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Abstract

We tested whether a general spread model could capture macroecological patterns across all damag-
ing invasive forest pests in the United States. We showed that a common constant dispersal kernel
model, simulated from the discovery date, explained 67.94% of the variation in range size across all
pests, and had 68.00% locational accuracy between predicted and observed locational distributions.
Further, by making dispersal a function of forest area and human population density, variation
explained increased to 75.60%, with 74.30% accuracy. These results indicated that a single general
dispersal kernel model was sufficient to predict the majority of variation in extent and locational dis-
tribution across pest species and that proxies of propagule pressure and habitat invasibility – well-
studied predictors of establishment – should also be applied to the dispersal stage. This model pro-
vides a key element to forecast novel invaders and to extend pathway-level risk analyses to include
spread.
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INTRODUCTION

The number of invasions by non-indigenous forest pests is
increasing worldwide due to growing travel and trade (Lieb-
hold 2012). Pest invasions consist of three phases: arrival at a
site, establishment at that location and subsequent spread
(Elton 2000). Predictive models of each process allow managers
to take targeted actions, decreasing the number of pests com-
pleting each phase (Simberloff & Gibbons 2004).
Arguably, many of the drivers of invasion stages should be

common among invading species. However, whether a gener-
alised predictive model is possible or whether species must be
modelled and fit separately to account for idiosyncrasies
remains unanswered (Leung et al. 2012). To this effect, we
focus on the third phase, and build a general predictive tool
for invasive forest pest spread within the United States. This
is of fundamental interest in ecology – to determine whether
general rules govern dispersal sufficiently to quantitatively
make predictions across a suite of species using a common
model. Spread at a macroecological scale is particularly rele-
vant, given that there are conflicting opinions as to whether
generalities exist across invasions and there have been few lar-
gescale studies of potential generalities (Cadotte et al. 2006).
Such general rules could also have considerable applied value,
allowing spread to be predicted a priori. Current spread mod-
els are typically derived after a pest has already arrived and
spread (e.g. Gilbert et al. 2004; Morin et al. 2009; Tisseuil
et al. 2015; Walter et al. 2015), potentially lessening the effi-
cacy of management, for instance when implementing contain-
ment, rapid response and/or eradication efforts of novel
species (Lovett et al. 2016).
The spread process has been extensively modelled using pop-

ulation ecology models that employ general growth and disper-
sal equations (Shigesada et al. 1995; Neubert & Parker 2004;

Skarpaas & Shea 2007). Such models have been typically
parameterised for individual species separately, and do not
incorporate moderating variables for habitat invasibility,
propagule pressure and pest life history, which have been high-
lighted within the invasion biology literature, would aid gener-
alisation (Leung et al. 2012), but have not been examined in an
explicit spread model. For instance, invasion biologists have
theorised that certain habitat suitability characteristics may
allow for greater establishment success, or greater habitat inva-
sibility (Simberloff 2009). Logically, habitat invasibility could
be incorporated into a dispersal kernel model, where certain
habitat characteristics accelerate dispersal into or out of cells.
In addition to environmental factors, proxies of propagule pres-
sure, or the number of pest individuals introduced, have been
associated with higher probabilities of establishment (Lock-
wood et al. 2005; Bradie et al. 2013). Likewise, higher numbers
of individuals dispersed should accelerate secondary spread.
Variables such as human population density may moderate
propagule pressure, as humans are often vectors for pest spread,
especially over long distances (Haack et al. 2010). These factors
could also be included in the dispersal kernel to repartition dis-
persal preferentially into or out of more frequently visited loca-
tions. Finally, life history characteristics may be important in
determining differential spread rates across species. For
instance, the body size of forest pests may be a predictor of their
spread rates, as larger species may disperse farther.
Thus, an ideal generalised model of spread would predict

invasions across a suite of species using a single model. It
would do so both in terms of the extent of invasion as well as
the spatial locations of pest occurrences, and would integrate
various factors influencing pest invasions. However, the extent
to which such a general model is predictive, and which (if
any) factors have common influence across an array of pest
species remains an open question.
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In this study, we developed a generalised dispersal kernel
(GDK) model and tested two hypotheses: First, we hypothe-
sised that the spread of biological invaders proceeds following
similar processes across species, and so we predicted that a
single general model of pest spread can fit well for all forest
pests in the United States. Secondly, we hypothesised that
pest life history, propagule pressure, and habitat invasibility
can be meaningfully integrated into a dispersal kernel, and
lead to improved predictions in a general model.

