphically, and the degree of difference in cli-

mate responses was assessed by examining the degree of overlap of

the posterior distributions of the regression coefficients. Separate mod-

els were fitted to gymnosperms and angiosperms. Model fitting was

performed in Stan called from R using the rstan package (Stan Develop-

ment Team, 2017a).

2.3 | O1, H3: Impact of among- and within-species

climate trends on biogeographical patterns of wood

density

To assess the effect of among- and within-species climate trends, we

conducted a model comparison between ‘pooled’ (i.e., fitted to all

angiosperm or gymnosperm observations) and ‘species-specific’ models

that incorporate all possible formulations of MAT and AI (no climate

trend, MAT only, AI only, MAT1AI, MAT1AI1MAT*AI; Table 1).

Given the broad differences and potential climate responses of angio-

sperm and gymnosperm wood (Hacke et al., 2001), we separately fitted

and compared these 10 candidate models to observations of each taxa.

The pooled models are similar to the linear regression models applied

to test H1 and H2. The species-specific models fit separate coefficients

for all species in the dataset, but allow these to arise from a common

underlying hyper-prior distribution (Gelman, Carlin, Stern, & Rubin,

2003). In effect, this approach allows us to extend previously described

among-species differences in climate responses to wood density (e.g.,

Woodall et al., 2015) by also accounting for within-species trends

reflected by the fitting legacy data. The model without any climate vari-

ables assumes that wood density does not have predictable climate

trends and is instead constant across a species’ range, which is the

same assumption as is made in current forest carbon estimation proce-

dures used by the U.S. Forest Service.

The climate-variable models of wood density are written as:

WDij 5aj 1bj 3Xij 1 Eij (1)

where i indexes 1,. . ., N observations and j indexes 1,. . ., J species,

WDij represents the observed wood density values in the legacy data,

Xij is a design matrix containing measurements of selected climate vari-

ables at the sampling locations (i.e., MAT, AI and/or their interaction),

bj is a vector of associated regression coefficients, and Eij represents a

vector of normally distributed ‘white noise’ error terms. The model

parameters aj and bj are indexed by species, implying a separate set of

FIGURE 1 Distribution of sampling locations in the legacy wood density database
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model coefficients for each of the j species in the legacy dataset. To

accommodate partial pooling among species, these vectors of species-

level parameters are modelled with the following prior structure:

aj � N la; sað Þ; bj � N lb; sb
� �

(2)

where the location parameters (l) are given normal hyper-prior distri-

butions, and the scale parameters (s) are specified with half Cauchy

distributions (Gelman, 2006). The ‘species-only’ model has a similar

prior specification to the climate model, but naturally lacks climatic

trends:

WDij5 aj 1 Eij (3)

where all model terms are as previously defined. This model estimates a

species-level intercept from the legacy data but assumes that mean wood

FIGURE 2 Distribution of prediction locations [Forest Inventory and Analysis (FIA) plots] for the most common angiosperm (2a–e) and
gymnosperm (2f–j) species in the legacy data
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density for each individual species is constant across climate gradients. As

previously indicated, we fitted separate models for angiosperms and gym-

nosperms. Models were fitted in Stan via the RStan package (Stan Devel-

opment Team 2017a, 2017b), from four chains (a total of 2,000 Markov

chain Monte Carlo simulations, with the initial 2,000 simulations dis-

carded). This sample was sufficient to gain model convergence according

to the Gelman–Rubin statistic (Gelman & Rubin, 1992).

We compared the candidate models (Table 1) using Bayesian

approximate leave-one-out cross-validation (LOO-CV) and the leave-

one-out information criteria (LOOIC; Vehtari, Gelman, & Gabry, 2017).

