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Abstract
Purpose of Review The number of invasive alien insects that
adversely affect trees and forests continues to increase as do
associated ecological, economic, and sociological impacts.
Prevention strategies remain the most cost-effective approach
to address the issue, but risk management decisions, particu-
larly those affecting international trade, must be supported by
scientifically credible pest risk assessments. Pest risk assess-
ments typically include an evaluation of the suitability of the
climate for pest establishment within an area of concern. A
number of species distribution models have been developed to
support those efforts, and these models vary in complexity
from simple climate matching to mechanistic models. This
review discusses the rationale for species distribution models
and describes some common and influential approaches.
Recent Findings Species distributionmodels that use distribu-
tional records and environmental covariates are routinely ap-
plied when ecological information about a species of concern
is limited, an all-too common situation for pest risk assessors.
However, fundamental assumptions of the models may not
always hold.
Summary A structured literature review suggests that many
common species distribution models are not regularly applied
to alien insects that may threaten trees and forests. For ten
high-impact alien insect species that are invading North
America, MaxEnt and CLIMEXwere applied more often than
other modeling approaches. Some impediments to model

development and publication exist. More applications of spe-
cies distribution models to forest insects are needed in the
peer-reviewed literature to ensure the credibility of pest risk
maps for regulatory decisionmaking, to deepen understanding
of the factors that dictate species’ distributions, and to better
characterize uncertainties associated with these models.
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Introduction

Biological invasions by alien species, particularly insects, re-
main the greatest ecological threat to many trees and forests
[1]. Alien invasive forest insects often kill trees or impede
normal physiological function with concomitant ecological,
economic, or social impacts. Estimates of the annual econom-
ic impact from forest invasions vary from $4.2 billion in the
USA [2] to between $7.7 and $20 billion in Canada [3],
though both estimates have been criticized [4]. Aukema
et al. [5•] suggest that annual economic impacts from alien
forest insects already present in the USA are likely $2 billion
in local government expenditures, $1.5 billion in lost residen-
tial property values, $1 billion in homeowner expenses, $216
million in federal government expenditures, and $150 million
in lost timber value. These estimates do not fully account for
impacts to other ecosystem services or additional impacts
from future invasions.

Over the past 150 years, an average of 2–3 new forest
insect species has successfully established in the USA each
year, with one Bhigh impact^ species establishing every 2–
3 years [1]. Similar trends have been noted in other countries.
This recurrent phenomenon of forest pest invasion likely has
been associated with trade [6], especially the importation of
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live plants or wood packaging materials [1]. Although the
continually increasing number of alien insects concerns forest
health managers and others, this rate does not follow the ex-
ponential growth in global imports, providing indirect evi-
dence that efforts to improve biosecurity are working [7] but
could be further refined [1].

Prevention of biological invasions is widely recognized as
the most cost-efficient approach to invasive species manage-
ment [6, 8–10]. Such prevention measures include pre-border
inspections, exterior quarantines, and quarantine treatments,
each intended to keep a threatening species from arriving in
an area of concern. Under terms of the Agreement on the
Application of Sanitary and Phytosanitary Measures from
the World Trade Organization, member nations agree to take
actions that are only commensurate with the level of risk
posed by a threatening pest species and are Bnot more trade
restrictive than required to achieve their appropriate level of
phytosanitary security^ (Article 5, available at www.wto.org/
english/tratop_e/sps_e/spsagr_e.htm). As a result,
scientifically based pest risk assessments must underpin risk
management decisions.

Pest risk assessment is a specialized application of ecological
risk assessment [11]. The process begins with the identification
of a hazard, often an alien species with a history of causing harm
elsewhere but not occurring within an area of concern, or a
commodity or conveyance that might bring such species, and
consideration of relevant assessment endpoints (e.g., agricultural
productivity or ecological diversity). The process then moves to
exposure and effects assessments. In general, exposure assess-
ments attempt to describe the spatial and temporal concentration
(i.e., density) of the hazard, while effects assessments may eval-
uate the economic, ecological, or social (including harms to
human health) impacts caused by the level(s) of the hazard.
Risk characterization integrates the exposure and effects assess-
ments to provide a measure of the probability of the adverse
event weighted by the magnitude of the consequence of the
event (i.e., risk). The general impact assessment framework for
invasive alien species proposed by Parker et al. [12], where
impact, I = Range × Abundance × Effect per individual has
several analogous components.

In general, pest risk assessments attempt to characterize the
probability (i.e., exposure) and consequence (i.e., effects) of
an alien pest’s arrival, establishment, and spread within an
area of concern, and a number of frameworks exist to guide
the assessment process. Orr et al. [13] developed one of the
first frameworks for invasive alien species based on general
principles from ecological risk assessment. In several pest-
risk-assessment frameworks, one or more questions relate to
the suitability of the climate within the area of concern for the
invader in question [14]. For example, the Exotic Forest Pest
Information System for North America (ExFOR) provides
semi-quantitative assessments for 100 forest insect pests that
threaten North America [15]. In ExFor, climate suitability

factors heavily into the assessment of establishment potential
and overall risk. So, for example, the Bvery high^ overall risk
rating assigned to Lymantria mathura reflects the Bhigh^ like-
lihood of establishment based, in part, on suitable climate and
host material in areas where the species might first arrive. This
particular framework does not explicitly account for the extent
or degree of climatic suitability.

