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Abstract
Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it
is often overlooked and has few quantitative measurements, especially at national scales. To
understand the contribution of understory carbon to the United States (US) carbon budget, we
developed an approach that relies on field measurements of understory vegetation cover and height
on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots.
Allometric models were developed to estimate aboveground understory carbon. A spatial model
based on stand characteristics and remotely sensed data was also applied to estimate understory
carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub
species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The
largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and
southeastern US, thus following the same broad trend as aboveground tree biomass. The average
understory aboveground carbon density was estimated to be 0.977 Mg ha−1, for a total estimate of 272
Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live
tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did
not rely on understory measurements, suggesting that this pool may currently be overestimated in US
National Greenhouse Gas reporting.

Introduction

Understory vegetation (UVEG) plays a key role in
ecosystem function and the terrestrial carbon cycle
(Hou et al 2015, Saitoh et al 2014). The composition of
shrubs, forbs, graminoids and seedlings interact with
and influence plant diversity, forest productivity and
nutrient cycling (Yarie 1980, Mallik 2003, Gilliam 2007,
Moore et al 2007), and wildlife diversity and abun-
dance (Pardini et al 2005, Russell et al 2017). Despite
the importance of UVEG, relatively few measurements
of UVEG characteristics are available compared to the
overstory. The majority of studies that quantify UVEG
attributes are limited to specific forest types and/or are
focused on a particular plant functional group such

as shrubs or herbs. Additionally, UVEG abundance is
highly variable as it can be dramatically influenced by
wildlife grazing, weather, and fire disturbance (Hart
and Chen 2006, Nilsson and Wardle 2005). There-
fore, quantifying UVEG abundance and composition
remains problematic, especially at regional or national
scales (Suchar and Crookston 2010, Russell et al 2014).

UVEG is also a component of the terrestrial
carbon budget, albeit a relatively minor one, and cur-
rently reported as 4.7% of total aboveground biomass
in the United States (US) (Smith et al 2013). The
UVEG component refers to all live understory shrubs,
forbs, graminoids, and seedlings. It does not include
dead components of the understory such as woody
debris and litter layer, which contains a much larger
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proportion of forest carbon (Hudak et al 2012). In
the US, the Department of Agriculture Forest Service’s
Forest Inventory andAnalysisProgram(FIA) is respon-
sible for compiling estimates of forest carbon stocks
and stock changes, including UVEG carbon stocks
(UVEGC), for national and international reporting
instruments. UVEG-related measurements, such as
percent cover and height of shrubs, forbs, graminoids,
and seedlings have been collected in many FIA plots
since 2001. However, the current national estimates do
not depend on these plot measurements, rather they
are calculated by models based on live tree density
and forest type (Birdsey 1996, Smith et al 2013). To
date, there has never been a comprehensive investiga-
tion of the appropriateness of the existing approach
to quantifying national stocks of UVEGC. Addition-
ally, the reason existing UVEG characteristics have not
been applied for quantifying UVEGC may be due to a
lack of understory allometric models. In general, very
few of such models have been published (Chojnacky
and Milton 2008).

Remotely sensed data may be useful proxies of
factors that control the spatial distribution of UVEG
(Martinuzzi et al 2009, Wing et al 2012). Relation-
ships between environmental variables and UVEG are
well-documented at stand to regional scales (Suchar
and Crookston 2010, Tuanmu et al 2010). Some of the
major factors influencing UVEG include light, water,
nutrients, natural disturbances, and management prac-
tices (Royo and Carson 2006, Barbier et al 2008).
Ideally, data from sensors that directly measure tree
canopy density (LiDAR) as a proxy for light availability,
could be used to correlate to UVEGC. However, in the
absenceof this information, it is possible thatbroadpat-
terns of reflectance data (AVHRR/MODIS) as a proxy
for productivity may also correlate with UVEG spatial
patterns.

The main purpose of this study is to quantify
UVEGC in the conterminous US, and more specifically
to: 1) estimate the UVEGC pool at the national level
using stand and geospatial data, and 2) compare the
results to previous US estimates. We develop allomet-
ric models that can make use of UVEG measurements
collected on FIA plots. We also validate our national
approach with independent UVEGC estimates. The
mixed probabilistic and modeled approach applied
here at a large scale provides information for UVEGC
comparisons in other countries and lays out a method
that other countries may find useful in reporting their
own UVEGC estimates.