MATERIAL AND METHODS

Description of data

To build our model of pest spread, we used county-level
species occurrence data, habitat suitability factors, and
propagule pressure proxies from Liebhold et al. (2013), the
Alien Forest Pest Explorer (Liebhold 2012, http://www.nrs.f
s.fed.us/tools/afpe/maps) and 27 sources for pest characteris-
tics (Table S1). Year of each pest species’ first detection
from Liebhold et al. (2013) was used as a proxy for year of
establishment. Pest occurrence data consisted of 75 pest

species distributions, comprising insects, mites and tree
pathogens. We modelled each species as an independent unit
and we did not consider interactions between species. We
did consider additional predictors, consisting of propagule
pressure proxies [human population density per decade
(km�2), per capita income in 1999 (USD), road length
(km)], habitat invasibility proxies [host species richness, tree
density (m3 km�2), forested land (km2), host tree density
(m3 km�2)] and pest life history traits (taxa: arthropods ver-
sus tree pathogens, number of host species, Eurasian versus
non-Eurasian native range, maximum body length (mm)
(with a separate intercept fit for tree pathogens, as body
length was not applicable)] (Table 1, Table S2). All predictor
variables included had a correlation r < 0.7 with other pre-
dictors (Table S3). Our discrete time dispersal model was fit
in decadal increments to achieve computational feasibility
and because our human population data were decadal
(although we examined sensitivity by using 5-year incre-
ments, and found that model fit did not differ substantially,
Fig. S4). Each species’ time since detection was rounded
down to the nearest decade, and so we limited our analysis
to species that had been present in the United States for at

Table 1 Results of stepwise regression for the dispersal kernel model fit to United States data using habitat invasibility (HI), propagule pressure (PP) and

pest life history (LH) factors

Term Type Description Entry order Estimate (bp)
MET

score (km) R2
MSE

D MET

score (km)

Intercept NA NA 1 1.1248 113.07 0.6794 NA

Forested land (km2)* HI Sum of land area covered by forest 2 �0.8438 68.11 0.7231 �44.96

Human population (km�2)* PP Current human population density

at each time step

3 �0.1378 60.44 0.7560 �7.67

Forested land (km2)† HI Sum of land area covered by forest NA 0.4106 57.69 0.7519 �2.75

Host density (km3 km�2)* HI Host tree volume for that particular

pest per grid cell

NA �0.0205 60.04 0.7558 �0.40

Host density (km3 km�2)† HI Host tree volume for that particular

pest per grid cell

NA 0.0031 60.41 0.7517 �0.03

Host species count* HI Number of tree species that are

hosts of any

pest present in grid cell

NA �0.0384 60.04 0.7442 �0.40

Host species count† HI Number of tree species that are hosts of

any pest present in grid cell

NA 0.1186 60.28 0.7524 �0.16

Tree density (m3 km�2)* HI Total tree volume by grid cell NA 0.3067 59.67 0.7485 �0.77

Tree density (m3 km�2)† HI Total tree volume by grid cell NA 0.1060 60.26 0.7488 �0.18

Body size (mm) LH Pest body length (separate intercept

fit for fungi)

NA 0.0011; 0.1464 60.24 0.7572 �0.20

Continent of origin LH Eurasian vs. Non-Eurasian NA 0 60.44 0.7560 0

Feeding guild LH Pathogens vs. Arthropods NA 0.0163 60.25 0.7489 �0.19

Number of hosts LH Number of host species possessed by pest NA �0.0012 60.41 0.7557 �0.03

Human population (km2)† PP Current human population density

at each time step

NA 0.0217 60.32 0.7527 �0.12

Income (USD)* PP Per capita income in 1999 NA 0 60.44 0.7560 0

Income (USD)† PP Per capita income in 1999 NA 0 60.44 0.7560 0

Road length (km)* PP Total length of all major roads in grid cell NA �0.0148 60.17 0.7463 �0.27

Road length (km)† PP Total length of all major roads in grid cell NA 0.4935 58.64 0.7587 �1.8

*Parameters influencing the probability of dispersal into a cell (ZI).

