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Abstract. Process-based models are a powerful approach to test our understanding of biogeochemical
processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the
effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances,
and land-use change on ecological processes. However, in most studies, the models are calibrated using
ground measurements from only a few sites, though they may be extrapolated to much larger areas. Esti-
mation accuracy can be improved if the models are parameterized using long-term carbon (C) stock data
from multiple sites representative of the simulated region. In this study, forest biomass C stocks measured
in 61 forested plots located in three research sites in the Delaware River Basin (DRB) were used to modify
the PnET-CN model in three ways: (1) Field-measured mortality rates in each forest type were used to
parameterize the wood turnover rate; (2) a numerical approach was used to calibrate the relationship
between foliage N and maximum photosynthesis rate; and (3) stand age was incorporated into the model
as an input variable, which determines the year of the last disturbance. The results showed that these
model modifications improved model performance in capturing the spatial variation of forest C dynamics
in the DRB forests. The spatial distribution of forest C pools and fluxes in the three sites was mapped using
the modified model. The modified model was also used in experimental scenarios, which predicted that
39% of forest C sequestered over the past decade could be attributed to the combined effects of elevated
CO2 and N deposition. This study demonstrated an effective method for using long-term biometric mea-
surements of forest biomass C stocks to constrain and improve a process-based ecosystem model at a
regional scale. Further research should target improving model parameters that are sensitive to the spatial
variation of forest C dynamics.
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INTRODUCTION

Process-based ecosystem models are a power-
ful approach to test our understanding of biogeo-
chemical processes, to extrapolate ground survey

data from limited plots to the landscape scale,
and to simulate the effects of climate change, N
deposition, elevated atmospheric CO2, increasing
natural disturbances, and land-use change on
ecological processes (Campbell et al. 2009, Felzer
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2012). They can also be used for projecting future
ecosystem changes and dynamics based on our
current knowledge, which is important for future
resource management and actions for climate
change adaptation (Chen et al. 2000, Mickler
et al. 2002, Hudiburg et al. 2013).

In most modeling studies of forest C cycles,
models are parameterized or calibrated using car-
bon fluxes measurements from eddy covariance
techniques from one or several flux towers (Car-
valhais et al. 2010, Liu et al. 2015). The eddy
covariance data sets consist of fine time resolution
(hourly observations), but are very low in their
spatial resolution (i.e., few sites covering a large
area). Therefore, the parameters associated with
rapid processes such as photosynthesis are well
constrained, but the parameters associated with
long-term processes such as the turnover rates of
biomass and soil C are poorly constrained (Bras-
well et al. 2005, Richardson et al. 2010). Moreover,
the ability of the model to capture heterogeneity
of the forest C and N cycles over complex land-
scapes is difficult to evaluate using eddy covari-
ance data because the footprint area of each flux
tower is normally smaller than 10 km2, and a lim-
ited number of flux towers are used to represent
large areas of forests (Owen et al. 2007).

Over the past decade, a large number of long-
term biometric measurements have accumulated
data for forest biomass and soil C stocks (Xu
et al. 2014). Forest Inventory Analysis (FIA) and
remote sensing techniques have provided useful
information on the spatial distribution of forest C
stock changes (Woodbury et al. 2007, Lichstein
et al. 2014). Several studies have indicated that
flux and biometric observations can play comple-
mentary roles in constraining model parameters
(Kondo et al. 2013, Du et al. 2015). The perfor-
mance of a process-based simulation model
could be improved if it can be parameterized
using better data sources from long-term biomet-
ric C stock data from multiple sites representa-
tive of the simulated region (Carvalhais et al.
2010, Molina-Herrera et al. 2015).