Methods

Digital photo series database
We use data from the Digital Photo Series database
to develop a suite of allometric models to estimate
UVEGC for dominant forest types (Ottmar et al 2004,
Wright et al 2010). The Digital Photo Series Database

is a collection of UVEG data from field sites located
in major forest types throughout the US (Wright et al
2010). Although the data are principally used for fire
fuel modeling and monitoring, the current study takes
advantage of plots that were clipped and weighed to
measure UVEG biomass, including shrubs, nonwoody
material (e.g. forbs and graminoids), and seedlings.
Additionally, percent cover, height measurements, and
seedling densities were collected at most plots allowing
for the development of allometric models for predict-
ing UVEG biomass. The biomass value was multiplied
by 0.5 to estimate carbon in each respective UVEG
pool. The Digital Photo Series Database is maintained
by the USDA Forest Service Fire and Environmental
Research Applications Team in Seattle, Washington
(http://depts.washington.edu/nwfire/dps/).

FIA data
The FIA program employs a multi-phase inven-
tory, with each phase contributing to the subsequent
phase. First, current aerial photography (e.g. National
Agriculture Imagery Program, USDA Farm Services
Agency (2008)) is used in a prefield process to deter-
mine the land use (e.g. forest or cropland) at all
sampling points (i.e. plot locations). Next, each sample
point is assigned to a stratum using imagery or thematic
products (e.g. National Land Cover Database, Homer
et al 2012). A stratum is a defined geographic area
(e.g. state or estimation unit) that includes plots with
similar attributes; in many regions, strata are defined
by predicted percent canopy cover. Permanent ground
plots aredistributedapproximately every2428haacross
the 48 conterminous states. Each permanent ground
plot comprises a series of smaller fixed-radius (7.32
m) plots (i.e. subplots) spaced 36.6 m apart in a tri-
angular arrangement with one subplot in the center.
Tree- and site-level attributes—such as diameter at
breast height (dbh) and tree height—are measured at
regular temporal intervals on plots that have at least
one forested condition defined in the prefield pro-
cess (USDA Forest Service 2016). On a subset of the
base intensity plots distributed approximately every
38 848 ha additional forest ecosystem attributes are
measured including UVEG characteristics. The UVEG,
or ‘Vegplot’ measurements include species type and
percent cover of shrub and nonwoody species for
height layers of 0–0.61 m, 0.62–1.83 m, 1.84–4.88 m,
and >4.88 m (Schulz et al 2009). However, no actual
heights were collected in the Vegplots. Only a subset
of intensive plots had Vegplot measurements (24 392
subplots, or 5% of the total), and those that did were
mainly concentrated in the South Central US and West
Coast. The years sampled of the Vegplot data spans
from 2001 to 2011, with the majority sampled between
2007 and 2010.

To fill the spatial gaps in Vegplot data we com-
bined them with similar ‘Microplot’ data from the FIA
program collected throughout the US This dataset not
only contains percent cover of shrub and herbaceous
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species, but also their heights (Woodall and Monleon
2008). Similar to Vegplot data, the measurements were
not collected for all intensive plots, rather a subset
(45 700 subplots, or 15% of the total). Importantly,
the area of Microplots is much smaller (13.5 m−2) than
the Vegplots, which cover the whole subplot (168 m−2).
The Microplots were sampled from 2002 to 2013 with
the majority sampled between 2005 and 2010.

Microplot and Vegplot data that were collected
in the same location and in the same year were
used to develop models for harmonizing the two
datasets. Scatterplots of percent cover observed on
the Microplots and Vegplots indicated a consistent
bias in the Microplot measurements. Microplot per-
cent cover tended to be lower than Vegplot percent
cover for small values, but higher for larger values.
This may be due to the differences in perceptions of
field crews in determining shrub and nonwoody covers
over the smaller Microplots versus the larger Vegplots.
In any case, a polynomial model was used to adjust
the Microplot percent cover to be more similar to
the Vegplot. Additionally, due to the fact that there
are no height measurements recorded on the Vegplots
(only height classes), height was predicted from percent
cover from models developed from the Microplot data
(figure 1). The new allometric models developed from
the Digital Photo Series database were then used to
estimate UVEGC on each FIA subplots where mea-
surements of UVEG existed.