This method is similar to other information criteria, such as Akaike’s

information criterion (AIC) or the deviance information criterion (DIC),

in that it represents a computationally efficient approximation of LOO-

CV (Gelman, Hwang, & Vehtari, 2014), but differs in that it uses a log

pointwise predictive density (lppd) to evaluate predictive performance

based on the full data rather than a plug-in estimate of the predicted

mean or median as with AIC and DIC (Gelman et al., 2014; Vehtari

et al., 2017). The lppd is represented as:

lppd5
Xn
i51

log
ð
p yijuð Þppost ujyð Þdu (4)

where log p yijuð Þ represents the log predictive density for an individual

observation yi , and ppost ujyð Þ represents the posterior distribution of a

fitted model based on the full datset y. The lppd can be expressed on

the deviance scale by multiplying by 22, and a penalty for effective

number of parameters is applied as with other information criteria

(Gelman et al., 2014). Model comparison is then facilitated by compar-

ing the difference in LOOIC (DLOOICÞ as well as the standard error of

this difference (DSEÞ between two fitted models (Vehtari et al., 2017).

Posterior estimates of lppd can be obtained from a Stan program with

negligible computational cost relative to what is needed to fit the

model. We obtained this output for each of our fitted models and com-

puted LOOIC within the ‘loo’ package for R, following the methods

outlined by Vehtari et al. (2017). After ranking all candidate models

based on LOOIC, we compared the best-fitted model with the remain-

ing models in order to assess whether they were substantially different

(i.e., DLOOIC6DSE does not contain zero).

2.4 | O2: Assessing impact of inter- and intraspecific

wood density variation on forest carbon stock
assessments

To assess the impact of among- and within-species wood density cli-

mate trends on forest carbon (C) stock estimates, we compared predic-

tions of stem wood C from three models for a full cycle of U.S. Forest

Service Forest Inventory and Analysis (FIA) data collected between

2009 and 2013 (Figure 2), as follows: (a) a model including both species

and climate effects; (b) a ‘species-only’ model that assumes wood den-

sity is constant across climate gradients; and (c) a ‘climate-only’ model

that captures wood density climate trends but ignores interspecific var-

iation among gymnosperms and angiosperms. We confine our analysis

to stem wood C because crown and belowground biomass compo-

nents are predicted directly, rather than using the ‘component ratio

method’ that is currently used in FIA (i.e., volume to biomass conver-

sion using WD; Woodall et al., 2011). The full FIA sample consists of

individual tree measurements (e.g., species, stem volume as estimated

via U.S. Forest Service procedures) on 70,656 plots distributed across

the study region. Before estimating C stocks, we filtered the tree-level

data to remove dead trees and seedlings and saplings below 12.7 cm

diameter at breast height.

The parameters for the ‘species–climate’ and ‘climate-only’ predic-

tion models are the posterior mean estimates derived from fitting to

the legacy data, whereas the ‘species-only’ WD estimates are from

Miles and Smith (2009). In the latter case, we prefer using these esti-

mates rather than those from fitting the ‘species-only’ model to the leg-

acy data because their survey included additional species and they are

the WD expansion factors currently used by the USFS. For the ‘spe-

cies–climate’ model, when a species represented in the FIA data was

not among those in the legacy data, we used average parameter values

for angiosperms or gymnosperms instead. The ‘climate-only’ model also

separates prediction of WD into angiosperms and gymnosperms. The

climate variables used for prediction (e.g., MAT, AI and their interac-

tion) were determined by model fitting and comparison for the legacy

data.

We first calculated stem biomass for individual trees as:

TABLE 1 Overall approximate Bayesian leave-one-out information
criteria (LOOIC) scores, model complexity penalties (pLOOIC) and
LOOIC standard errors (SE) for the climate-variant and static mod-
els, fitted to the gymnosperm and angiosperm data

LOOIC SE pLOO DLOO DLOO SE

Angiosperms

Universal models
MAT1AI1MAT*AI 28,023 74.1 4.5 3,613.6 72.1
MAT1AI 28,019.8 73.7 3.4 3,615.2 72
MAT 27,939 71.1 2.5 3,655.6 72.3
AI 27,979.3 74.1 2.3 3,635.4 71.4
Intercept only 27,878.9 70.7 1.6 3,685.6 71.6
Species models
MAT1AI1MAT*AI 215,250 146 116.6 ** 36.3
MAT1AI 215,131.9 146.6 107.3 117.7 34.4
MAT 215,043.7 143.7 89.7 205.9 33.2
AI 214,378.3 148.4 77.5 871.3 11.6
Species intercepts 214,194 143.4 57.8 1,055.6 32.1