The PnETmodels (Aber and Federer 1992) were
based on general principles of ecophysiology and
biogeochemistry and have been validated in vari-
ous vegetation types (Goodale et al. 2002, Chen
et al. 2004, Thorn et al. 2015). PnET-CN is the
model version simulating closed C and N cycles
(Aber et al. 1997). Applications of the PnET-CN

model have provided important insights into the
interactive effects of climate change, N deposition,
increasing atmospheric CO2 and ozone, and
natural and anthropogenic disturbance on for-
est C and N cycles (Ollinger et al. 1997, Pan
et al. 2004a, Chiang et al. 2008). The PnET-CN
model was originally developed for single-site
simulations in the northern hardwood forests in
the northeast United States (Aber et al. 1997).
The Delaware River Basin (DRB), situated in the
southern edge of the northern hardwood forest,
features diverse forest types and land-use histo-
ries, representing a transition zone from typical
northern hardwood forests to Mid-Atlantic
oak-dominated deciduous forests. To use the
PnET-CN model effectively in the DRB forest,
the model needs to be localized. A multi-agency
program known as the Collaborative Environ-
mental Monitoring and Research Initiative
(CEMRI) has collected long-term biometric mea-
surement of forest C stocks in the DRB (Murdoch
et al. 2008). Recent re-measurements and data
analysis of the CEMRI sites (Xu et al. 2016b)
provided a good opportunity to examine the
PnET-CN model performance outside its original
range in the DRB landscapes along a gradient,
and to explore approaches for parameterizing
and improving the model using long-term field
measurements from multiple sites.
In this study, forest biomass C stocks and their

change over the recent decade, measured in 61
plots from three sites, were used to constrain the
PnET-CN model applying for the DRB forests.
The major objectives of this study were (1) to
explore multiple parameterization approaches
for improving model performance using long-
term biometric measurements; (2) to verify the
model specifically improved for our study sites
and compare model performance between the
original and modified models; (3) to apply the
modified model to simulate the spatial distribu-
tion of C fluxes and pools in the DRB forests;
and (4) to simulate the effects of environmental
changes such as N deposition and elevated
atmospheric CO2 concentration on the spatial
distributions and temporal changes in the DRB
forest C cycle. The newly adapted model for
DRB is expected to provide more accurate
modeling results which are useful to our under-
standing of regional forest C dynamics and to
forest management.
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METHODS

Model description
The PnET-CN model (Aber and Driscoll 1997,

Aber et al. 1997) is a process-based ecosystem
model that uses information on vegetation, cli-
mate, and soil to simulate the carbon, nitrogen,
and water dynamics of forest ecosystems in the
northeastern United States. After years of devel-
opment, three versions of the model have
formed a nested sequence in the PnET family of
models: PnET-Day, a daily time step model of
forest canopy C balance (Aber et al. 1996);
PnET-II, a monthly time step model which incor-
porates soil respiration and full water balance
(Aber et al. 1995); and PnET-CN, a monthly time
step model that includes closed carbon and
nitrogen cycles and the effects of elevated atmo-
spheric CO2 and ozone (Aber et al. 1997). The
PnET-CN model contains a set of modules to
simulate major processes of forest carbon, nitro-
gen, and water cycles. The input data include
climate variables (temperature, precipitation,
radiation, etc.), site parameters (latitude, eleva-
tion, soil water-holding capacity [WHC], etc.),
and vegetation parameters (forest type, canopy
trait, C allocation, N content, etc.). The major
outputs include above- and belowground bio-
mass, net primary productivity (NPP), net
ecosystem productivity (NEP), soil C content, N
leaching, and water yield.

The PnET-CN model was built on the principle
that the maximum photosynthetic rate (Amax) is
a function of foliar N concentration. This repre-
sents the interaction between C and N cycles and
links leaf traits with physiological processes at the
ecosystem level. Photosynthesis is further con-
strained by temperature and water availability,
and some photosynthetic product is consumed by
respiration while the rest is allocated to living C
pools (foliage, wood, and fine root). Living bio-
mass is transferred to dead C pools (e.g., woody
debris and soil organic matter) through litterfall,
mortality, or disturbance. The model also incorpo-
rates the effect of atmospheric N deposition,
which will increase the available soil N pool, and
elevated CO2 concentration, which will increase
the potential photosynthesis rate and decrease
stomatal water conductance.