Climate suitability plays a central role in the degree of risk
posed by invasive alien insects that might affect trees or for-
ests. Climate shapes geographic range limits and, with knowl-
edge of the distribution of hosts and other biotic or abiotic
constraints, where establishment is possible [16]. The conflu-
ence of suitable areas for establishment with areas of econom-
ically valued resources dictates the endangered area [17],
while the area at highest risk is where the ecological, econom-
ic, or social effects of an alien species are likely to be greatest
[16]. Climatic suitability also affects population dynamics, the
rate and course of future spread, the extent of damage, and the
effectiveness of management responses. The relationships be-
tween climate and spread or impact can be difficult to forecast
reliably or precisely, and this remains an active area of re-
search [18, 19]. Of necessity, many pest risk assessments
make simplifying assumptions. For example, in areas judged
to be climatically unsuitable, establishment and associated
impacts often are considered unlikely or ephemeral [19]. In
climatically suitable areas, the presence of suitable hosts may
be assumed, a reasonable assumption for polyphagous spe-
cies. Similarly, dispersal to climatically suitable areas, either
by natural or human-mediated means, might be given. These
assumptions allow one to estimate the maximum geographic
extent of an invading species and help to provide an upper
bound on impact. However, great care needs to be taken when
attempting to infer abiotic requirements for, or limits to, pop-
ulation growth from distributional records, particularly for
species that are undergoing range expansions. The areas pres-
ently occupied by a species are a reflection of abiotic require-
ments for growth, biotic requirements, and dispersal limits
[20, 21] and, as such, may under-represent the range of abiotic
conditions that a species might find to be suitable. Conversely,
for highly mobile species, distributional records may reflect
ephemeral populations and misrepresent temporarily suitable
locations as permanently fitting. Nevertheless, assessments of
climatically suitable areas provide a critical backdrop to deter-
mine where alien insects might invade and harm trees and
forests.

Several tools have been developed to assess climate suit-
ability for invasive alien species [19]. Numerous other reviews
and texts have been written about these tools or about the
challenges of developing species distribution models for inva-
sive species [22–24, 25•, 26, 27]. Applications of these tools
to invasive alien species, in general, continue to increase, yet
seem relatively rare for alien insects that may affect trees and
forests. This review discusses several common approaches to
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climate analysis that are applicable to forest insects. It includes
a structured review of the literature to determine if certain
approaches are applied to forest insects more commonly than
others. Commentary is offered about why climate suitability
analysis may not yet be widely applied and encourages more
applications, not only to support complex management deci-
sions but also to develop a more rigorous ability to infer cli-
matic constraints/requirements from distribution records.

Climate Matching

Climate matching for invasive alien species, in general, in-
volves comparisons of the climate, especially with respect to
temperature and moisture, in areas where a species of concern
occurs (by definition classified as suitable or optimal) with
areas of interest where the species does not yet occur. The
rationale is simple: the more similar the two climates are, the
more likely that a species will encounter climatic conditions
that are suitable for establishment should it arrive in these new
areas. This approach has appeal because it requires little de-
tailed information about the effects of temperature or moisture
on the autecology of a threatening species.

All methods of climate matching begin with the collection
of presence records in as precise geographic detail as possible,
preferably individual points specified by longitude and lati-
tude [22]. These points are associated with one or more envi-
ronmental covariates and analyzed in Bclimatic space^ to de-
termine relationships between presence and climate. More ad-
vanced analyses also consider climatic conditions where the
species has not been reported. Those relationships are then
applied to conditions at points within the area of concern to
characterize the likelihood of being present. Methods to estab-
lish those relationships vary in complexity.

The simplest qualitative climate matching techniques rely
on existing descriptions of biomes or other pre-existing cli-
mate zones. For example, the Köppen-Geiger classification
system [28] or BOlson biomes^ [29], with predefined areas
of the world with similar temperature, moisture, geology,
and dominant vegetation, have been used to forecast the dis-
tribution of invasive alien species [30, 31]. In fact, a variation
of this approach was used in 1896 to forecast within the USA
and Canada the potential distribution of San Jose scale, now
recognized as Quadraspidiotus perniciosus, with ecological
zones proposed by C. Hart Merriam (reviewed in [32]).
Likewise, USDA Plant Hardiness Zones, based on the mean
annual extreme low temperature [33], have been used to fore-
cast northern limits to the distributions of several alien species
[23], including forest insects, such as winter moth,
Operophtera brumata [34].

Application of a zone-based method is quick and relatively
simple. Each presence point falls in a single zone, so the zones
in which those points occur are considered suitable. The list of

suitable zones is compared with zones in the area of concern to
determine whether climatically suitable habitat occurs there.
Venette and Ragsdale [35] describe a variation of this ap-
proach that relies on an analysis of parsimony to identify
which of Olson’s biomes might be suitable when presence
points are included with national or subnational descriptions
of presence. This method was applied to quickly identify re-
gions of the USA that might have suitable habitat for some
alien forest insect pests, such as the oak splendor beetle,
Agrilus biguttatus [36], and the oak ambrosia beetle,
Platypus quercivorus [37], that are not known to be
established in the USA.