Gymnosperms

Universal models
MAT1AI1MAT*AI 221,246.3 221.2 7.5 1,101.8 58.8
MAT1AI 220,994.2 219.6 6.3 1,227.8 61.5
MAT 220,670.5 220.9 5.5 1,389.6 64.3
AI 219,460.8 205.5 4.5 1,994.5 83.7
Intercept only 218,865.3 202.1 3.5 2,292.3 85.1
Species models
MAT1AI1MAT*AI 223,449 285 36.9 ** 32.3
MAT1AI 223,391 283.9 35.5 57.9 28.1
MAT 223,078.3 282.8 28.3 370.6 21.3
AI 223,051.8 280 31.4 397.1 21.8
Species only 222,583.4 278.9 21.2 865.5 31.3

Note. LOOIC is presented on the deviance scale, so a lower score indi-
cates a better fit. Pointwise differences in LOOIC scores (DLOOIC) are rel-
ative to the reference species-only model. The best-fitted model for
each group is highlighted in bold text. ** indicates the best-fitted model
for each taxa.
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BIO5VOL3WD (5)

where BIO is stem biomass (in kilograms), VOL is stem volume (in cubic

metres) previously estimated using standard USFS procedures, and

WD is wood density predicted by one of the three models outlined

above. After predicting stem biomass at the tree scale, we converted

biomass to C via standard U.S. Forest Service conversions

(C5BIO 3 0.5), and these were summarized for FIA plots and con-

verted to plot-level stocks (in megagrams per hectare) for comparison

of the three C estimation procedures. We examined impacts of incor-

porating climate and/or species information on the overall stock of the

eastern U.S.A. and assessed regional patterns in the degree of differ-

ence among plot-level predictions.

3 | RESULTS

3.1 | O1, H1 and H2: Differences in climate

relationships between gymnosperms and angiosperms

When data from all species were pooled, we found that posterior

mean wood density responses to both MAT and AI were divergent for

both gymnosperms and angiosperms, although posterior distributions

of the regression coefficients substantially overlapped in the latter case

(Figure 3). In the case of MAT, angiosperms showed a slight negative

response (posterior mean of slope c. 20.003), whereas gymnosperms

showed a stronger positive response (posterior mean of slope c. 0.008).

Regression coefficients for the angiosperm and gymnosperm models

were significant (i.e., 0 was outside the 95% uncertainty interval for

both taxa) and substantially different (i.e., 95% uncertainty intervals of

both slopes and intercepts did not overlap). In the case of AI, the oppo-

site pattern was observed, with gymnosperms showing a slight

negative trend (posterior mean slope of c. 21.5 3 1025) and angio-

sperms showing a slight positive trend (posterior mean slope of

c. 8.0 3 1025). However, posterior uncertainty of the relationship

between wood density and AI was highly uncertain for both taxa, with

posterior distributions of the regression coefficients strongly overlap-

ping and including zero. Results of this model comparison present evi-

dence for significant differences in temperature trends between

gymnosperms and angiosperms, but do not find that responses to

moisture availability exhibit consistent responses at this broad taxo-

nomic scale.

3.2 | O1, H3: Among- and within-species climate

trends in wood density

The model comparison analysis indicates that, for both angiosperms

and gymnosperms, the species-specific models incorporating both

MAT and AI as well as their interaction have the best predictive accu-

racy (Table 1). In both cases, this model was substantially better than

the next best competing model, the species-specific model with MAT

and AI but no interaction, when performing a pointwise comparison of

differences in predictive performance. Among the universal models,

including all climatic information increased the model fit for both angio-

sperms and gymnosperms, although in the case of angiosperms the

improvement was narrow over the other candidate climate models.

However, in both taxa the ‘intercept-only’ species-specific model (i.e.,

the model accounting for species differences but not climate trends),

provided a better fit than any of the universal candidate models.