Unlike most process-based ecosystem models
and Dynamic Global Vegetation Models, PnET-CN

uses finer vegetation classes down to forest type
groups rather than coarse plant functional types
(Pan et al. 1996), which gives the model an
advantage in making it more suitable for forest
ecosystem studies at a regional scale. The PnET-
CN model originally included parameters for
four vegetation types (northern hardwood,
spruce-fir, red oak-red maple, and pine forests).
A new forest type (mixed forests) has been cre-
ated by numerically combining the results of red
oak-red maple and pine forest types to represent
the mixed forest in the Mid-Atlantic region (Pan
et al. 2004b, 2009). Regional spatially explicit
versions of the model based on geographic infor-
mation systems (GIS version of the PnET-CN
model) were developed to extrapolate the simu-
lation from single-plot to the regional level (Pan
et al. 2009). More details about the model
structure and processes have been described
elsewhere (Aber and Driscoll 1997, Ollinger
et al. 2002, Pan et al. 2004a).

Study sites and field measurement
The Delaware River is one of the major rivers

in the Mid-Atlantic region of the United States,
draining an area of about 33,000 km2 in Pennsyl-
vania, New Jersey, New York, Delaware, and
Maryland. The Delaware River Basin is charac-
terized by a humid continental climate, with
mean annual temperature of 9–12°C and mean
annual precipitation of 1143 mm (Kauffman
et al. 2008). The DRB is located in the eco-zone of
deciduous forests and is ecologically diverse,
comprised of five physiographic provinces and
multiple species assemblages that represent most
of the major eastern U.S. forest types (Murdoch
et al. 2008). Three areas in the DRB were selected
as intensive monitoring and research sites for
process-level studies in forested landscapes: the
Neversink River Basin (NS) in the northern,
mostly forested region of the Appalachian Pla-
teau Province; the Delaware Water Gap Area
(DEWA) with three small watersheds (Adams
Creek, Dingmans Falls, and Little Bushkill) lying
in the central Appalachian Plateau Province; and
the French Creek Watershed (FC) in the midbasin
Piedmont Province (Table 1, Fig. 1).
During 2001–2003, 61 intensive inventory plots

were randomly located across the three sites.
In each plot, all trees with diameter at breast
height (dbh) greater than 5 inches (12.7 cm) were
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Table 1. Environmental conditions in the three research sites in the Delaware River Basin.

Site
Number
of plots

Elevation
(m)

Mean annual
temperature (°C)

Mean annual
precipitation (mm)

Wet deposition
(kg N/ha)

Average stand
age (years)

French Creek (FC) 15 166 11.16 1171 6.55 85
Delaware Water Gap (DEWA) 32 360 8.53 1219 6.33 107
Neversink (NS) 14 773 5.75 1503 6.44 91

Notes: All data were extracted from the model input GIS database, and mean values for each site are shown. Annual
temperature and precipitation are 30-yr means from 1981 to 2010 (Thornton et al. 2014). Wet deposition is inorganic N
deposition from 1983 to 2007 (Grimm and Lynch 2004).

Fig. 1. The hydrological boundary of the Delaware River Basin and the main stream and tributaries of the
Delaware River. The three research areas of the current study are shown in different shading color. The red dots
represent the locations of forest biomass plots.
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measured and marked, and the specific locations
of the plots were mapped. In 2012–2014, these
plots were revisited, and biomass parameters
were re-measured using the same protocols (Xu
et al. 2016b). The plot design and sampling
method followed the FIA protocols in the two
measurements (Fig. 2; U.S. Department of Agri-
culture 2015). Each plot had four round subplots,
covering a total area of 672.44 m2. Live and dead
trees were measured in each subplot. dbh, total
and bole height, tree species, and status change
of each tree were recorded. Each subplot also
had one microplot (area, 13.49 m2). Live and
dead saplings (1 inch < dbh < 5 inch) and seed-
lings (dbh < 1 inch) were measured in the micro-
plots. Within each plot, two trees close to the

subplots that represented the dominant species
and growing condition of the forest stand were
selected as site trees. The ages of the site trees
were measured by counting rings in a tree core.
The stand ages of plots were determined as the
mean age of the two site trees.
Field measurement data from the two mea-

surement visits (2001–2003 and 2012–2014) were
compiled into a single database for biomass C
and biomass C change calculations (Cole et al.
2013). Species-specific allometric equations (Jenk-
ins et al. 2004) were used to calculate above-
ground tree biomass, and the general equations
were used to calculate coarse roots biomass. To
compare with model output, each plot was
assigned to a vegetation type. The total biomass
of living trees, saplings, and seedlings was
summed to calculate the observed live biomass
in the two measurements. A conversion factor of
0.5 was used to convert biomass to C stock.