†Parameters influencing the probability of dispersal out of a cell (ZO).

Negative estimates indicate positive influences on dispersal and vice versa. Since all variables were standardised, the relative influence of each fitted parame-

ter on dispersal can be determined by its magnitude (magnitude of ‘Estimate’ in the table). Conversely, the relative importance of each parameter on mini-

mum energy test (MET) is determined by its entry order in our generalised dispersal kernel model (See Fig. S3). Our best model had d = 2.4321 and

Φ = 0.0006227 with a jackknifed MET score of 60.44 km per species and a jackknifed R2
MSE of 0.7579. Terms with entry order ‘NA’ did not meet our

variable importance threshold for inclusion, and their associated data is for their proposed inclusion as a fourth term in our model.
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least 10 years at the time of data collection (N = 64). Years
of first detection spanned between 1790 and 1997 (1–21 time
steps).
To avoid issues with spread dynamics across unequal

county sizes, we first converted county-level presence/absence
data to a 50 9 50 km lattice using distances measured with
the United States Equidistant Conic Projection calculated
using ArcMap10.2 (ESRI 2011). Environmental variables
within each grid cell were calculated using the area-weighted
average of the US counties it encompassed. Further, all
explanatory variables were centred and scaled to have a mean
of zero and variance of one to ease the interpretation of each
variable’s contribution to dispersal.

Generalised dispersal kernel model

Dispersal kernels estimate the probability of pest dispersal
across space based on the distance between source and desti-
nation cells. In our model, we tested additional predictors of
spread through modifying the dispersal parameter (discussed
below). While we recognise that the predictors may influence
processes other than dispersal, our focus was explicitly on the
dispersal process in this study. We fit a negative exponential
dispersal kernel model using discrete time simulations (Fig. 1),
where at each (decadal) time step, pests dispersed to sur-
rounding patches according to:

Ti;j ¼ e�di;j;fðZÞ
P

j e
�di;j;fðZÞ ð1Þ

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
ð2Þ

where Ti;j is the proportion of pests dispersing from cell i to
cell j, normalised such that proportions sum to one across all
cells j for a particular species, di,j is distance, and f(Z) is a
combination of species (ZS) and cell (dispersal into a cell =

ZI, dispersal out of a cell = ZO) specific predictors and param-
eter values influencing the dispersal probabilities. As a special
case, we tested a constant dispersal model, where f Zð Þ was a
constant (f Zð Þ ¼ a ). In our full GDK model, f Zð Þ was calcu-
lated using:

fðZÞ ¼ 2a
eZSþZIþZO

1þ eZSþZIþZO
ð3Þ

and the equation for ZS, ZI and ZO followed the general
formulation:

ZV ¼
Xk

p¼1
bpXp ð4Þ

where bp are parameters associated with variables X – either
pest life history variables (S) or environmental variables at
either destination cells (I) or source cells (O), thereby allowing
these variables to influence dispersal both into and out of a
cell.
Additionally, species were only able to invade grid cells

where their host species was known to be present, as this
was the most comprehensive information available, and log-
ically should be important for pest distributions. For each
species, we initiated spread in the central grid cell within
each pest’s known host distribution. This central point was
chosen as a reasonable starting point, given (1) the uncer-
tainty around the true origin for most pest species (Siegert
et al. 2014), (2) where records of origin exist, they were
sometimes found outside of the known host distribution
(n = 21, possibly due to the presence of undocumented
urban hosts), and hence there was no good way to incorpo-
rate these records and (3) the lack of urban tree informa-
tion within our host data. Thus, inferences from the model
should be limited to spread throughout natural host distri-
butions.
Next, we assumed that dispersal would increase with time