To provide additional context to the model comparison results

and the taxa-level trends, we plotted posterior mean responses to

both MAT and AI for the five most common gymnosperm and angio-

sperm species in the legacy data (Figure 4). The general trend of

FIGURE 3 Overall relationships between wood density and climate variables for gymnosperms (blue) and angiosperms (red). The
continuous lines represent posterior mean trends, whereas the dotted lines represent the upper and lower bounds of the 95% uncertainty
interval of the trend line
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increasing wood density with increasing MAT and decreasing wood

density with increasing AI was observed with all five pine species

(Figure 4a–e), although the relationship between wood density and

AI for Pinus virginiana (Mill.) was weak. Among angiosperms,

Liquidambar styraciflua (L.; Figure 4h), Fraxinus spp. (Figure 4g) and

Acer rubrum (L.; Figure 4f) agreed with overall negative trends with

MAT observed for all angiosperms, while Quercus alba (L.; Figure 4j)

and Liriodendron tulipifera (L.; Figure 4i) showed positive trends. In

the case of AI, Quercus alba (Figure 4t), Liriodendron tulipifera (Figure

4s) and Fraxinus spp. (Figure 4q) showed slight negative trends, while

the remaining two species showed no trend. These patterns did not

agree with the aggregated response of angiosperms to AI, which

was slightly positive.

3.3 | O2: Assessing impact on range-wide forest

carbon stock assessments

For the sample of eastern U.S. FIA plots that we analysed, the predic-

tion model that incorporated both climate and species information gen-

erated the largest average C stocks on FIA plots (31.3 Mg/ha), whereas

the model using only climate information produced the smallest bio-

mass stocks on average (25.7 Mg/ha). Incorporating species informa-

tion without climate gradients also increased biomass stocks relative to

the climate-only model, but to a smaller extent when compared with

the species–climate model (29.6 Mg/ha). The distribution of predicted

forest C stocks of all three models broadly overlap, with each showing

a lower 90% quantile bound of c. 1.4 Mg/ha and upper bounds ranging

from 65.4 Mg/ha (climate only) to 79.8 Mg/ha (climate–species). Plot-

ting predicted C stocks of FIA plots from the climate–species model

against the other candidate models exhibited a generally positive bias

across all stock sizes when compared with the climate-only model, with

a smaller positive bias primarily among larger predicted C stocks when

compared with the species-only model (Figure 5).

Assuming a forested land area of 156 million ha for our study

region, the total predicted stem C stocks of the climate–species,

species-only and climate-only models are 4,886, 4,613 and 4,007 Tg,

respectively. These correspond to increases in aboveground forest C

stock estimates of 273 Tg over the species-only model and 879 Tg

over the climate-only model when incorporating both species and cli-

mate information to estimate forest C stocks.

4 | DISCUSSION

Our results demonstrate that variation in temperature and moisture

regimes is associated with among- and/or within-species trends in

wood density across broad climatic gradients in the eastern U.S.A.

These findings contribute to growing literature (e.g., Anderegg,

2015; Siefert et al., 2015) on the plasticity of plant traits across envi-

ronmental gradients. Our work has clear implications for national

forest biomass assessments, as within-species variation in wood

density is not typically accounted for when developing stock assess-

ments. Furthermore, by providing a basis for mechanistic studies

aimed at understanding the factors driving this intraspecific varia-

tion, our findings highlight the potential of wood density as a central

trait for interpreting and predicting forest ecological processes

across broad spatial extents.

FIGURE 4 Wood density–mean annual temperature and wood
density–aridity index relationships for the major species in the legacy

database
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4.1 | Impact of within- and among-species climate
trends on geographical variation in wood density