Model input data
In this study, the GIS version of the PnET-CN

model (Pan et al. 2009), which is spatially explicit,
was used in the three intensive monitoring and
research sites in the DRB with spatial resolution
of 1 9 1 km. The required model input data
include elevation, vegetation type, and soil WHC
for each pixel, and monthly maximum and mini-
mum air temperature, precipitation, photosyn-
thetically active radiation (PAR), wet NH4 and
NO3 deposition, atmospheric CO2, and ozone
concentrations for the entire simulation period.
The climatic data used include monthly averages
and historical data. The historical data for
precipitation and maximum and minimum air
temperature for each pixel and each month
were extracted from the database developed by
Prism Climate Group (http://www.prism.oregon
state.edu/). The monthly historical data were
available from 1895 to 2010. Photosynthetically
active radiation data were derived from Daymet
data (http://daymet.ornl.gov/) which were avail-
able from 1980 to 2010. The climate data from
1980 to 2010 were used to calculate the 30-yr
monthly averages, and the monthly average
data were used in the years when the historical
data were not available. The ozone data layer
was developed by Teague Prichard and US
Forest Service based on the SUM60 data from
May to September monitored by EPA (personal

Fig. 2. Comparison between model-predicted and
observed live forest biomass for the original (a) and
modified (b) PnET model.
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communication). The historical data are available
from 1993 to 2010. The monthly average ozone
deposition was calculated based on all the
historical data, and then used when historical
data were not available. Ammonium (NH4) and
nitrate (NO3) wet deposition data from Decem-
ber 1982 to November 2007 were created by Jeff
Grimm based on standardized precipitation
grids (Grimm and Lynch 2004). We assumed that
N deposition before 1931 was approximately
20% of the average deposition from 1993 to 2007,
and the deposition rate increased linearly from
1931 to 1993, and after 2007. This linear relation-
ship was interpolated for each pixel.

In this study, the vegetation type data were
reclassified from USFS forest type groups
(http://data.fs.usda.gov/geodata/rastergateway/
forest_type/conus_forest_type_group_metadata.
php). Based on the map of forest type groups,
the NS area is dominated by northern hardwood
forest; FC area is dominated by red oak-red maple
forest; DEWA is located in a transition area
between these two vegetation types, with a small
proportion of the area covered by mixed forest.
Soil WHC data were derived from STATSGO soil
database (http://websoilsurvey.nrcs.usda.gov/; Soil
Survey Staff 1995). To run the GIS version of the
PnET-CN model with a standardized pixel size,
all data layers of different spatial resolutions were
adjusted to 1 9 1 km.

Model modification
To apply the PnET-CN model to the DRB for-

ests, we modified the model in three ways.
Parameterization.—The wood turnover rate

(Woodtrn) is a parameter representing the rate of
biomass loss from mortality. It controls what pro-
portion of live wood biomass can be transferred
to dead biomass on a yearly basis, and was set to
0.025 for all the vegetation types in the original
model. The wood turnover rate can also be calcu-
lated using field-measured biomass data for each
vegetation type. Tree mortality rate (M) between
the two measurements was calculated as the bio-
mass of trees that were live in the first measure-
ment and died before the second measurement,
divided by the total live tree biomass. The rela-
tionship between the mortality rate between
measurements and the yearly wood turnover
rate of trees (Treetrn) is expressed as:

ð1� TreetrnÞn ¼ 1�M (1)

