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Abstract

The effects of climate on wildland fire confronts society across a range of different ecosys-

tems. Water and temperature affect the combustion dynamics, irrespective of whether

those are associated with carbon fueled motors or ecosystems, but through different chemi-

cal, physical, and biological processes. We use an ecosystem combustion equation devel-

oped with the physical chemistry of atmospheric variables to estimate and simulate fire

probability and mean fire interval (MFI). The calibration of ecosystem fire probability with

basic combustion chemistry and physics offers a quantitative method to address wildland

fire in addition to the well-studied forcing factors such as topography, ignition, and vegeta-

tion. We develop a graphic analysis tool for estimating climate forced fire probability with

temperature and precipitation based on an empirical assessment of combustion theory and

fire prediction in ecosystems. Climate-affected fire probability for any period, past or future,

is estimated with given temperature and precipitation. A graphic analyses of wildland fire

dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosys-

tem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the

inhibition of successful reactant collisions by water molecules (humidity and fuel moisture).

These two postulates enable a classification scheme for ecosystems into three or more cli-

mate categories using their position relative to change points defined by precipitation in

combustion dynamics equations. Three classifications of combustion dynamics in ecosys-

tems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) pre-

cipitation sensitive. All three classifications interact in different ways with variable levels of

temperature.

Introduction

The relative role of climate in understanding wildfire is often presented in terms of vegetation,

history, ecology, policy and topography [1–5]. These studies and many others have great value,

but often do little to address the primary aspect of wildland fire, i.e. that as a physical -chemical

reaction, the physics and chemistry of the fire process affects combustion dynamics. Indeed,
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separating the primary nature of combustion reactions and climate is difficult and therefore

the close coupling is often left unacknowledged or misunderstood. In addition, using the

many accepted standards of fire interval analyses in fire history studies has yielded much

important theory [6–9]. However, when the data provided through fire history reconstruction

are considered as frequency data in a physical chemistry context it opens up the well-studied

world of classic reaction chemistry with new ecosystem metrics and relevant process equa-

tions. The work describes here uses the concepts physical chemistry as a foundation for model-

ing combustion processes in ecosystems. The effort presented here transforms ecosystem

metrics and theory from fire history data. Transcending fundamental fire ecology to more

quantitative ecosystem combustion dynamics that reflect the base conditions of fire reactions

creates potential approaches to understand ecosystem level climate–fire interactions. This

detailed perspective on the physical chemistry of ecosystem wildfire brings with it quantitative

intuitive and non-intuitive interpretations of common assumptions about wildland fire.

The primary objectives of this study are to: 1) develop and illustrate temperature/precipita-

tion interactions based on physical and combustion chemistry, 2) present the relevance and

value of hybrid process and empirical modeling using basic chemistry and statistics and, 3)

state and discuss innovative ecosystem combustion theory gained though modeling and obser-

vations. We analyze graphical representations of interdependent phenomena in combustion

dynamics to illustrate the strengths of graphic analysis to highlight forcing between precipita-

tion, temperature and wildland fire using an empirically developed simulation graph to

explore a partial ecosystem fire process.

Methods and materials

Background equations

A review of the general and most advanced version of the three variable Physical Chemistry

Fire Frequency Model (PC2FM) method will aid in its use in developing (Eq 1) fire probability

[10–12] in a given climate with 170 fire history sites for empirical validation. The formulation,

calibration and validation of the PC2FM began by decomposing wildland fire into two compo-

nents, a reaction environment (temperature and precipitation) and an estimate of reactant

concentration (fuel and oxygen). The PC2FM uses the Arrhenius equation ðk ¼ A0exp� Ea=RTÞ
as the concept for calculating the effects of physical- chemistry on the reaction environment

[11]. This component of the PC2FM we call the ARterm (Eq 1). The second PC2FM compo-

nent, PTrc3, represents an estimate of reactant availability (concentration, moisture, oxygen)

based on reaction-concentration rate equation (rate = [A][B]). The probability version of

PC2FM equation used here is expressed as:

AFrP ¼ 1=ð� 4:3 þ ð1:7 e � 28 x ARtermÞ þ ð92 x ð02 ð1=P
2=TÞÞ ð1Þ

where: AFrP = annual fire probability in a 1.2 km2 area, ARterm represents the reaction envi-

ronment as: Ao = (P2) / (ppO2) partial pressure of oxygen in kPa, as estimated by elevation,

Aoe(Ea/(R x T), e = 2.718, Ea = 132 kJ (activation energy), R = 0.00831 kJ mol-1K-1 (Universal Gas

Constant), T = average annual monthly mean daily maximum temperature in K, P = annual

precipitation in cm; PTrc3 represents the estimated reactant concentration and quality:

[(ppO2)2] x [1 / (P x T)]. Although this equation predict AfrP or annual fire probability, it may

be expressed as mean fire interval (MFI), the average number of years between fires. MFI =

1/AFrP. These are not, however, surrogates for fire intensity or severity. This model simply

expresses the likelihood of fire, not the consequences.