since establishment in each source cell i, because propagules

Figure 1 Conceptual framework for model building (main loop) and simulation procedure (expanded yellow box). The model is built by a forward selection

procedure, where starting with the intercept-only constant dispersal model, all possible j single term additions are simulated and fit. The best term j* is

chosen to be added to the model if it improves the minimum energy test score by at least 5 km and the process is repeated, otherwise the model building

procedure is halted and the current model is kept as the final model.
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should increase as populations grow, up to some maximum
number of individuals. Because we built the model using pres-
ence/absence data, we only modelled ‘relative propagule pres-
sure’. Specifically, the net influx of propagules and growth at
each time step was formulated as an integrodifference equa-
tion (Kot et al. 1996), where the overall accumulation of
propagules at cell i at timestep t+1 was equal to the relative
propagule pressure at time t, minus emigration, plus immigra-
tion, multiplied by the growth rate d:

Xi;tþ1 ¼ ðXi;t �
X

j
Ti;jXi;t þ

X
k
Tk;iXk;tÞd ð5Þ

Our inclusion of dispersal and growth within a single time
step is atypical of integrodifference models, but was needed
given that our time steps are decadal.
Cells were considered ‘presences’ capable of being a source

of propagules above a threshold population size Φ, to pre-
vent immediate dispersal across the entire landscape. Both d
and Φ were fitted constants. However, the maximum propag-
ule pressure in a cell was set to 1, because the maximum
value was arbitrary and relative to the value of Φ (i.e. maxi-
mum 1 with threshold = Φ has identical dynamics as maxi-
mum 100 with threshold =100*Φ). These equations allowed
us to capture some of the important temporal characteristics
associated with population growth, but we do not interpret
them as demographic rates, as only presence/absence data
were available.

Metrics of fit

We used the minimum energy test (MET) as our metric of
model fit between predicted versus observed distributions
(Aslan & Zech 2005, Data S1). MET accounts for distances
between predicted and true presences, which constitutes a
higher information content than exact matches of presence/ab-
sence (i.e. mismatch of 50 km is better than 1000 km). Lower
MET scores represent models with better goodness-of-fit.
We built our full dispersal model (GDK) using a forward

selection procedure (Fig. 1). Starting from the intercept-only
constant dispersal model, we determined the MET score for
every possible two-term model built by adding the remain-
ing 18 terms individually to the intercept-only model. The
term producing the largest improvement was then added to
the model, and forward selection repeated with higher-term
models, until further additions of terms did not improve
the MET score by 5 km. 5 km was chosen as an arbitrary
threshold of improvement to prevent overfitting.
We report two metrics of model performance. First, we

compared predicted and observed locational distributions,
using MET. We also report locational accuracy, which is
defined as the proportion of correctly assigned presences and
absences across the number of possible presence sites. As a
spatial null comparison model, we also used the observed
number of infested cells, but simulated randomised occur-
rences within the host distribution for each species (random
allocation model) and took the mean MET score of 1000 sim-
ulated pest distributions for each species. As our second met-
ric, we compared predicted to observed range sizes, to
evaluate the ability to predict the extent of invasions, using

mean squared error, MSE, as a proportion of the variation in
observed range sizes; R2

MSE (discussed in Data S5).
As a statistical comparison model for the extent of spread,

we regressed the area occupied by all pests against the time
since they were first discovered in the United States (Liebhold
et al. 2013). Though a regression of pest radius and time fol-
lows more logically from the invasion literature (Skellam
1951), we wanted to keep predictions comparable across mod-
els, and results were very similar between pest radius and pest
area (within c. 2% variation explained), and did not change
our conclusions.