Other methods of climate matching focus on an analysis of
climate records to distinguish areas that might be suitable for
establishment. The Bmatch climates^ feature within CLIMEX
has an algorithm to measure the similarity in climates between
two or more locations based on 30-year monthly averaged
temperatures and precipitation [38••, 39]. The user can control
which climatic variables are of interest or assign different
weightings to each climatic variable in an aggregate index.
CLIMEX scales similarity between 0 and 100, with 100 indi-
cating a perfect match between a reference location (home)
and an area of concern (away). Sutherst [40] suggested a sim-
ilarity index <60 was unlikely to be suitable, while Kriticos
[41] considered values >70 to be likely suitable and Fowler
and Takeuchi [42] judged values >80 to be a good match.
BMatch climates^ was used to identify areas within North
America that might be climatically suitable for two parasitoids
of the emerald ash borer [43]. Peacock and Worner [44] took
the reciprocal approach and used CLIMEX to compare
Auckland, New Zealand, the area of concern, with the rest
of the world to identify regions that might be a source for
future invasive alien species.

Inductive Models

Inductive species distribution models (synonymous with eco-
logical-niche, climate-envelope, or habitat-distribution
models) attempt to infer bioclimatic requirements for a species
from presence points. Some prefer to call these statistical or
correlative models because they attempt to establish relation-
ships between the presence, absence, or abundance of a spe-
cies and environmental covariates [45]. The models vary in
complexity. Here, I focus on some common, foundational
modeling approaches that have been influential in the devel-
opment of inductive species distribution models in general.

BioCLIM

BioCLIM was one of the first standardized approaches to
inductive species distribution modeling [46]. BioCLIM and
its successor, AnuCLIM, rely on a bounding box (or
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hypercube) analysis to determine the climate envelope, i.e.,
the range of environmental conditions under which an alien
species might survive [46]. BioCLIM analyses typically de-
pend on ecologically relevant summaries of the climate.
Nineteen such summaries pre-exist (www.worldclim.org),
including such factors as average annual temperature,
minimum temperature of the coldest month, and
precipitation of the driest month [47]. The limits of the
bounding box are determined by the range of conditions
under which a species has been reported to occur, though
subsets of occurrence data may be examined to avoid
potential outliers. Any location with conditions that fall
within the bounding box are considered suitable. BioCLIM
has appeal because the model is conceptually easy to
understand, provides a binary classification of new sites as
having suitable habitat or not, and the classifications have a
good degree of accuracy [46]. Mendoza et al. [48] applied
BioCLIM to Dendroctonus rhizophagus, a pest of Pinus
spp. and native to Mexico, and found most of the Sierra
Madre Occidental could provide a suitable climate, while no
climatically suitable habitat was projected in the USA under
current conditions. BioCLIM also was applied, with eight
other species distribution models in OpenModeller, to
forecast climatic suitability for the highly invasive red gum
lerp psyllid, Glycaspis brimblecombei, a pest of Eucalyptus
spp. and native to Australia [49]. In this application, BioCLIM
did not accurately forecast any of the known occurrences of
G. brimblecombei outside Australia.

The rectilinear approach used by BioCLIM has some
potentially significant limitations [50••]. Firstly, bounding
with straight lines gives the climatically Boutermost^ ob-
servations considerable weight and may overestimate the
range of climatic conditions under which a species may
survive [50••]. Analysis with a defined subset of the obser-
vations (e.g., 90, 80, or 50%) is possible to eliminate po-
tential outliers. However, focusing on a subset of the data
may exacerbate the negative consequences of sampling
biases among the presence points on model accuracy
[51]. Secondly, BioCLIM assumes that each climatic factor
acts independently to determine suitability such that all
conditions within the bounding box are treated as equally
suitable. Suitability is likely to be a matter of degree, not a
binary response, and some experiments are confirming that
temperature and moisture can interact to affect population
growth rates (e.g., [52]) and presumably distributional
limits.

Climatic Distance Methods, Especially Mahalanobis
Distance

A number of distance-based approaches have been developed
for species distribution modeling. Particularly popular ap-
proaches are Mahalanobis [50••], Euclidean [24], and Gower

Distance [53], but all are meant to measure the distance in
multivariate climate space of a site from optimal climatic con-
ditions. The optimum follows the means of the climatic con-
ditions among presence points. Mahalanobis distance has
been particularly instrumental and follows the equation,

D2 ¼ x−mð ÞTC−1 x−mð Þ;

where D2 represents the distance between a vector x and a set
of vectors that specify environmental conditions at all known
presence points, termed matrix S. The rows of S reflect differ-
ent locations, and each column a different environmental mea-
sure. The vector x represents environmental conditions at a
particular site, with or without the species of interest. In the
distance equation, m is a vector of the mean of each environ-
mental measure, T transposes the matrix, and C is covariance
matrix among environmental measures, all within matrix S
[50••]. The distances follow a chi-square distribution with n-
1 degrees of freedom, where n is the number of environmental
measures, so that the distances can be converted to a proba-
bility or simply rescaled from 0 to 1 [50••]. With a defined
threshold for suitability, Mahalanobis distance describes an
ellipse or ellipsoid in two or three dimensions, respectively,
within which conditions can be considered suitable. Shatz
et al. [54] used the Mahalanobis distance approach to evaluate
the environmental conditions in central Massachusetts for the
Asian longhorn beetle relative to conditions in an outbreak in
Worchester County, MA, USA and found a significant frac-
tion of the landscape to be suitable for continued spread of the
insect.