Regression coefficients provide calibrated ‘bridges’ between the conceptual chemistry and

the effects of climate on ecosystems. Multicollinearity among predictor variables was

Tipping points of ecosystem climates for estimating fire probability
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negligible, the variance inflation factor was 1.01, the correlation (r = 0.056) between ARterm

and PTrc was not significant, and the residuals were normally distributed. The PC2FM was

expressed with 91 observations and validated on random selections of half of the 182 data

observations, i.e. site locations (10). The average tested model coefficient of determination

(r2) was 0.78%.

Reaction rates in ecosystem fire are determined by: 1) the conditions of the environment at

the time of molecular bond exchanges and 2) the conditions of the fuel production environ-

ment (Fig 1). These two processes take ~ seconds (molecular bond exchanges, fire) versus ~

years (fuel production). The importance of this timing is well known to wildland fire managers

and fighters but is less well quantified in the fire literature.

Results and discussion

Climate spaces as defined by combustion dynamic

The results, use and theory of this experimental modeling are best expressed in diagrammatic

form (Figs 1–3). The results fall into six categories: 1) how a graphic representation of process

modeled fire probability, temperature, and precipitation can be used to express fire probability

Fig 1. A Combustion-Climate diagram (CCd) of climate influences on fire probability. Climate simulated

fire probabilities for ‘natural’ ecosystems using mean maximum temperature and annual precipitation in the

PC2FM [10]. This rate diagram explains two temporal differences related to the combustion of ecosystems.

Temperature and precipitation affect the reaction rate at the time the reaction occurs while the rate of fuel

production determines the fuel concentration and its combustion rate. These two timing conditions

differentially determine the rates of the two components of the PC2FM model: ARterm and the PTrc3 (Eq 1).

Most ecosystems with adequate carbon bond production fall within the precipitation and temperature limits of

this diagram. The red vertical-diagonal isotherms of simulated temperatures are 3˚C (3 K) apart. Thus, the y-

axis distances between points on the vertical temperature isotherms at the same or different precipitation,

estimate fire probability change. For example, with an increase of 30 cm in precipitation (from 135 to 165 cm)

and a 3˚C in temperature (from 297 to 300 K) results in a change in fire probability from 0.2 to 0.30 or from MFI

values of 5 to 3.3 years.

https://doi.org/10.1371/journal.pone.0180956.g001
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(Fig 1); 2) how the use of physical chemistry and combustion dynamics can produce fire prob-

ability estimates that are independent of factors other than climate and rely only on combus-

tion chemistry); 3) how the diagrams can be used to estimate the magnitude and direction of

climate forced fire probability changes (Fig 1–3); 4) how the diagrams (Fig 3) classify ecosys-

tems into precipitation insensitive, unstable, and sensitive; 5) how fire regimes in ecosystems

are reaction (atmospheric conditions) and reactant (fuel) limited; and 6) how the diagrams do

not require the calculation of the PC2FM equation for general user information.

We assess ecosystem fire probability with two factors that are important in all carbon com-

bustion dynamics, the two components of the PC2FM, the ARterm and the PCrc3 (Eq 1). Here

we define a reaction-limited ecosystem as primarily controlled by the conditions of the reac-

tion environmental such as temperature and precipitation and a reactant-limited ecosystem as

controlled primarily by the concentration and quality of the reactants (oxygen and carbon

bonds). This primacy in combustion dynamics of precipitation divides the diagram (Fig 3)

into reaction-limited (right side) and reactant limited (left side) with reference to the line

between combustion dynamic Switch Over Loci (SWO), identified as solid, black circles. How-

ever, reaction and reactant processes are always present in all combustion reactions. This dia-

lectic of the chemical process allows for the classing ecosystems into three groups.