RESULTS

We found that even our statistical comparison model – a simple
regression model of pest range area as a function of time – had
substantial predictive ability (R2

MSE ¼ 0:2837), suggesting pro-
mise for a common predictive model across pest species
(Fig. 2). Next, we tested a simple dispersal kernel model with a
constant dispersal parameter, without consideration of other
predictive factors. We found that using a constant dispersal
model improved the ability to predict pest range area by more
than twofold compared to the simple regression model
(R2

MSE ¼ 0:6794). The constant dispersal model also performed
well comparing the locational predictions against observed
infestations (mean MET score = 113.07 km, with 68.00% loca-
tional accuracy) more than halving the MET score expected by
chance (298.52 km for random allocation null model). These
results suggest that (1) there is considerable similarity in dynam-
ics among pest species, (2) using a process-based dispersal ker-
nel model that accounted for host distribution yielded
substantial benefits compared to a purely statistical approach.
Next, we tested for common predictive factors, which could

modify the dispersal parameter (GDK) (Table 1, Fig. 2). We
found that forested land improved the fit more than any other
variable, giving a model with R2

MSE ¼ 0:7231 and a MET
score of 68.11 km (corresponding to an R2

MSE improvement of
0.0437 and a MET score improvement of 44.96 km) and that
human population density was the next most important,
increasing the model fit to R2

MSE ¼ 0:7560 and a MET score
of 60.44 km (corresponding to an R2

MSE increase of 0.0328
and a MET score improvement of 7.67 km). The inclusion of
forested land and human population density in recipient cells
improved MET scores by 52.63 km (Fig. 3), and resulted in a
model with 74.30% locational accuracy. Beyond these two,
the addition of the other 16 variables tested improved fit by
< 5 km in terms of MET (Table 1). Our model building
results suggest that (1) there are general predictive factors of
pest spread across species, which included both habitat invasi-
bility variables (forested land) as well as proxies for propagule
pressure (human population density), (2) the examined species
traits other than host associations were not important for
spread and (3) relatively simple models explained more than
three-fourths of the variation in extent of pest ranges, as well
as overlapped three-fourths of the geographical locations
across pest species.
When we analysed individual species’ contributions to the

aggregate MET scores, fewer species were predicted incor-
rectly by the GDK than the constant dispersal model (as
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shown by the reduced outliers, Fig. 3). These mismatches
occurred for both predicted presences as well as absences (see
Fig. 4 for examples of individual fit, Fig. 5 for aggregated
predictions and Fig. S2 for all individual species fits). We also
found that MET was inversely related to the extent of spread
(r = �0.3406, P = 0.0059).

DISCUSSION

Currently, most predictions of invasive species spread use spe-
cies-specific models (Muirhead et al. 2006; Carrasco et al.
2010; Gagnon et al. 2015). Here, we showed that a common
dispersal kernel can capture much of the variation in pest
extent across all known damaging forest pests in the United
States. As such, it appears that generalities are possible. Fur-
ther, our GDK model has ramifications for invasion biology

as a predictive science, including forecasting the spread of
new invaders, a demonstration of predictive improvements
using semi-mechanistic models and the incorporation of gen-
eral predictors identified in the invasion literature (Leung
et al. 2012). We discuss each in turn.

Generalities in ecology

Our results suggest that the rules governing the spread of pest
species are sufficiently general to obtain strong quantitative
macroecological predictions using a common model. As a line
of future inquiry, a search for the underlying processes of
these common spread patterns could yield fundamental
insights into biological invasions and spread ecology. Parallels
to such analyses have occurred across other fields of ecology,
where predictive relationships have been discovered that tran-
scend idiosyncratic species relationships and are discernable at
large scales, such as those within the maximum entropy the-
ory of ecology (Frank 2009) and the metabolic theory of ecol-
ogy (West & Brown 2004). These relationships form so-called
‘efficient’ theories (Marquet et al. 2014).
It seems likely that over large scales, an efficient theory may

exist for the dispersal of invasive species. The strong predic-
tive power of the constant dispersal model was unexpected
and interesting; it suggests that dispersal is largely occurring
by one or more analogous spread mechanisms. We hypothe-
sise that these analogous mechanisms are the various forms of
human transport. It is well known that humans are important
vectors of long-distance dispersal, but it appears that the vari-
ous types of human transport (e.g. live plant trade, firewood
movement) are occurring at roughly the same rate over large
scales, allowing a constant dispersal parameter to capture the
majority of variation in spread. In addition to this constant
human transport, there also appears to be a small but
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important component of preferential pest dispersal to areas of
high population density, given that our GDK model predicts
discrete patches of spread surrounding metropolitan areas.
Traditionally, dispersal has been conceptualised as the result