MaxEnt

One of the most popular approaches to species distribution
modeling recently has been MaxEnt [55••, 56]. A discussion
of the workings of MaxEnt is beyond the scope of this paper,
but Elith et al. [57] and Merow et al. [58] provide particularly
useful, cogent descriptions. In general, MaxEnt attempts to
distinguish conditions at locations where a species of interest
is known to occur from conditions at background points,
sometimes called Bpseudo-absences,^ where the presence of
the species is not known. The approach has appeal because the
software allows the user to generate forecasts of climate suit-
ability relatively quickly from putatively simple datasets, spe-
cifically presence-only observations. The software can sug-
gest complex relationships between the likelihood of species
occurrence (often interpreted as an index of climate suitabili-
ty) and one or more environmental predictors, and the
resulting maps seem to capture considerable landscape hetero-
geneity. Much of the original development and testing of
MaxEnt took place with species in their native ranges at equi-
librium with their environments. The model was readily

258 Curr Forestry Rep (2017) 3:255–268

http://www.worldclim.org


applied to more complex questions, particularly involving
species under non-equilibrium conditions. For example,
Sobek-Swant et al. [59] applied MaxEnt to forecast that 1–
47% of the range of ash in North America may be climatically
suitable for the emerald ash borer, Agrilus planipennis;
models developed with presence points from the native range
in Asia differed somewhat from models developed with pres-
ence points from North America. Venette et al. [60] and
López-Martinez et al. [61] also used MaxEnt to identify cli-
matically suitable areas for the goldspotted oak borer, Agrilus
auroguttatus, in the USA and Mexico, respectively.

More recent investigations have raised some cautionary
notes about the application of MaxEnt and other presence-
only species distribution models to invasive alien species.
Four of these concerns are common and may be particularly
relevant to applications in forest entomology: (1) selection of
background locations, (2) correlation among predictor vari-
ables, (3) attention to sampling bias, and (4) extrapolation into
novel climate space. Each concern is addressed in greater
detail.

Selection of background locations

How background locations are selected can have a major im-
pact on MaxEnt results. In general, MaxEnt is more likely to
suggest smaller areas of climatic suitability (i.e., the model is
more likely to be overfit to presence points) if the area from
which background locations are selected is large (e.g., global)
than if the background area is only slightly larger than the area
currently occupied by the species of interest [45, 58, 62]. If
default settings in MaxEnt are used, the background should
come from the area that is within the dispersal distance of the
species, i.e., locations that might be accessible to the species
of interest [58, 63, 64]. Of course, this advice assumes that the
dispersal characteristics of the species of interest are known
and predictable, which are often not the case for invading
forest insects. Jarnevich and Young [62] used minimum con-
vex polygons constructed in a geographic information system
from the set of presence points and added 2.5 arc-minutes to
define the background. As an alternative, Webber et al. [27]
defined the background by using all Köppen-Geiger zones in
which presence points fell.

More significantly, the selection of background locations
should follow any bias present among the presence points to
limit the impact of the bias on the resulting model [65]. Three
approaches have been proposed. If the bias is clear (e.g., all
presence points occur within 100 m of a road), a bias file can
be created for MaxEnt so that background points are equally
restricted. An effective alternative, a target-group background,
relies on locations of multiple species that might have been
detected with the same sampling method as was applied to the
species of interest [56]. Lastly, statistical models can be creat-
ed to describe how landscape features affect the probability of

sampling types of sites, but care must be taken to avoid pre-
dictors that are used in MaxEnt [66••].

Correlation among predictor variables

Correlation among predictor variables (aka multicollinearity)
is problematic in many statistical models because the relation-
ships between predictor variables obscures the relationship(s)
to the dependent variable [67•]. MaxEnt calculates a number
of feature classes (i.e., multiple transformations of the original
predictor variables) as a prelude to the development of poten-
tially complex, non-linear models, and these feature classes
may already be highly correlated [58]. So, the common rec-
ommendation is to avoid correlated predictors (e.g., climate
variables) by excluding members of correlated pairs (i.e., with
a Pearson correlation coefficient, |r| > ~0.85 [68] or |r| > 0.7
[69]) or using indices of climate predictors calculated through
principal components analysis (PCA) [69]. Phillips [65] noted
an interesting case, though, where the use of PCA-derived
variables led to substantial overprediction of a species’ distri-
bution, but this problem was resolved when the raw predictors
were used.

Attention to sampling bias

MaxEnt assumes that presence points come from a random
sampling of the species distribution within the study area
[55••]. In practice, though, presence points may come from
near roads, towns, or other easily accessible areas and so may
be a biased sample [65]. Museum records have proven vul-
nerable to sampling bias [70•, 71, 72]. Lahoz-Monfort et al.
[73] demonstrate that detectability of invasive alien species
also can create bias, particularly if detectability varies as a
function of landscape features. This possibility seems highly
likely for a number of invasive forest pests that often are not
detected until populations begin to cause obvious tree symp-
toms [74]. Bias is likely to be introduced if variation in pop-
ulation growth or symptom expression is associated with a
landscape feature, but bias can be addressed, in part, by
selecting background points that follow similar patterns [75].
Fourcade et al. [72] suggest that selecting a subset of presence
points that are regularly distributed in space may be a robust
way to address sampling bias. If bias is strong and unknown,
Phillips [65] recommends simpler models (i.e., fewer predic-
tors and feature classes) to avoid unfounded assumptions
about the background.