Information on seedlings (<2.54 cm or 1 inch
diameter) is collectedonall FIAplots, notonly intensive
plots. Actual seedling data are not used in the cur-
rent calculation and reporting of UVEGC, though it
is considered part of this pool (Smith et al 2013). In
the current approach, we used counts of seedlings col-
lected in the Microplots to calculate seedling density,
which could then be related to seedling carbon den-
sity based on models developed from the Digital Photo
Series Database (figure 1).

FIA stand metrics at the subplot level were also
calculated and used as variables for subsequent ran-
dom forest modeling. These included: forest type,
stand age (years), slope (%), mean and maximum tree
height (ft), basal area (m2 ha−1), tree C (Mg ha−1),
mean diameter (cm), trees per hectare, and latitude
and longitude. Although the variables are in imperial
units, all results were converted to common met-
ric units. The majority of stand characteristics were
collected from 2005 to 2010, similar to the UVEG
measurements, and they most closely approximate
the year 2007.

Spatial data
Several spatial datasets were used in the random forest
modeling of UVEGC. Data from the NOAA Advanced
Very High Resolution Radiometer (AVHRR) sensor
provide phenological metrics that indicate plant dis-
tribution and relative greenness at 1 km resolution.
The current study uses a 5 year average (2006–2010) of

start of season normalized difference vegetation index
(NDVI) (SOSN), end of season NDVI (EOSN), dura-
tion (DUR), maximum NDVI (MAXN), and time
integrated NDVI (TOTND). The 2006–2010 period
was used because it coincides with the period that most
of the UVEG data was collected by the FIA program
(i.e. from 2005–2010). These data are distributed by
the Land Processes Distributed Active Archive Cen-
ter (LP DAAC), located at USGS/EROS, Sioux Falls,
South Dakota (http://lpdaac.usgs.gov). Mean annual
temperature andannualprecipitationaveragedover the
same period was obtained from DAYMET (Thornton
et al 2016). Elevation was obtained from the Shut-
tle Radar Topography Mission (Jarvis et al 2008). All
datasets were aligned and converted to the same pro-
jection.

Random forest modeling
Weused the subset of FIAplots havingUVEGmeasure-
ments in combination with geospatial data to develop
a random forest model of UVEGC in the US. Ran-
dom forest modeling is a machine learning approach
that predicts observations using both categorical and
continuous data (Liaw and Wiener 2002), and has
been applied to predict litter layer carbon on FIA plots
(Domke et al 2016). In this study, random forest mod-
elingwas applied topredict totalUVEGCat thenational
scale (shrub, nonwoody, and seedling) using: (1) field
collectedvariables, (2)geospatial variables, and(3)both
field and geospatial variables. The best model approach
was determined by comparing the different groups of
variables against random hold-out observations of 15%
of the total dataset. The model was then applied to
all Phase 3 subplots across the country (130 547 plots,
or 438 089 subplots), thus preserving a spatially unbi-
ased and expanded estimate. Variable importance was
assessed by percent increase in MSE of each variable
after100permutations (%incMSE).TheRpackage ran-
domForest was used for all analyses (Liaw and Wiener
2002, R Development Core Team 2014).

Model validation

EstimatesofUVEGCat thenational scalewerevalidated
by searching the literature for studies that reported
actual field measurements of UVEG over landscapes
and regions. Relatively few data sources are avail-
able on understory biomass stocks to allow for a
robust and spatially unbiased independent validation
of either previous FIA estimates or the estimates of
this study. Nonetheless, some studies have included
data on clipped and weighed UVEG biomass for mul-
tiple plots at a site. For example, the Database for
Landscape-scale Carbon Monitoring Sites contains
eight sites with UVEGC sampled systematically over
a 9 km2 area (Cole et al 2013). Other studies have
developed allometric models from clipped and weighed
individuals and applied them over larger areas (e.g.
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Figure 1. Flow diagram for the estimation of UVEGC (i.e. aboveground shrub, nonwoody, and seedling carbon) on FIA plots. Dotted
line boxes represent the measurements used with allometric models to estimate specific UVEGC pools (solid line boxes). Shaded boxes
to the side indicate the data sources and their roles in the UVEGC estimation.

Smithwick et al 2002). These datasets were used to val-
idate our best random forest model and current FIA
estimates. Therefore it was a separate validation activ-
ity than the hold-out dataset used above for random
forest model validation, and in this case emphasized
comparing the performance of the previous FIA model
or the new random forest model. Overall, we compared
UVEGC estimates from 14 sites, accounting for 10 of
the 32 forest types, to both UVEGC estimates (table 1).
Validation sites were only included in our analysis if an

adequate UVEG sample was available, ranging from 7
to 96 observations. Basic p-value and R2 statistics were
performed to examine correlations.