of natural processes based on life history traits and habitat
suitability as it relates to individual species’ constraints. How-
ever, if analogous transport mechanisms and preferential pest
dispersal to metropolitan areas occur, then human agency
may be overshadowing traditional ecological mechanisms,

such as natural flight capacity (Taylor et al. 2010), wind-dri-
ven dispersal (Aylor 1990) and community assembly mecha-
nisms (e.g. Belyea & Lancaster 1999). More formally, we
hypothesise that ‘anthropogenic replacement’ is occurring,
wherein certain natural processes are essentially being overrid-
den by anthropogenic ones, and that predictable generalities
that operate across entire suites of species arise as a conse-
quence of these processes’ broad effects. The lack of explana-
tory power of life history parameters and preferential

Figure 4 A selection of model predictions for

individual species (a. Coleophora laricella, b.

Leucoma salicis, c. Nuculaspis tsugae), showing

the true presence data (left column), constant

dispersal model predictions (centre column) and

generalised dispersal kernel predictions (right

column) as green areas. These distributions are

only a small selection and do not show the full

variation in model predictions across species,

which are included in Fig. S2.

Figure 5 True observations of pest richness (top

panel), predicted pest richness for the constant

dispersal (middle left) and generalised dispersal

kernel (GDK) (middle right) models, and the

Euclidean distance or number of mismatched

pest presences in the constant dispersal (bottom

left), and GDK (bottom right) models. For the

true observations and predicted richness maps,

deeper green indicates higher richness. For the

mismatch maps, deeper green indicates a higher

degree of mismatch (false presences + false

absences).
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dispersal into high human population density areas are argu-
ably controversial findings, and further study is required to
test the generality of such anthropogenic replacement. Addi-
tionally, we acknowledge that life history parameters are
important for other stages of invasion (e.g. establishment,
Forsyth et al. 2004; Bradie & Leung 2015), and could be
important in different model formulations or components
beyond dispersal distances. Nonetheless, these are important
ideas, and replacement of natural processes may have ramifi-
cations beyond invasive species dispersal to other systems
dominated by anthropogenic processes.

Forecasting spread of novel invaders

In concert with models that predict invader establishment in a
country (e.g. Bradie & Leung 2015), our complementary anal-
ysis suggests that entry locations and host distributions will
provide good predictors of pest spread, given that the GDK
model explained 75.60% variation in pest range and had
74.30% locational accuracy, and that life history traits did
not explain substantial variation in spread. The GDK results
also indicate that future invasions to the United States will be
characterised by preferential dispersal into areas of high
human population density. Such forecasts allow for the refine-
ment of pathway level analyses of invasion risk to include a
spread component (e.g. the solid wood packaging materials
pathway and introduction of wood borers, Haack 2006;
Leung et al. 2014). Pests that have not been studied exten-
sively can be included in these projections, given some knowl-
edge of their host distributions, and information on
establishment rates from the pathway in order to join this
spread model to an establishment model (e.g. Aukema et al.
2010; Brockerhoff et al. 2014; Leung et al. 2014).

The importance of semi-mechanistic models

Several alternative models are available for predicting spread
(Shigesada & Kawasaki 1997; Hastings et al. 2005), the sim-
plest being a purely statistical approach, such as a general lin-
ear model of area as a function of time (Liebhold et al. 2013).
We argue that the additional complexity of the semi-mechan-
istic dispersal kernel is well worth inclusion for making pre-
dictions. Comparing the simplest models in each, a constant
dispersal kernel model essentially doubled the variation
explained compared to a regression of pest area against time.
Further, our semi-mechanistic approach can easily incorpo-

rate spatial predictors of spread in predictive contexts, while it
is less clear how general linear models can utilise spatial vari-
ables for prediction. One problem is that incorporating addi-
tional spatial variables requires the calculation of a single
spatial value per pest in fitting (e.g. average human density
across pest distribution). In a predictive context, where future
distributions are unknown, these spatial predictors change as
a pest spreads, which in turn affects their rate of spread, mak-
ing these models impractical for prediction. Additionally,
while regression models can relate time since discovery to the
size of pest ranges, they do not predict spatial locations in
their parameterisations of spread, thereby providing less infor-
mation content than the GDK. Since these models have lesser