Woodtrn ¼ Treetrn � ð1þ aÞ (2)

where n is the number of years between the two
measurements, M is the measured tree biomass
mortality rate between the two measurements,
Treetrn is the yearly turnover rate of trees, and a
is the proportion of biomass loss from branch
and limbs according to tree mortality. The aver-
age n and M were calculated for each vegetation
type separately, and Treetrn values were deter-
mined algebraically using Eq. 1. To include the
biomass turnover of branch and limbs from liv-
ing trees, the biomass ratio between small pieces
of coarse woody debris (CWD, diameter <5 in.)
and large pieces of CWD (diameter >5 in.) in the
2012–2014 measurements was used to estimate
the proportion of biomass loss from branch and
limbs according to tree mortality. In all the field
measurement sites, the biomass of dead branch
and limbs was equal to 7.25% of the dead tree
biomass (a = 7.25%). Therefore, the Treetrn for
each vegetation type was increased by 7.25% to
calculate Woodtrn of the ecosystem (Eq. 2).
Calibration.—PnET model results are sensitive

to the parameters AmaxA and AmaxB, which are
the intercept and slope of the linear relationship
between maximum photosynthesis rate and foli-
age N concentration. However, this relationship
can vary with forest conditions such as species
composition and nutrient availability (Schulze
et al. 1994, Reich et al. 1995). In this study, a
numerical approximation process was used to
find the best AmaxA and AmaxB for each plot.
The model ran multiple times with self-adjusted
AmaxA and AmaxB on a step of 0.02. The best
sets of parameters were reported when the simu-
lated biomass in the last year (2010) matched
with the observed value in the 2012–2014 mea-
surement (within a range of �200 g/m2). The
optimized parameters of each vegetation type
were calculated as the mean of the best-fit
AmaxA and AmaxB of all the plots. In total, 11
northern hardwood forest type plots, 39 red oak-
red maple forest type plots, and 3 pine forest
type plots passed the approximation process.
Their best-fit AmaxA and AmaxB values were
used to calculate the optimized parameters. We
had only one plot representing the spruce-fir for-
est type in the DRB sites, and as a result, the
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AmaxA and AmaxB values for this vegetation
type were not calibrated.

Modification of input data.—In the original set-
tings of the PnET-CN model, it is assumed that no
disturbance occurred over the past 210 yr, and as
a result, modeled forest ages are over 200 yr.
However, forest plots in the DRB have very
diverse land-use history and ages of the forests dif-
fer among plots. The PnET-CN model has a har-
vesting section in the scenario module, in which a
constant proportion of biomass can be removed at
the harvest year. To improve the model, we cre-
ated a new input variable for stand age, and used
it to calculate the year of the last disturbance. In
that year, 80% of the biomass was disturbed and
50% of the disturbed biomass was removed from
the biomass C pool (Ollinger et al. 2008). There-
fore, the modified PnET-CN model was able to
reflect forest recovery processes after disturbances
and better represent the different successional
stages of each plot. Field-measured stand age for
each plot was used for the model calibration and
verification process. To run the GIS version of the
model in the three sites, the stand age for each
pixel was derived from a national stand age map
based on FIA plot measurement (Pan et al. 2011).

Model verification
Live biomass data from the 2012–2014 measure-

ment were compared to model output during
the calibration step, while live biomass data from
the first field measurement (2001–2003) and the
change in biomass between the two measure-
ments were used to verify the modified model.
Biomass was not used directly during calibration,
but used as a benchmark for calibrating maxi-
mum photosynthetic rates in the model (AmaxA
and AmaxB) until simulated the biomass matching
with the observations at the end of the study per-
iod. Our assumption is that if these most impor-
tant and sensitive parameters (which affect all the
carbon dynamics processes) are correctly set up,
we could expect that the modified model would
be able to appropriately simulate annual photo-
synthesis, annual net primary production, annual
biomass accumulation over simulation years, and
finally total biomass in the study sites. As such,
the past measurements of biomass and biomass
change between measurements were used as
independent data sets to verify the modified
model with new maximum photosynthetic rates.

The average yearly biomass change of each
plot was calculated as the difference of measured
live biomass divided by the number of years
between the 2001–2003 and 2012–2014 measure-
ments. Since the time interval between the two
measurements was not exactly ten years in most
plots, and since we assume live biomass in the
second measurement represents the observed
biomass in 2010, the observed biomass in the first
measurement was adjusted to the biomass in
2000 based on the average yearly change of bio-
mass for each plot.
The normalized root mean square error

(NRMSE) was used to evaluate overall model
performance. The NRMSE assesses the difference
between predicted (P) and observed (O) vari-
ables and can be expressed as:

NRMSE ¼ðOmax �OminÞ�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðPi �OiÞ2
n

s
� 100%

(3)

where Omax and Omin are the maximum and mini-
mum observed values, respectively; i is the ith
observation plot; and n is the total number of
plots. A NRMSE value close to 0 indicates perfect
agreement, while a value of 100% indicates poor
agreement. The NRMSE for the original PnET
model and the modified model was compared,
such that an observed decrease in NRMSE would
indicate that the modification processes improved
model performance.