Results

Allometric models
Of the several linear and non-linear models that
were explored to fit shrub height and shrub cover to
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Table 1. Validation sites chosen for comparing random forest and current FIA estimates of UVEGC.

Forest type n Location Reference

Fir/spruce/mountain hemlock 96 Niwot Ridge and Fraser Experimental Forest, Colorado (Bradford et al 2008, Cole et al 2013)
Fir/spruce/mountain hemlock 48 Glacier Lakes Ecosystem Experiments Site, Wyoming (Bradford et al 2008, Cole et al 2013)
Aspen/birch 63 Marcell Experimental Forest, Minnesota (Bradford et al 2009, Cole et al 2013)
Maple/beech/birch 17 Marcell Experimental Forest, Minnesota (Bradford et al 2009, Cole et al 2013)
Spruce/fir 9 Marcell Experimental Forest, Minnesota (Bradford et al 2009, Cole et al 2013)
Longleaf/slash pine 16 Northern Florida (Cronan et al 2015)
Maple/beech/birch 10 Quebec, Canada (similar to northeastern US) (Tremblay and Larocque 2001)
Lodgepole pine 16 Yellowstone National Park, Wyoming (Smithwick et al 2005)
Loblolly/shortleaf pine 25 Silas Little and Cedar Bridge, New Jersey (Clark et al 2010, Cole et al 2013)
Loblolly/shortleaf pine 19 Parker Tract, North Carolina (Cole et al 2013)
Douglas-fir 14 H J Andrews, Oregon (Smithwick et al 2002)
Hemlock/sitka spruce 7 Olympic Peninsula, Washington (Smithwick et al 2002)
Fir/spruce/mountain hemlock 9 Mt. Rainier National Park, Washington (Smithwick et al 2002)
Oak/hickory 12 Butler County, Missouri (Knapp et al 2015)

Table 2. Allometric models for shrub, nonwoody, and seedling biomass.

Forest type b1 b2 R2 RMSE n

Shrub biomass, Mg ha−1 = (b1 ∗ (MaxCover ∗ MaxHT))/(b2 + (MaxCover ∗ MaxHT))
AK Aspen/birch group 9457705.1 650148.5 0.26 2.4 15
AK Fir/spruce/mountain hemlock group use PWW Douglas-fir group
Loblolly/shortleaf pine group 39.0 1.8 0.38 2.3 37
NE Maple/beech/birch group 12839404.7 2049530.3 0.88 0.0 9
NE Spruce/fir group 2688.8 683.8 0.32 0.0 10
NLS White/red/jack pine group 7.7 0.2 0.75 0.3 21
Pinyon/juniper group 59.2 1.1 0.65 1.5 37
Ponderosa pine group 413718721.3 11202103.1 0.73 5.6 23
PWW Douglas-fir group 11.4 0.6 0.68 0.4 19
RMN, RMS Aspen/birch group 84.3 2.3 0.52 0.7 13
RMN, RMS Lodgepole pine group 19.4 0.6 0.90 0.2 13
RMN, RMS Woodland hardwoods group 6.5 0.1 0.34 0.8 9
SC, SE Longleaf/slash pine group 13.7 0.2 0.65 1.0 11
SC, SE Oak/hickory group 3300.4 683.8 0.99 0.00 11
Western oak group 14.1 0.4 0.65 0.7 20

Nonwoody biomass, Mg ha−1 = (b1 ∗ Cover)/(b2 + Cover)
All UVEG forest types 2646.4 90.2 0.61 0.7 318

Seedling biomass, Mg ha−1 = b1 + b2 ∗ SeedDense
AK Aspen/birch group use RMN, RMS Woodland hardwoods group
AK Fir/spruce/mountain hemlock group 0 6.51 E–05 0.27 0.8 26
Loblolly/shortleaf pine group 0 5.74 E–05 0.87 0.6 16
NE Maple/beech/birch group 0 1.05 E–06 0.95 0.0 9
NE Spruce/fir group 0 8.10 E–06 0.94 0.2 10
NLS White/red/jack pine group use NE Spruce/fir group
Pinyon/juniper group 0 1.02 E–04 0.49 0.1 14
Ponderosa pine group use Pinyon/juniper group
PWW_Douglas-fir group use AK Fir/spruce/mountain hemlock group
RMN, RMS Aspen/birch group use RMN, RMS Woodland hardwoods group
RMN, RMS Lodgepole pine group use Pinyon/juniper group
RMN, RMS Woodland hardwoods group 0 4.19 E–05 0.53 1.0 9
SC, SE Longleaf/slash pine group use Loblolly/shortleaf pine group
SC, SE Oak/hickory group use NE Maple/beech/birch group
Western oak group use RMN, RMS Woodland hardwoods group