Fig 2. Example of precipitation effects interacting with temperature in a higher resolution CCd

diagram of fire probability in cooler (< 285 K) climates. Example of changes in a wet-cool location, the in

Lower Elwha River, Olympic Peninsula, Washington [14] where fire probability will be affected by changing

temperature and precipitation. Using a 3˚ change in temperature, from 282 to 285, if annual precipitation

increases from 225 to 250 cm (line a) with a 3˚C increase in temperature the fire probability with increase to

0.011 (mean interval of 91 years) but less than without precipitation increase. The same temperature increase

without a change in precipitation will increase the fire probability from 0.0065 (MFI = 153) to 0.0125 (mean

interval = 80 years) (line b). If on the other hand annual precipitation decreases from 225 to 200 cm (line c)

with a 3˚C increase in temperature the fire probability increases to 0.016 (mean interval of 62 years). The

black line (d) illustrates how fire probability can be the same under different annual precipitation along the

same temperature isotherm (285 K).

https://doi.org/10.1371/journal.pone.0180956.g002
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Precipitation-sensitive ecosystems that react rapidly to either increases (> fire probability) or

decreases (< fire probability) in precipitation represent one group. Precipitation-unstab le eco-

systems lie directly along the line (CDL) of the SWO Loci (black dots, Fig 3). Small amounts of

precipitation radically changes the probability of fire. Precipitation- insensitive ecosystems are

depicted on the right of the CDL line of SWO and only large (> CDL) changes in precipitation

can change fire probability. The maximum fire probability at a given temperature isotherm,

the pointed segments of the isotherms on the apex of each isotherm, indicate the location of

the SWO Locus of the two effects of precipitation on fire in an ecosystem. Together for all iso-

therms these SWO Loci indicate a slightly non-near linear separation (the CDL) of fire proba-

bility into reaction and reactant limited ecosystems (Fig 3).

Similar fire probabilities in different climates

The modeling and simulation of combustion dynamics, temperature isotherms, and precipita-

tion conveys a hypothetical question as to whether at a given temperature there can be two

states of precipitation interactions that result in equivalent fire probabilities. For example, the

0.05 probability of fire (MFI of 20 years) occurs along the 285 K temperature isotherm at

annual precipitation values of 100 cm (reaction limited) and at 43 cm (reactant limited) (Fig 2,

line d). These paired fire probability states reflect the counteractive effects of reduced precipi-

tation on fuel and the effects of humidity and fuel moisture on fire probability. Although we

Fig 3. The thick black line (CDL) connecting SWO Loci on each temperature isotherm (solid black

dots) separates ecosystems with different fire probability responses to precipitation in the CCd

diagram. The CDL (thick black line) separates ecosystems with two dominate precipitation influences on fire

probability. Example ecosystems 14 and 15, left of the CDL, may increase in fire probability with more fuel

generated by increased plant growth while other wetter ecosystem will decline in fire probability with more

humidity and fuel moisture. The SWO Loci (black dots) represent the maximum probability of fire occurrence

at a given temperature and precipitation. Circles with numbers are selected ecosystems from Table 2 for

illustrative purposes in the diagram’s climate space. These diagramed probability estimates do not match full

PC2FM equation predictions, especially at elevations above 2000 m where reduced O2 concentrations may

become more (or less) significant in Eq 1.

https://doi.org/10.1371/journal.pone.0180956.g003
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have not tested this hypothesis with anything other than modeling results we possess data sets

from studies in North America that match in temperature and fire probability, but not in pre-

cipitation. These hypothetical fire probability equivalencies may or may not be common but

appear to exist among fire scar sites in at least four pairs of actual fire histories (Table 1).

Although similar fire frequency probabilities exist in these cases (similar temperatures, differ-

ent precipitation), the possible fire intensity at the top of the line (d) could be greatly increased

by higher fuel loading in more favorable growth climates. Conversely, increased fuel moisture

could lessen fire intensity.

These equal temperature fire probabilities are not the only type of fire probability equiva-

lencies that occur in different climates. Unequal temperature fire probabilities occur when

large changes in precipitation co-occur with large temperature changes. This equivalency may

seem rare but may be important in future fire probabilities. For example, a three degree (˚C)

increase in temperature can result in equivalent fire probability when annual precipitation val-

ues differ. This usually occurs wholly or in part in precipitation insensitive fire climates to the

right of the CDL in Fig 3.