Our results support our hypothesis regarding varying relationships

between wood density and temperature for gymnosperms and angio-

sperms, but do not confirm our hypothesis regarding relationships with

aridity. We suggested that gymnosperms would have a positive rela-

tionship between wood density and temperature (i.e., lower density at

cooler temperatures), owing to better resistance to freeze–thaw embo-

lism (Brodribb et al., 2012; Sperry & Sullivan, 1992) and/or nutrient

limitation in cold environments (Reich et al., 2014; Richardson et al.,

2013), whereas angiosperms would display the opposite trend owing to

fewer environmental constraints on growth in warmer climates. The

patterns we observed aligned with these mechanisms, but the extent

to which they are driven by direct impacts of temperature versus other

correlated effects was not addressed by our study. For example, the

observed lower wood density of many gymnosperm species at colder

sites might relate to physiological responses to environment but could

also be explained by a need to increase growth rates to compete for

light in mixed-species assemblages that are dominated by hardwoods

(Carnicer, Barbeta, Sperlich, Coll, & Pe~nuelas, 2013, Kunstler et al.,

2016). The data we analyse include limited observations for boreal con-

ifer species, with much of the gymnosperm data consisting of pine spe-

cies native to the Atlantic coastal plain of the eastern U.S.A. that

intermix with hardwoods at higher latitudes. Despite this biogeographi-

cal trend, we found an opposite WD/temperature trend for angiosperm

species that supports the hypothesis outlined by Hacke et al. (2001)

that better resilience of gymnosperm wood to freeze–thaw stress plays

a role in determining biogeographical patterns in wood density.

The lack of a relationship with AI is surprising given the role wood

density plays in mitigating impacts of drought. Drought tolerance has

been shown to play a significant role in determining the distribution of

gymnosperm species within our study region (Rueda et al., 2017). How-

ever, none of the sampling locations in the legacy data is hyper-arid, so

it is possible that our data did not possess a sufficient range of mois-

ture stress for clear trends to manifest. Alternatively, our results might

indicate that other accounted for (temperature) and unaccounted for

(e.g., competition, soil fertility gradients) factors are stronger drivers of

wood density trends at the regional scale. For example, Reich et al.

(2014) found that the impact of aridity on biomass allocation patterns

in trees was limited compared with the direct and indirect effects of

temperature gradients, whereas Kunstler et al. (2016) have demon-

strated globally consistent impacts of competition on biomass storage

that may further complicate biogeographical patterns. Additional work

is needed to gain a complete understanding of the ecological and phys-

iological mechanisms that underlie the patterns revealed by our study.

Beyond whole-taxa relationships between WD and climate, our

model comparison analysis, coupled with graphical analysis of within-

species climate trends, confirms our hypothesis that simultaneously

accounting for both among- and within-species climate trends will pro-

duce the WD model with the best prediction accuracy. These results

support findings from other studies that have explored the plastic

responses of tree species to environmental gradients, suggesting that

intraspecific climate responses contribute to the biogeography of wood

density across the eastern U.S.A. Experimental evidence for

temperature-driven intraspecific variation in wood density is available

for gymnosperms (e.g., Pinus species; Kilpeläinen, Gerendiain, Luostari-

nen, Peltola, & Kellomäki, 2007; Kilpeläinen, Peltola, Ryypp€o, & Kello-

mäki, 2005; Telewski, Swanson, Strain, & Burns, 1999) as well as

angiosperms (e.g., Eucalyptus; Thomas, Montagu, & Conroy, 2004).

Additionally, several studies have documented intra-annual variation in

the density of new growth related to climate manipulations (Bouriaud,

Leban, Bert, & Deleuze, 2005; Skomarkova et al., 2006), and similar

relationships are widely used in dendrochronological studies to recon-

struct historical climate records (Briffa et al., 1998). Such experimental

evidence, when taken in context with our results and other findings of

biogeographical trends of within-species trends in wood density

FIGURE 5 Comparison of forest carbon stock predictions, for
individual Forest Inventory and Analysis (FIA) plots, from the model
incorporating both climate and species information with models
using climate only and species only
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reported in the literature (Richardson et al., 2013; Thomas et al., 2004),

indicates that plastic physiological responses are at least in part respon-

sible for driving broad patterns of wood density variation along latitudi-

nal and environmental gradients (Chave et al., 2006; Muller-Landau,

2004; Wiemann & Williamson, 2002; Williamson & Wiemann, 2010).