Extrapolation into climate space

MaxEnt assumes that a species is at equilibrium with its envi-
ronment, and that presence locations are representative of oth-
er locations to which the model will be applied [25•].
However, for invasive alien species, the first assumption is
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unlikely to be true, especially for species that are still spread-
ing, and the validity of the second assumption is questionable
at best. BNovel climates^ occur when a model is applied to
conditions outside the range of values of individual predictors
or when unique combinations of environmental conditions
occur [76]. Elith et al. [25•] developed the Multivariate
Environmental Similarity Surface (MESS) to measure the
similarity of any location to a set of reference points, typically
presence and background points, by following an approach
similar to that used by BioClim. Dissimilar points have nega-
tive values, and the greater the dissimilarity the more negative
the value. MESS does not account for the covariance structure
among predictors, so Mesgaran et al. [76] used Mahalanobis
distances to measure (dis-)similarity of a site to presence and
background points. These measures are a critical component
of model interrogation, but how best to use them is still being
explored. The nature of the challenge posed by invasive spe-
cies may require some degree of extrapolation, so maps of
climatic extrapolation may serve to highlight areas of uncer-
tainty caused by a lack of knowledge.

Deductive Models

These models, also known as mechanistic or process-based
models, rely on controlled laboratory experiments or carefully
designed field studies to determine how different biotic or
abiotic conditions may affect birth, death, or developmental
rates or other physiological functions. Such studies may focus
on a single environmental covariate (e.g., temperature) and
can be especially informative if ecologically relevant condi-
tions are measured.

Most deductive models make simplifying assumptions
about the species of interest. Themodels often treat the species
as being genetically homogenous with invariant traits over
time [77]. Genetic homogeneity, or extremely limited diversi-
ty, may be a reasonable assumption for invading populations
which frequently experience genetic bottlenecks during the
initial phases of establishment. This assumption allows one
to apply results from a laboratory colony of insects, for exam-
ple, to wild populations but obviously ignores genotypic or
phenotypic changes that may occur through time (e.g., [78]).
Nevertheless, deductive models have proven to be robust and
transferable.

CLIMEX The Bcompare locations^ feature within CLIMEX
[38••, 39] is a step from purely inductive models towards
deductive models but is not a purely deductive model in its
own right [45]. The model integrates climate data (often 30-
year monthly climate normals) with measures of the effects of
temperature and moisture on population growth to generate
indices of climatic suitability at multiple locations (i.e.,

weather stations or grid cells) or to describe changes in suit-
ability through a year at a location [38••].

CLIMEX relies on a fundamental premise that all poikilo-
thermic species share qualitatively similar responses to tem-
perature and moisture. In essence, individual and population
growth is possible if temperature (and moisture) falls within
an upper and lower bound (i.e., cardinal requirements).Within
that range of temperatures (or moistures), a narrower set of
conditions occurs where population growth rate is maximized
(i.e., optimal). Between the threshold and optimal condition,
population growth rate changes linearly with each unit of
change from the threshold. These temperature and moisture
parameters provide the basis for calculation of a weekly
Temperature Index and Moisture Index and their product,
the Growth Index [38••]. The Growth Index can be considered
an indicator of local population density [79]. Near the thresh-
old conditions, populations begin to experience stress due to
cold, heat, drought, excessive wetness, or their interactions.
Each stress function is characterized by a threshold (i.e., the
condition under which stress begins to accumulate) and a rate
(i.e., how quickly stress accumulates over time for each unit of
difference from the threshold). Options exist in CLIMEX to
model diapause induction and termination to capture periods
when a species may be more resilient to environmental stress-
es. Stress indices are calculated from 0 to 999, but any value
≥100 indicates a site that should be climatically unsuitable for
the year-round persistence of a species.

Each of the component indices contributes to an overall
measure of climatic suitability, the Ecoclimatic Index (EI).
EI is formally calculated as:

EI ¼ 100 ∑
52

w¼1

GIw
52

� �
1−

CS

100

� �
1−

HS

100

� �
1−

DS

100

� �
1−

WS

100

� �
SXð Þ

where GIw is the weekly growth index, and CS, HS, DS, and
WS are cold, heat, drought, and wet stress, respectively [38••].
SX is the potential interaction among cold and drought
(CDX), cold and wet (CWX), heat and drought (HDX), and
heat and wet (HWX) and is calculated as:

SX ¼ 1−
CDX

100

� �
1−

CWX

100

� �
1−

HDX

100

� �
1−

HWX

100

� �

EI has values from 0 to 100, with 0 indicating an area that is
unsuitable and 100 indicating perfect climatic suitability for a
species. Sites rarely remain stable within optimal conditions to
earn a score of 100 [80], so many interpretations of the EI
exist, particularly for values >0. For example, Saavedra et al.
[81] considered EI values of 0 to be unsuitable, 1–4 to be
marginal, 5–12 to have low suitability, 13–24 to have moder-
ate suitability, and ≥25 to be optimal. In comparison, Olfert
et al. [82] judged EI values of 0–5 to be unfavorable, 6–20 to
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be suitable, 20–30 to be favorable, and >30 to be very favor-
able. Other interpretations also exist.