Simulations
The original and modified models were used

to simulate the C cycling in forested areas in each
of the three sites. The input data at 1 9 1 km res-
olution were used to run the model for 210 yr
(from 1801 to 2010). From the model output, four
variables were mapped and compared between
the original and modified PnET models. Vegeta-
tion biomass (VegM) and soil mass (SoilM) repre-
sent the major C pools, and NPP and NEP
represent the major C fluxes in the forest C cycle.
The NPP and NEP of the last ten years (2001–
2010) were averaged and reported.
To evaluate the effect of N deposition and ele-

vated CO2, and their combined effects, four sce-
narios were created under which to run the
modified PnET model (Table 2). The full scenario
represented the combined effects of elevated CO2
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and N deposition. In this scenario, atmospheric
CO2 concentration was ramped according to the
Mauna Loa record. Atmospheric N inputs were
calculated using historic data for local N deposi-
tion during 1982–2007 and ramped in other years.
In the CO2 removed scenario, the atmospheric
CO2 concentration was set to a fixed pre-industrial
level (280 ppm). In the N removed scenario, the N
input from N deposition was set to 0 g/m2. In the
CO2+N removed scenario, both the effects of ele-
vated CO2 and N deposition were removed. Net
primary productivity over the past 100 yr in each
of the scenarios was plotted for each site (e.g., NS,
DEWA, and FC) to illustrate the effects of elevated
CO2 and N deposition over time.

RESULTS

Model performance
The wood turnover rates calculated using field

measurements were 0.0147 yr�1 in northern hard-
wood forest, 0.0208 yr�1 in red oak-red maple

forest, and 0.0129 yr�1 in pine forest (Table 3). For
all forest types, the measured wood turnover rate
was smaller than the value used in the original
PnET-CN model (0.025 yr�1). In the northern
hardwood forest, the average best-fit AmaxAvalue
was �48.6 lmol CO2�m�2�leaf�s�1 and AmaxB
was 69.3 lmol CO2�m�2�leaf�s�1, both close to the
values used in the original model. In red oak-red
maple forest, the average best-fit AmaxA value
was �53.6 lmol CO2�m�2�leaf�s�1 and AmaxB
was 64.3 lmol CO2�m�2�leaf�s�1, smaller than the
original values. In the pine forest, the average
best-fit AmaxA and AmaxB values were 7.8 lmol
CO2�m�2�leaf�s�1 and 24.0 lmol CO2�m�2�leaf�s�1,
respectively, both greater than the original values
(Table 3).
Compared with the observed live biomass in

the 61 plots during the two measurements (i.e.,
2000 and 2010), the original model overestimated
the mean biomass in FC and DEWA (above the
1:1 line in Fig. 2a), but underestimated the mean
biomass in NS (below the 1:1 line in Fig. 2a). In

Table 2. Settings and input data used in PnET model simulation scenarios to test the effects of N deposition and
elevated atmospheric CO2 concentrations.

Scenario Wet N deposition Atmospheric CO2 concentration

Full scenario Historical data from 1982 to 2007, ramped data in other years Ramped based on Mauna Loa
measurements (280–390 ppmv)

CO2 removed Historical data from 1982 to 2007, ramped data in other years Fixed, 280 ppmv
N removed No n input (0.0 g/m2) Ramped based on Mauna Loa

measurement (280–390 ppmv)
CO2 + N removed No n input (0.0 g/m2) Fixed, 280 ppmv

Table 3. Parameter values used in the original and modified PnET model for the three major vegetation types
present in the three study sites of the Delaware River Basin.