This is significant because it suggests that intraspecific variation,

whether related to phenotypic plasticity or to regional variation in

genotype (Anderegg, 2015), can contribute to the biogeography of

plant traits, rather than broad patterns only arising from species sorting

along environmental gradients (Chave et al., 2006; Swenson & Enquist,

2007; Swenson et al., 2012).

4.2 | Practical impacts of wood density–climate trends

on forest carbon stock assessments

On average, the prediction model using species and climate information

led to a 6% increase in forest C stock estimates for FIA plots when

compared with the current approach used by the USFS to expand stem

volume into biomass and C estimates (i.e., using standard WD esti-

mates across the full range of individual tree species; Miles and Smith,

2009). Based on a simple expansion of plot-level C stock assessments

with estimated total forest land area of the study region, the climate–

species model increases the overall forest C stock by c. 270 Tg; roughly

a third of the overall annual carbon sink from land use, land change and

forestry reported within the U.S. NGHGI (787 Tg CO2 in 2014; United

States Environmental Protection Agency 2016). Although the impact

on overall forest C stock change can be limited by consistent applica-

tion of C estimation procedures across a baseline, these results suggest

that incorporating climate information can contribute to meeting inter-

national C sequestration commitments by reducing the uncertainty

associated with forest C estimation approaches. However, our study

region represents only a portion of all forested land in the U.S.A., so

the extent to which climate information can improve C estimation in

forested ecosystems not covered by the legacy data remains unknown.

Additional wood density data, particularly from western U.S. species,

northern hardwood species and sub-boreal conifers, will enable the

impacts of intraspecific climate variation on the national forest biomass

stock of the U.S.A. to be assessed fully.

The findings of our work provide a basis for using biogeographical

trends in wood density to address broader questions about controls on

forest dynamics at the continental scale. We have reported on climate-

related trends in within-species variation of wood density and have

connected these to physiological mechanisms to interpret divergent

trends observed between gymnosperms and angiosperms. However,

identifying the mechanism(s) driving these patterns was beyond the

scope of our study. Understanding the contribution of climatic adapta-

tion (i.e., plastic responses in wood density to induce resistance to cold

and/or drought stress) versus competition (i.e., decreasing wood den-

sity resulting from a need to maintain a higher growth rate) is of partic-

ular importance (Carnicer et al., 2013; Kunstler et al., 2016).

Additionally, the hierarchical modelling framework we propose might

be used to describe similar climate trends in other plant traits related

to biomass stock distribution. Our results describe relatively small but

significant responses of wood density to temperature and correspond-

ing increases in range-wide biomass stocks despite the fact that wood

density is a relatively conservative trait across geographical and taxo-

nomic variation (Siefert et al., 2015). Future work should focus on

assessing within- and among-species climate trends for more plastic

traits, such as leaf traits, which can also impact the accuracy of predic-

tive forest biomass models. Integrating diverse datasets, such as plant

trait databases and forest inventory data, within the context of hier-

archical models presents significant opportunity for improving predic-

tion and inference of forest dynamics both across space and through

time.

5 | CONCLUSIONS

Although interspecific differentiation explains substantial variation in

wood density in large assemblages of woody plant species, within-

species responses to climate gradients also contribute to overall bio-

geographical patterns of wood density in forests of the eastern U.S.A.

The data from which we draw our inferences are highly variable, but

the improved model fit when accounting for within-species wood den-

sity temperature and moisture gradients, coupled with the strong pat-

terns in several ecologically important tree species, leads us to suggest

that intraspecific variation should be considered as an important

explanatory factor of forest growth and biomass distribution across

broad spatial extents. The trade-offs we observe between gymnosperm

and angiosperm tree species may relate to divergent investments in

growth and defense across the temperature gradient, although

accounting for underlying mechanisms to observed patterns was

beyond the scope of our study. Our results suggest that incorporating

a climate-variable model refines biomass stock assessments at a level

which has implications for estimating annual stock change estimates at

the national scale, and overall estimates at local to regional scales. In

addition, understanding the mechanisms that underlie intraspecific vari-

ation in wood density will improve our overall understanding of con-

trols on forest growth at the continental scale.
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