Parameters for CLIMEX models are typically estimated in
one of two ways. Firstly, controlled laboratory studies can be
conducted tomeasure changes in population growth rates with
changes in conditions, most often changes in temperature
[40]. Secondly, and more commonly, CLIMEX parameters
are adjusted iteratively until the forecast of climatically suit-
able habitat provides a qualitatively reasonable approximation
of the known distribution (presence points) or of regional or
seasonal differences in population density [40]. However, this
approach has some of the same sensitivities to presence data as
other inductive models have [45]. Typically, CLIMEXmodels
assume that a species is absent if no record of presence exists.
If presence points for a species have only been reported from a
climatically homogenous area, it may not be possible to reli-
ably estimate all of the stress functions [40, 83]. An appealing
aspect of CLIMEX is that each parameter has a clear ecolog-
ical interpretation, so expert biologists can comment on the
reasonableness of a parameter estimate.

CLIMEX has been applied to some notorious alien insects
that can affect trees. An early application of CLIMEX was to
the invasion of the USA by the European gypsy moth,
Lymantria dispar dispar, to determine whether portions of
the southeastern USA might be climatically suitable [14].
Though values for EI were not given, much of the southeast
was judged to be Bmoderately^ suitable with CLIMEX, but
southern Florida was considered climatically unsuitable.
Matsuki et al. [84] later developed a similar model for the
Asian gypsy moth, L. dispar asiatica, and found similar re-
sults. EI values were between 25 and 50 for much of the
eastern two thirds of North America (but still 0 for southern
Florida), much of New Zealand, and southeastern Australia,
suggesting that this insect could encounter suitable climate in
many parts of the world. MacLeod et al. [85] applied
CLIMEX to the Asian longhorned beetle, Anoplophora
glabripennis, and found significant portions of Europe to have
a highly suitable climate.

Process-Oriented Population Models Process-oriented pop-
ulation models provide a mechanistic description of the po-
tential effects of climate, particularly temperature and/or mois-
ture, on populations. The processes of interest are typically
vital rates (i.e., birth, death, development, or dispersal, the
fundamental determinants of population dynamics). Process-
oriented population models may be divided conceptually into
an ecophysiological component that describes how vital rates
change under different environmental conditions and an envi-
ronmental component that describes how conditions vary over
space and time (typically, the Benvironment^ refers to one or
more abiotic components, particularly temperature or mois-
ture, but could also include host distribution/abundance or
natural enemies). The integration of these components

characterizes how populations might be expected to vary in
response to spatial or temporal environmental variation. These
models rely less on Bcanned^ software than inductive models
and frequently require the development of specialized
applications.

Process-oriented models for gypsy moth illustrate the req-
uisite integration of ecophysiological and environmental in-
formation. Numerous researchers contributed to the develop-
ment of an understanding of environmental effects on the
population ecology of this insect. Studies of the effects of
temperature on egg hatch [86–90] and larval development
[91, 92] were particularly important. Régnière and Sharov
[93] and later Régnière and Nealis [94] relied on these studies
and the software BioSIM, software to estimate finer-grain
spatial variation in climate than is captured by weather-
station arrays, to characterize regional variation in the devel-
opmental phenology of gypsy moth, particularly when eggs
deposited in 1 year (e.g., late summer) might hatch the follow-
ing spring, how long larval development might require, and
when adult flight might begin. Alternatively, Gray [95•] de-
veloped a multi-generational, gypsy-moth-phenology model
driven by climatological records for approximately 4500 lo-
cations in North America from which he was able to derive a
measure of the likelihood that each location (and interpolated
areas) would consistently meet climatic requirements for a
local population to persist. Both models were motivated by
the general question of where in North America gypsy moth
might find suitable climates to become established.

Other process-oriented models may attempt to characterize
the effects of specific environmental stresses on invading in-
sect populations. For instance, Régnière and Bentz [96]
modeled effects of cold on the mountain pine beetle,
Dendroctonus ponderosae, before, during, and after a transi-
tion to a fully cold hardened condition. The development of
this model depended on the careful study of the effects of cold
on mountain pine beetle mortality, especially the work of
Bentz and Mullins [97]. The advantage of process-based
models is that if the underlyingmechanisms are properly char-
acterized the models should be readily transferable to other
locations or future climate conditions and the model outputs
can be evaluated readily against field observations [98]. The
disadvantage is that the requisite data for an alien insect spe-
cies may be unavailable when a projection is needed and may
take years to collect.

Efforts are underway to develop simpler, standardized
process-based models that might be useful for pest risk assess-
ment (e.g., [99]). For example, degree-day models provide a
relatively simple means to integrate time and temperature to
forecast development in insect populations. Magarey et al.
[100] were able to apply a relatively simple degree-day model
for L. dispar asiatica to gridded climate surfaces to forecast
flight periods. Results were consistent with forecasts from the
more complex model of Gray [101] for Kobe, Japan, the only
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city common to both studies. Other such modeling platforms
are in development.

Applications of Species Distribution Models
to Invading Forest Insects

Although species distribution models have certainly been de-
veloped for invading forest insects (see examples above),
most of the literature is dominated by applications to plants
and vertebrates. In an effort to determine if certain approaches
are used more frequently in the study of invading forest in-
sects, I conducted a structured literature analysis by using
Thomson Reuters’ Web of Science with queries to the
Science Citation Index (1975-present), Conference
Proceedings Citation Index (1990-present), Book Citation
Index (2005-present), and the Emerging Sources Citation
Index (2015-present). Matching literature was reviewed for
relevance to forecasts of species distribution.