AK–Alaska, NE–Northeast, NLS–Northern Lake States, PWW–Pacific Northwest Westside, RMN–Rocky Mountain North, RMS–Rocky

Mountain South, SC–South Central, SE–Southeastern.

MaxCover and Cover units are %; MaxHT units are meters; SeedDense units are stems per hectare.

aboveground shrub biomass, the Michaelis Menten
form performed the most consistently (table 2,
supplementary table S1, available at stacks.iop.org/
ERL/12/125010/mmedia). Semi-arid forest types (pon-
derosa, pinyon/juniper, and aspen/birch) increased
more in shrub biomass with shrub cover and height
compared toother forest types, suggesting ahigherden-
sity. Other conifer types (douglas fir and white/red/jack
pine) had the lowest densities. For the nonwoody
component, only one Michaelis Menten model using
nonwoody cover was used for all forest types. Finally,

for the seedling component, a linear model using
seedling density was used for six forest types (table 2,
supplementary table S1). The allometric relationships
developed for the shrub, nonwoody, and seedling com-
ponents allowed for the estimation of total UVEGC for
15 of the 32 forest types and 76% of the intensive plot
observations. For the remaining forest typesnotdirectly
represented by allometric models, close substitutions
weremade (e.g. douglasfirwasused for redwood).Each
of the allometric equations are recorded both in metric
(table 2) and imperial units (supplementary table S1).
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Table 3. Random forest results for national scale analysis. The regression estimate (i.e. slope, indicating bias), R2, and RMSE of each random
forest model against a hold-out dataset of 2805 observations. Units are in Mg ha−1.

RF model Estimate RSquare RMSE

Field 1.13 0.34 0.76
Remote sensing 0.81 0.34 0.77
Both 1.06 0.40 0.73

Field Geospatial Both

Forest Type

Stand Age

Slope

Longitude

Latitude

Mean Height

Mean Diameter

Trees Per Acre

Tree C
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Figure 2. Variable importance plots for field collected and geospatial and combined variables. The %incMSE is the percent increase
of the variable importance over the mean square error, where a higher percent suggests a greater importance.

UVEGC in the conterminous US
Random forest models based on field collected and
geospatial variables each explained 34% of the vari-
ation in UVEGC of the hold-out validation dataset,
and each had similar RMSEs (table 3). However, the
fieldcollectedvariables tended to slightlyunderestimate
UVEGC while the remotely sensed variables tended to
slightly overestimate UVEGC (table 3). When all vari-
ables were combined, 40% of UVEGC was explained
and with less bias than either of the two sets of vari-
ables alone. The most important variable of the field
collected variables was forest type followed by stand
age and slope. The most important geospatial variables
were precipitation and elevation (figure 2). When both
sets of variables were combined, the most important
variables were field collected variables, such as forest
type, slope, and standage, followedby temperature, and
to a lesser degree precipitation, and NDVI variables.

Perhaps not surprisingly, there were similar trends
across environmental and stand age gradients at
the national scale to those that would be expected
at the stand level. For example, UVEGC increased
with increasing temperature and precipitation, and
decreased with increasing elevation and stand age (p-
value < 0.0001 in all cases). In contrast, variables such
as trees per hectare, basal area, and tree carbon were
much less important in the random forest model.

When the random forest model using all vari-
ables was applied to all intensive FIA plots, the lowest
UVEGC was generally associated with high latitude
and arid regions while higher UVEGC was generally

associated with forests with greater precipitation and
warmer temperatures (figure 3(a)). For example, the
two forest types that contained the most UVEGC were
loblolly/shortleaf pine (17%) and oak/hickory (16%).
More specifically, of the major forest types, the high-
est UVEGC density estimates were found in the Pacific
Northwest alder/maple (1.9 Mg ha−1) and Southeast
loblolly/shortleaf pine (1.9 Mg ha−1) groups, while the
lowest densities were found in the Northeast spruce/fir
(0.52 Mg ha−1) and South Central Woodland hard-
woods (0.52 Mg ha−1) groups (supplementary table
S2). These patterns were broadly similar to patterns of
the current FIA estimates (figure 3(b)). However, the
random forest estimates were almost always lower—as
much as 100% in some areas such as Texas (figure 3(c);
supplementary table S2). For all forest types, the major-
ity of UVEGC was stored in shrubs (64%), followed by
nonwoody (35%) and seedling (1%).