The classification of ecosystems with respect to fire probability and climate interactions

(precipitation sensitive, precipitation unstable and precipitation insensitive) is a function of

the interaction between precipitation and temperature as expressed, calculated, and calibrated

in the AFrP (Eq 1). Using this combustion formulation as graphed (Figs 1–3) illustrates that

increases in precipitation will rapidly increase fire probability in dry and warm ecosystems to

the left of the line of SWO loci (CDL) but more gradually decrease fire probability in moist

ecosystems above the CDL of SWO Loci. The effects of this phenomenon are mapped for the

continental US [10].

The steeper slopes of the isotherms associated with lower precipitation values, left side of

the CDL (Fig 3) and above line of SWO loci (black dots) indicate more gradual changes in fire

probability with respect to precipitation and climate, i.e. reaction limited. On the other hand

the lower slope of the isotherms to the right of the SWO Loci line (CDL) suggest more rapid

changes in fire probability in the reactant limited and precipitation sensitive ecosystems.

Because of this difference in fire drivers, reactant limited ecosystems are more sensitive to

small changes in precipitation. Rapid changes in fire probability occur in ecosystems indicated

Table 1. Temperature and fire frequency paired sites with comparable fire probability but different annual precipitation.

Location Pair MFI Pred.prob. T (K) P (cm) Source

predicted actual

N. Pennsylvania 1w 25 23.8 0.043 286.7 137 [13]

Badlands, S. Dakota 1d 23 17 0.050 286.0 41 [15]

Boston Mts., Arkansas 2w 8.2 16 0.122 293.3 127 [16]

New Mexico & Mexico 2d 7.2 15 0.137 293.3 58 [17]

Talladega Mts., AL 3w 6.4 2.6 0.155 295.7 139 [18]

Santa Catalina Mts., CA 3d 6.6 4.7 0.150 297.1 55 [19]

Grea Lakes 4w 20.9 26 0.048 283.8 84 [20]

SW Montana 4d 20.3 27 0.049 282.7 33 [21]

A Pair is denoted by #w for wet and #d for dry. MFI actual are site fire scar dated mean fire intervals. MFI pred. are PC2FM predicted mean fire intervals.

Pred. prob. are modeled AFrP predicted probabilities (Eq 1). T is mean maximum temperature in Kelvin. P is annual precipitation in cm. The differences in

precipitation (P) between the Pairs are large (2.2 to 3.8 times) but still have closely matched fire probabilities in predicted and actual frequency metrics (Fig

2, line d).

https://doi.org/10.1371/journal.pone.0180956.t001
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on the left side of the SWO loci line (CDL) more so than in ecosystems to the right with

changes in precipitation.

Climate space and timing for fire probability

The temporal dimensions of the ARterm and the PTrc3 terms in structure of the ecosystem

level fire regimes (PC2FM) as described in Fig 1 are often a subject of study. Examples of eco-

systems’ fire-time relationships (fire intervals and probabilities) are shown in the CCd dia-

grams climate space (Figs 1–3). Many of these examples exemplify climates with highly

variable differences between reaction rates (~seconds) and fuel production rates (~ years).

Since fire and vegetation are both primarily influenced by climate over large scales of time and

space we expect that categories of ecosystems, temperature, precipitation and wildland fire are

associated (Fig 3). In all CCds the diagramed climate space and actual geographic area are not

are matched for many reasons, especially since the y-axis of the probability scale reflects non-

linear factors.

Fire probability (AFrP) and mean fire interval (MFI) describe the ecological measures of

time and fire occurrence. These are the chemical analog of time and likelihood based rate con-

stants in combustion reactions. This analogy works because the reaction environment and

reactant quality (concentration and condition) are dominant factors that affect the likelihood

of fire occurrence in the laboratory and landscape. The likelihood a fire will ignite and the

probability that it will spread are a function of the ecological and chemical characteristics con-

trolled by climate. This model and application works with ignitions as a random variable for

this precise reason.

Although the model that is presented in the Introduction was generated with fire intervals

from 182 global sites, we selected 16 sites from that group to examine widespread geographic

data to emphasize the point of global climate effects on fire probability. The variance explained

(r2) by the predicted fire frequency (annual probability or MFI) of measured fire intervals

(n = 16) at fire history sites in diverse climates of world is about 0.91 (p< 0.01). Table 2 pro-

vides detailed site information and predictions.