The analysis began with the compilation of search terms.
Venette et al. [19] provided a list of 19 approaches to forecast
invasive species’ distributions. From the list, 22 search terms
were identified: artificial neural networks, BIOCLIM,
ANUCLIM, BioMOD, CART, classification regression trees,
minimum bounding rectangle, climate envelope, CLIMEX,
DOMAIN climate, ENFA, ecological niche factor analysis,
geographic information system (GIS), FloraMap, GARP, ge-
netic algorithm, GRASP, MaxEnt, Maximum Entropy,
NAPPFAST, and STASH. Many of the terms refer to specific
software that had been developed for species distribution
modeling. Other logical or statistical procedures (e.g., expert
driven rule sets or generalized additive models) were not in-
cluded, nor were process-oriented population models.
Process-oriented population models can be time consuming
to produce and are unlikely to precede the development of
other species distribution models (the European gypsy moth
being a notable exception). Results of searches for each of
these terms were cross referenced with the scientific names
of ten alien insects classified as (potentially) high-impact in
North America [1]: Adelges piceae, balsam wooly adelgid;
Adelges tsugae, hemlock wooly adelgid; Agrilus planipennis,
emerald ash borer; Anoplophora glabripennis, Asian
longhorned beetle; Cryptococcus fagisuga, beech scale;
Euwallacea sp., polyphagous shot hole borer; Lymantria
dispar, gypsy moth (Asian and European subspecies);
Operophtera brumata, winter moth; Sirex noctilio, European
woodwasp; and Xlyeborus glabratus, redbay ambrosia beetle.

This targeted analysis revealed that certain species distribu-
tion models have been applied to the ten high-impact forest
insects and published in peer-reviewed journals more often
than others (Fig. 1). MaxEnt, CLIMEX, and GIS were applied
to the greatest number of species. Most other tools that had
been used were only used in one or two cases. Nine of the 18

modeling tools or approaches had either not yet been applied
to, or published for, any of these important alien forest pests.
Some species had been studied with multiple approaches. For
instance, six approaches had been applied to L. dispar, some
more than once [14, 84, 100, 102–107]. Four approaches had
been published for A. planipennis [59, 108–111]. Three had
been reported for A. glabripennis [54, 85, 112] and S. noctilio
[113–115]. Two were applied to A. tsugae [116–118]. It was
surprising to learn that none of the above referenced species
distribution models had been published for A. picea,
C. fagisuga, Euwallacea sp., or O. brumata. This targeted
analysis suggests that species distributionmodels are not being
applied routinely to alien insects that affect trees and forests.

A number of factors may explain this pattern of use. Firstly,
not all models perform equally well. Elith et al. [68] provide
one of the most comprehensive direct comparisons of the per-
formance of 16 methods to generate species distribution
models. Some modeling approaches, especially MaxEnt and
Boosted Regression Trees among others, consistently outper-
form models such as BIOCLIM, DOMAIN, or desktop
GARP, while many regression-based approaches and the
OpenModeller version of GARP had intermediate perfor-
mance [68]. Some of the Bolder^ modeling platforms seem
to have underperformed because they do not always include
an analysis of background environmental conditions.
However, the comparison of different species distribution
models did not focus on invasive alien species, and the assess-
ment metrics may not be entirely appropriate for species with
expanding ranges [25•].

Fig. 1 Application of different modeling approaches to forecast the
distribution of ten (potentially) significant invasive insect species in
North America (searches for MaxEnt included maximum entropy,
CART included classification and regression trees, and ENFA included
ecological niche factor analysis. ANN artificial neural networks, min.
bound. rect. minimum bounding rectangle)
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Secondly, model availability and educational opportunities
can be limited for several approaches, so users may have dif-
ficulties learning the idiosyncrasies of a particular software
package or analysis method [119]. The International Pest
Risk Mapping Workgroup (now International Pest Risk
Research Group) highlighted the need for additional training
among its top ten recommendations to improve the develop-
ment of pest risk maps [19]. It should be noted that on-site
training opportunities are available for CLIMEX and several
on-line training tools are available for MaxEnt. In addition,
numerous examples of applications of both models exist in the
peer-reviewed literature to guide future efforts.

Thirdly, models may be developed for operational purposes
[120] and not reported in peer-reviewed literature. For exam-
ple, the US Department of Agriculture Forest Service has
utilized expert-driven rule sets in a geographic information
system to produce risk maps for four alien Agrilus spp.,
A. glabripennis, Ips typographus, L. dispar, Orthotomicus
erosus, and S. noctilio (www.fs.fed.us/foresthealth/
technology/invasive_species.html as of 12 Sept 2016). The
maps have undergone extensive internal reviews, but have
not been published in the primary literature.

BModel fatigue^ also may be an issue for reviewers of
certain species distribution models. Editors typically solicit
reviews of species distribution models from experts on the
organism or the modeling approach. Organismal experts
may question the added value of another species distribution
model if one or more models already exist. Modeling experts
can ensure that an approach was applied properly and output
interpreted correctly, but may question the novelty of the
work, especially if the model is an application of a well-
established technique.