The UVEGC estimates from the random for-
est model for the conterminous US ranged from
0.047–7.605 MgC ha−1. The mean was 0.977± 0.0008
MgC ha−1 (mean± standarderror), or 1.7%of the total
aboveground live tree carbon reported by Smith et al
(2013) (56.5 MgC ha−1). The previous UVEGC esti-
mate reported by Smith et al (2013) was 2.8 MgC ha−1

or 4.7% of the total live aboveground carbon. There-
fore, the previous estimates were nearly three times
higher than the random forest estimate. When means
were summarized by state and forest type and mul-
tiplied by their forest areas, the sum total UVEGC
for the conterminous US was 272± 0.21 Tg (total
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Figure 3. Map showing the P3 plot locations and spatial patterns of UVEGC, Mg ha−1 of (a) current FIA, (b) predicted by random
forest models of both field collected and remotely sensed data, (c) the difference between the FIA and random forest estimates calculated
as ((Current FIA—Random Forest)/Current FIA) ∗ 100.

stock± standard error). The cumulative distribution
plots for both estimates reveal that, in addition to being
consistently higher, the current FIA estimate minimum
was 0.5 Mg ha−1 (figure 4). In contrast, about 10%
of the observations of the new estimate were below
this threshold, making the overall average even lower.
Both estimates were weakly, but significantly, positively
correlated (R2 = 0.12; p-value < 0.0001).

Independent site validation
The Random Forest UVEGC estimates compared
well to the independent estimates in nine of the ten
forest types, but poorly for two of the three fir/

spruce/mountain hemlock forest sites located in
Colorado and Wyoming (figure 5). The UVEGC mea-
surements at these sites were 2.5–4 times higher than
the modeled value. However, the same forest type
in Washington was comparable. Neither this study’s,
nor the previous study’s estimate, were significantly
correlated with all the validation sites (p< 0.05). How-
ever, when the fir/spruce/mountain hemlock forest
types were removed, both this study’s and the pre-
vious estimate were positively correlated (R2 = 0.72
and 0.56, respectively, p < 0.01). The current FIA
model estimatewas always biased towardshigher values
(figures 4 and 5).
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Figure 4. The cumulative distribution plots of UVEGC predictions of this study compared to previous FIA estimates.

Discussion

A major challenge for estimating UVEGC at the
national level is that UVEGC measurements are only
available for a limited number of forest types and are
often measured using different methods. To address
this challenge, we developed UVEGC allometric mod-
els from the Digital Photo Series Database, which
provides a wealth of consistent measurements of shrub
and nonwoody covers and heights, and seedling mass,
for a variety of forest types across the country. Com-
parisons with independent validation data suggest that
using UVEG measurements on FIA subplots appears
to be an improvement over the previous method. Still,
some forest types were not represented by our allo-
metric models, and substantial uncertainty exists in
the allometric models of certain forest types (table 2).
Additional UVEG observations would provide greater
understanding about the accuracy of the allometric
models of this study.

Expanding UVEGC across all forest conditions was
somewhat successful using the random forest mod-
els and resulted in an R2 of 0.40. Considering the
high variability of UVEGC this is not surprising and
is consistent with results from Suchar and Crookston
(2010) who used a similar suite of variables to predict
UVEGC in the Northwestern US. Their models yielded
adj-R2’s that ranged from 0.05 − 0.76. Perhaps more
important for large scale estimates is that the model
is not overly biased. It appears that combining both
field and remote sensing variables for UVEGC predic-
tion improves model predictions both in terms of the
variation explained and the bias.