utility, we did not test additional predictors of pest spread
beyond time within a regression context.
Additionally, semi-mechanistic models have the potential to

better account for issues of spatial autocorrelation and non-
stationarity by replicating a spatially autocorrelated dispersal
process and allowing for differential dispersal across different
environments. Many statistical modelling approaches are
unable to account for spatial autocorrelation and in particu-
lar, non-stationarity, where the effect of spatial autocorrela-
tion varies across space (Dormann et al. 2007). Failing to
account for these phenomena when present can result in
model misspecification and invalid inferences and subsequent
predictions relating to spatial data (Miller 2012).

General predictive factors

Invader life history, habitat invasibility and propagule pres-
sure have been studied extensively in the invasion biology lit-
erature (Leung et al. 2012). We have shown here how these
factors can be incorporated into an explicit dispersal model,
and found that the predictors that were important and the
magnitudes of effects were different than previous studies. In
their review of the risk assessment literature, Leung et al.
(2012) compiled over 200 models of the stages of species inva-
sions used to predict risk. In contrast to our model, the
majority of previously published models of the spatial distri-
butions of invasive species have been largely formulated as
models of pest establishment success (Inglis et al. 2006; Cat-
ford et al. 2011; Compton et al. 2012). Others have been for-
mulated as gravity models (Gertzen et al. 2011; Potapov et al.
2011), while some studies have analysed the total richness of
pests across space (Stohlgren et al. 2006; Liebhold et al. 2013;
Iannone et al. 2015).
Although related, these various modelled processes and

their patterns are subtly different. We modelled the factors
that promote rapid spread of invasive species in general,
rather than the factors influencing the establishment success
of individual pest species. Further, in contrast to models of
pest presence or richness that attempt to determine differential
establishment across space, our model allowed predictor vari-
ables to modify the probability of dispersal across space and
time, thereby influencing the level of propagule pressure
reaching each cell based on the level of propagule pressure at
surrounding cells and the associated predictor variables.
Given the difference in underlying phenomena modelled, it

may not be surprising that the predictors and their magnitudes
also differed between our study and previous results. We found
that pest life history parameters were not important in our
model, though previous models have found factors such as
fruit size (Py�sek et al. 2009) and wind dispersal (Gass�o et al.
2009) to be predictive of invasive plant distributions. It is
unknown whether differences in our findings reflect differences
in system (plant versus pest) or differences in invasion stage
(establishment success versus spread). Regardless, our model’s
lack of pest life history traits enforces the importance of spatial
factors for spread in this system, although there may be other
important life history factors that were not considered.
Across previous studies of establishment, richness and gravity

models, propagule pressure metrics tended to have higher
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explanatory power than habitat invasibility metrics (Leung &
Mandrak 2007; Catford et al. 2011), and these additional fac-
tors explained the majority of the variation in pest presences
(Inglis et al. 2006; Compton et al. 2012). Conversely, we have
found that a constant dispersal kernel model already explained
the majority of the variation in pest spread (> 65%), and there-
fore that the unique explanatory power of habitat and propag-
ule pressure was moderate (7.65% variation explained, 6.3%
increase in locational accuracy), with habitat invasibility
explaining more of the variation in pest spread than propagule
pressure proxies. However, we suggest that our constant disper-
sal model is not independent of habitat invasibility and propag-
ule pressure processes, but actually incorporates the parts of
these processes that are consistent across space and time. As
such, the aspects of propagule pressure and habitat invasibility
that have constant spatiotemporal influences on dispersal are
contained within the intercept in our constant dispersal model.
This spatiotemporal invariance may differ depending on the
system (cf. Leung & Mandrak 2007; Gertzen et al. 2011; Comp-
ton et al. 2012 which examined discrete lakes). Nonetheless,
based on the variation explained by the constant dispersal ker-
nel model, it appears as though the majority of their influence is
constant across space and time, facilitating future predictions
given an initial establishment.