Lastly, limited availability of data may be a significant
impediment. In fact, as Baker et al. [23] suggest, pest risk
modelers may feel fortunate to have even reliable pres-
ence data. Frequently, for an alien species of concern,
presence points are unavailable (i.e., no historical surveys
or reported in un-indexed foreign literature), unreliable
(i.e., misidentification of the species of interest), impre-
cise (i.e., reported as present within a nation or subnation-
al boundary), or unrepresentative (i.e., likely only from a
portions of a species’ range). These situations occur fre-
quently for forest insect pests that cause little economic
damage within their native range, but cause significant
damage when introduced to new areas. Equally problem-
atic are cases where climatic data do not reflect microcli-
mates or modified-landscapes that an alien species might
occupy. For example, alien species may thrive where irri-
gation overcomes drought stresses or human dwellings
shelter against cold winter temperatures. Thus, the chal-
lenge is to find reliable, representative presence points
and meaningful environmental covariates for model de-
velopment and testing.

Conclusions and Future Directions

The complexities of developing reliable species distribution
models for species that are invading novel climates are be-
coming more apparent (e.g., [26]). Many of the fundamental
assumptions that are central to the development of inductive
species distribution models do not apply, particularly the spe-
cies’ distributional limits being at equilibrium with the envi-
ronment. As a result, the output from the same analytical
method may have a very different interpretation if it was de-
veloped with presence-background, presence-absence, or
occupancy-detection data [26]. At one level, a model may
only provide relative differences in habitat suitability. In other
cases, the model may provide reliable estimates of relative
occurrence rates [58]. Great care is needed in the development
and interpretation of any species distribution model.

More applications of species distribution models to alien
insects that may affect trees and forests are needed. Resulting
forecasts are necessary to estimate the longer-term impacts
that these species might have and to support appropriate man-
agement responses. These new applications should not be de-
veloped lightly. Some could seek to evaluate the robustness of
the model result to different methods of background selection,
to determine whether presence points reflect potential biases,
or to explore the utility of simpler models to avoid issues with
multicollinearity among predictors. These studies could pro-
vide a clearer sense of ways to resolve common issues that
complicate the development of species distribution models. In
addition, applications to bark and ambrosia beetles or other
wood-boring insects may be particularly interesting because
conditions measured at weather stations, on which many of
these modeling approaches depend, are only partially indica-
tive of the microclimate experienced within a tree. Thus, op-
portunities exist to explore how microscale phenomena may
drive macroscale patterns such as range limits.

As species distribution models and our understanding of
them become more sophisticated, paradoxically more uncer-
tainties likely will become evident. In pest risk assessment as
in ecology, uncertainty stems from limits to knowledge (i.e.,
epistemological uncertainty) and limits to language (i.e., lin-
guistic uncertainty) [121]. For analyses of climate suitability
for alien species, uncertainty manifests in different forecasts
for the same species in the same space and time [19]. For
example, Sobek-Swant et al. [59] assessed climate suitability
for the emerald ash borer in Canada and the contiguous USA
with MaxEnt and GARP models by using presence points
from Asia, North America, or both continents. While the six
models typically classified the northeastern USA as highly
suitable, forecasts of climatic suitability diverged substantially
within the range of green ash, Fraxinus pennsylanica, one of
the insect’s primary hosts. Suitability estimates from the dif-
ferent models ranged from 0 to >80% in the mid-continent
( i . e . , Nor th Dakota , Sou th Dakota , Minnesota ,
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Saskatchewan, and Manitoba) and 0 to 60% in the southeast-
ern USA. The authors acknowledged this variability among
models but offered few insights about how to reconcile differ-
ences. Some of these differences likely reflect complex inter-
actions between limits to knowledge of the system being stud-
ied and differences in how each software package deals with
the analytical problem to be solved.

All modeling demands an abstraction of the system under
study, and modelers often trust that requisite simplifying as-
sumptions have little impact on outputs and/or that the model
has utility despite any error. The impact of choices made dur-
ing model construction is evaluated during model verification
and validation, the processes by which model forecasts are
compared with cases that were used to develop the model
and cases that are independent of model development, respec-
tively. The area under the receiver-operator curve (AUC) and
kappa remain the most common statistics to measure the per-
formance of species distribution models [22]. A number of
modeling approaches use subsets of data for model develop-
ment (i.e., training data) and evaluation (i.e., testing data) of
replicate models, but this approach is more accurately consid-
ered internal validation. Measures of internal validity approx-
imate the true error rate, but do not provide reliable estimates
of error associated with the application of the model to truly
independent cases (i.e., the transferability of the model) [65].
Error rates should be expected to increase when applied to
new locations or time periods [122••].

In the absence of external validation, it is difficult to deter-
mine which model is most likely to correctly forecast future
presences and future absences. Model comparisons then often
focus on apparent violations of first principles which reflect
our current understanding of how systems ought to operate
and which simplifying assumptions are appropriate or not
[32]. Debates about first principles can linger for decades [19].

New approaches are needed to quantify, communicate, and
explore the consequences of uncertainty for decision makers
(e.g., [115, 123]). At the same time, empirical biological re-
search also is needed to inform model components or rigor-
ously evaluate model outputs. Each forecast of future distri-
bution of an invasive alien species should be considered a
hypothesis in need of testing. Models identify particular re-
search needs, and research identifies opportunities for model
improvement. Together, species distribution models and em-
pirical research provide vital elements to effective biosecurity.
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