Based on these findings, the live aboveground
UVEGCestimate currently reportedbyFIA fornational
greenhouse gas accounting may be high relative to
field observations. This probably has to do with the
relatively simple models that were first developed to
describe this pool which were based on even fewer
resources than are currently available. It also appears
that the previous model did not capture as well
conditions with very small amounts of UVEGC. In
either case, however, it appears that UVEGC in the

conterminous US is still a minor component of the ter-
restrial ecosystem carbon budget, comprising between
2% and 5% of the total aboveground carbon. Fur-
thermore, the live UVEGC component is much lower
than the dead down woody debris component (six
times lower than the national down woody debris esti-
mate reported by Smith et al 2013). We also note that
our assumed carbon content of 50%, which we used
because of the lack of data about this ratio across all
forest types, of the biomass may be too high. For exam-
ple, Jain et al (2009) found that for forest types in the
Rocky Mountains the carbon content was between 41
and 47% of the biomass. Assuming a value of 41%
would further lower our estimate and underscore that
the current FIA estimate may be overestimated (i.e.
only 1.4% of aboveground biomass).

It was challenging to find estimates of forests out-
side the United States for comparing to our UVEGC,
especially given the variety of definitions of what is
the understory. Still, some comparisons are informa-
tive. For example, Fang et al (2007) estimated UVEGC
in temperate forests in China that was lower than
similar forests in the Northern Lakes States (0.14 vs.
0.8 MgC ha−1 in birch forests; 0.03 vs. 0.7 MgC ha−1

in oak forests). However, they did not count the
nonwoody portion, which was about a third of the
understory biomass in our estimate. Similarly, in a
study by Ordóñez et al (2008) estimates of a fir forest in
Mexico were somewhat lower than the Pacific South-
west fir forest of our study (0.39 vs. 0.67 MgC ha−1).
Finally, in a Himalayan maple forest the UVEGC esti-
mate from Garkoti (2008) was higher than our estimate
of maple/beech/birch forests in the Northeastern US
(1.45 v. 0.75 MgC ha−1).

Our total estimate of 272 Tg carbon in the live
aboveground UVEG pool deserves some disclaimers.
The small standard error reported is an artifact of the
random forest model since it tends to predict mean
understory densities and not extreme values. In other
words, we did not apply model-assisted estimators of
variance that more accurately reflect the true pop-
ulation variance, but future studies should address
this. Furthermore, although our validation exercise
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Figure 5. Validation sites for UVEGC estimates in MgC ha−1. Top figure is the comparison with current FIA data and the bottom
figure with results from the random forest model. The dotted black line is the 1:1 line. Closed symbols indicate sites with destructive
harvest samples where as open symbols indicate where allometric models were applied to a larger population.

accounted for most of the vegetation types found in the
US, the UVEGC of some forest types were not available
for comparison (e.g. ponderosa pine, pinyon-juniper,
redwood). Our analysis is only for forest conditions
in the conterminous US We did not report UVEG
stocks in Alaska, although we do provide allometric
models for two forests types found in Southeastern
Alaska. Therefore, it remains unknown how much

shrub biomass associated with Alaskan boreal forest
and tundra vegetation contributes to the US carbon
budget. Additionally, UVEGC stocks occur in non-
forest areas such as urban landscapes and semi-arid
regions, but they are unaccounted for here (Keeling
and Phillips 2007). Finally, the allometric models and
stocks reported are only for the aboveground por-
tion of UVEG. Smith et al (2013) assumes that the
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belowground portion is 11% of the aboveground, so
this factor could be applied to our estimates. However,
some have argued that the belowground contribution
to understory biomass could be substantially greater,
especially when the fine root portion is included (Gon-
zalez et al 2013). Despite these limitations the new
estimate appears to give a more conservative estimation
of this carbon pool than previous estimates.

Conclusions

The live UVEGC is an important part of forest ecosys-
tem carbon stocks and is recognized as a component
of the aboveground and belowground biomass pools
in Intergovernmental Panel on Climate Change Good
Practice Guidance (IPCC 2006). This study presents a
parsimonious approach for predicting UVEGC which
leverages observations from intensive FIA plots, the
Digital Photo Series database, and other remotely
sensed and climatic geospatial data. Threeprimary con-
clusions may be drawn from this study: (1) the live
aboveground UVEGC pool is a small component of
the terrestrial carbon budget in the US, (2) the new
approach based on actual measurements of UVEG
characteristics resulted in a lower UVEGC estimate
than previously reported, and (3) new UVEG cover,
height, andweightmeasurements inunder-represented
sites in this study will improve national level represen-
tation of this highly variable pool. These conclusions, in
addition to the general approach outlined in this study,
may be useful for other countries as they consider how
they will account for this pool in their carbon reporting.
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