Caveats and future directions

Scale-dependence occurs when a model’s driving factors vary
with the grain (spatial and/or temporal) at which it is fit (Pau-
chard & Shea 2006; Fridley et al. 2007). Our results are at the
country scale where, importantly, long-distance anthropogenic
dispersal may dominate over natural pest dispersal, possibly
explaining why life history traits were not predictive. Hence,
while we were able to strongly predict spread across counties,
and across the United States, predicting local spread within
counties requires additional models, where life history traits
could potentially dominate the dispersal signal.
Scale-dependence can also occur when a model’s driving

factors and fit vary with temporal roughness. The observed
correlation between MET score and spread extent is poten-
tially consistent with temporal scale-dependence, as shorter
spread time would be more affected by discrete decadal time
units. However, sensitivity analyses using 5-year units yielded
virtually identical results (Fig. S1). As an alternative post hoc
explanation, MET was significantly lower (better) for species
with introduction locations inside known host range (t0.05
(2),62 = 2.793, P = 0.0070), suggesting that our lack of urban
tree data is instead responsible for outliers.
The inability to predict pest presences outside of forested

areas is a key shortcoming of our model. The positive influence
of population density on pest spread further suggests that
urban habitats have strong influences on pest dispersal. Clearly
the collection of urban tree data at a large scale should be a
priority. Additionally, our model structure assumed a single
central introduction of each pest, though we know that several
pests have had multiple independent introductions to the Uni-
ted States. Initiating spread from the host range centroid and
limiting it to the natural host range likely worsens the estima-
tion of early spread rates, as it adds a spatial mismatch in

initial spread to the existing temporal mismatch from the date
of establishment to that of first detection. Thus, the formula-
tion of a detection model is an important future direction to
understand this system mechanistically and alleviate the latter
source of mismatch. Regardless, the strong predictive power of
the model indicates robustness to these details.
We used a general negative exponential dispersal kernel in

our model, though other dispersal models exist (e.g. ‘fat-tailed’
dispersal kernels Shigesada et al. 1995; Kot et al. 1996). How-
ever, several factors suggest that our model is sufficient to
describe this system, including its strong predictive ability.
Additionally, the breadth of durations of invasion within our
dataset (1790–2008) suggests that we are able to capture both
recent and longer-term invasion patterns. Finally, moderation
of the dispersal kernel parameter provides an alternative formu-
lation of long-distance dispersal. For instance, the inclusion of
population density in our full dispersal model allows for urban
centres to attract pests from distant locations. This is arguably
a more process-driven formulation of long-distance dispersal
than using fixed, alternative shapes for dispersal kernels, if we
believe that humans are important vectors causing pest spread.
Our model was based on current and historical conditions.

However, climate change could alter environmental suitability
due to its influence on host tree species and on local abiotic
conditions (Hellmann et al. 2008). Climatic variables such as
temperature were not parameterised in our model. However,
the most important factor for pest persistence is arguably the
presence of viable hosts. In some cases, pests are instead lim-
ited by temperature [e.g. hemlock woolly adelgid (Adelges tsu-
gae), which has reached its climatic limit, despite the presence
of hosts to the north, Paradis et al. 2008], and these cases
could contribute to the remaining error in the model. Addi-
tionally, climate change may influence human distributions,
which, given their inclusion in our model, should also be fore-
casted. Finally, forest management could also alter the future
distribution of tree species (e.g. which species are planted or
cut), which will alter invasible host distributions. Likewise,
land use change could alter forested land and urbanisation
patterns, both of which would affect pest spread. In sum,
forecasting into the future will require additional considera-
tions and submodels, although the GDK can play a key role.

CONCLUSIONS

We have found that a single spread model for all invasive
United States forest pests is predictive of both the extent and
locational accuracy of pest distributions. This model provides
a key element to forecast pest spread, thereby facilitating
rapid responses to new pests. On a more fundamental level,
the predictability across pest species suggests generality, and
advances the possibility of a unified macroecological theory
for invasive species spread by suggesting that common mecha-
nisms underlie spread across species, beyond simple identifica-
tion to the actual quantification of these mechanisms.
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