Table 2. Descriptive fire data, including predicted and actual fire probability and mean fire intervals for 16 locations used in the Combustion-Cli-

mate diagram (CCd) (Fig 3). Fire interval data represent pre fire suppression periods.

Number on Fig 3 and geographic location Annual fire probability Predicted MFI (years) Measured MFI (years) reference

Predicted Actual

1 Brindabella Range, New South Wales, Australia 0.122 0.167–0.08 8.2 6 to 12 [26]

2 Pine Savannas, Florida, USA 0.20 0.31 4.9 3.2 [27]

3 Kisatchie Wilderness, Louisiana, USA 0.45 0.45 2–4 2.2 [28]

4 Long Branch, N. Pennsylvania, USA 0.043 0.04 22–24 25 [13]

5 Cascade Range Oregon, USA 0.012 0.014 85 72 [29]

6 Rahue, Patagonia, Argentina 0.05 0.058 20 17.2 [30]

7 V. Rayado, Patagonia, Argentina 0.02 0.017 50 59 [30]

8 Millinocket, Maine, USA 0.037 0.019 27 51 [31]

9 Huron Mts, Michigan, USA 0.038 0.038 24 26.2 [32]

10 Middle Tennessee, USA 0.14 0.17 8 6 [33]

11 Olympic Peninsula Washington, USA 0.006 0.006 126–150 160 [14]

12 Western Ghats, India 0.158 0.10 6.3 6, 10, 20 [34]

13 Current River, Missouri, USA 0.125 0.125 7.2 8 [35]

14 Chiricahua National Monument, Arizona 0.132 0.131 12.4 7.6 [36]

15 Wichita Mts., Oklahoma USA 0.121 0.122 5.3 8.2 [33]

16 Talladega Mts., Alabama USA 0.155 0.156 2.6 6.4 [18]

https://doi.org/10.1371/journal.pone.0180956.t002
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Perhaps the most valuable aspect of developing combustion-climate diagrams (CCd) of cli-

mate influences on fire probability can be the subsequent questions and understanding of cli-

mate and fire probability. There is a need to further explore the mathematical calculations of

SWO related to field observations. Additionally, can the SWO Loci represent a quantitative

‘tipping point’ in the physical-chemistry processes of water in the combustion dynamics of

ecosystems? Finally, can ecosystem processes be inferred in the slopes of the temperature iso-

therms on either side of the CDL?

Model prediction and validation

The originally model’s [10] power and the shape of the precipitation- temperature ‘fields’ are

supported by global fire frequency studies and data in Table 2. The basis of site selection was

available fire frequency data from diverse global climates [5]. Highly variable world climates

show how precipitation and temperature relate to historic rates of fire intervals. Model pre-

dicted simulations are correlated (r = .87, n = 16) with actual MFIs (columns 4 and 5).

Conclusions

Using precipitation, temperature and oxygen to describe the combustion dynamics of ecosys-

tems not only allows for descriptors of past and future fire regimes, but can be used to address

process (fire) deficits in ecosystems [22 – 25]. Ecosystem Combustion-Climate diagrams

enable land managers to estimate future fire probabilities from given temperature and precipi-

tation data. Understanding the change in fire probability based on combustion dynamics of

atmosphere and fuels can determine fuels programs [24]. Combustion dynamic categories in

ecosystems, 1) precipitation insensitive, 2) precipitation unstable and 3) precipitation sensitive,

allow long-term management and steady improvement in climate–fire models and under-

standing. Whether an increase in precipitation results in more or less fire depends strongly on

temperature. Although this concept may be expected, it has not been quantified and used pre-

dictively. Other applications of this approach include:

1. Defining where the SWO locus (‘climate tipping’) is in a given ecosystem to understand the

fire-limiting factors or drivers of fire

2. Understanding how increased precipitation in a precipitation unstable ecosystem increases

fire probability.

3. Examining the relevance of fuel (reactant) reduction to adjust fire frequency in a precipita-

tion insensitive ecosystem.

The theory and quantitative results from the physical chemistry of combustion dynamics

may be overshadowed by other factors, such as fuel loading and weather. Continued research

can examine combustion dynamics in a variety of ecosystems and at a more fine scale resolu-

tion, such as the effect of inter and intra-annual variation in temperature and precipitation.

The approach described in this research provides another tool for climate scientists, fire scien-

tists, and ecosystem managers.
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