Parameter Description

Northern hardwood Red oak-red maple Pine

Original Modified Original Modified Original Modified

Woodtrn Wood turnover 0.025 0.015 0.025 0.021 0.025 0.012
AmaxA Intercept of relationship

between maxim
photosynthesis
rate and foliage n
concentration

�46 �48.6 �46 �53.6 5.3 7.8

AmaxB Slop of relationship
between maxim
photosynthesis rate
and foliage n
concentration

71.9 69.3 71.9 64.3 21.5 24.0

Number of harvest Number of harvest 0 1 0 1 0 1
Harvest year Year of disturbance 1926 2010–age 1926 2010–age 1926 2010–age
Intense Disturbance intensity 0 0.8 0 0.8 0 0.8
Remfrac Biomass removal fraction 0 0.5 0 0.5 0 0.5
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addition, the model-predicted biomass in 2000 did
not match well with the observed values (the blue
dots apart from 1:1 line in Fig. 2a). The original
model was also unable to adequately simulate
spatial variations of biomass on the landscapes
and resulted in a narrow range of predicted bio-
mass values, with the SD of spatial variations
about 70% smaller than the observed SD in each
site (Table 4). The modified model improved the
prediction of mean biomass of the 61 plots and
also increased the range of spatial variation,
though the variation was still smaller than the
observed value. In particular, the modified model
accurately predicted the mean biomass in 2000,
which was not affected by the calibration proce-
dure but matched very well with the observed
values for model verification (the blue dots falling
on the 1:1 line in Fig. 2b). The model-predicted
and observed biomass in 2010 was comparable in
FC and DEWA. In NS, the model underestimated
biomass, mostly because some plots in this area
contained a small amount of conifer trees such as
hemlocks (Tsuga canadensis), which tend to have
larger biomass than typical northern hardwood
forests. The biomass change between 2000 and
2010 predicted by the modified model was greater
than the biomass change predicted by the original
model in FC and NS, which was closer to the large
biomass change observed in the field measure-
ments. However, the biomass change in DEWA
was smaller in the modified model because of the

greater stand age in this site. Although the modi-
fied model significantly improved the predictions
of mean biomass, it did not necessarily reduce
prediction error on a plot-by-plot basis. The modi-
fied model slightly reduced NRMSE for FC and
DEWA, but slightly increased NRMSE for NS
(Table 4). The overall NRMSE of predictions for
all plots in three sites by the modified model were
similar to those of the original model.

C pools and fluxes in DRB
After the modification process, model-

predicted vegetation biomass over the entire areas
of the three sites was greater in some pixels but
smaller in other pixels in each of the three sites
(Figs. 3a, b, 4a, b and 5a, b), with increased spatial
variations due to the parameter modifications in
mortality rate, maximum photosynthesis rate,
and stand age. Vegetation biomass in FC and
DEWAwas slightly smaller in the modified model
compared to the original model, but greater in NS
(Table 5). Soil C was smaller in the modified
model in all sites (Table 5). The model modifica-
tion process also resulted in a smaller NPP in all
sites. Although NEP was either greater or smaller
in different pixels compared to the original model
(Figs. 3g, h, 4g, h and 5g, h), on average, the NEP
predicted by the modified model was greater than
the NEP predicted by the original model in all
three sites. Compared to the original model, the
modified model performed better in capturing the

Table 4. Comparison of observed and model-predicted live forest biomass (Mg C/ha) in 2000 and 2010 and bio-
mass change (Mg C�ha�1�yr�1) between 2000 and 2010 in each site.

Year Site

Live biomass (Mg C/ha) NRMSE (%)

Observed Original model Modified model Original model Modified model

2000 FC 130.8 � 49 156.8 � 14 130.7 � 22 34.5 26.1
DEWA 113.1 � 63 122.4 � 17 117.1 � 15 13.0 12.4
NS 134.5 � 37 126.2 � 11 134.9 � 25 21.0 27.7
Total 122.4 � 55 131.7 � 20 124.5 � 22 12.8 12.0

2010 FC 146.3 � 52 167.0 � 15 144.8 � 19 30.6 26.7
DEWA 127.5 � 64 131.7 � 17 125.1 � 12 15.5 14.0
NS 154.6 � 44 134.2 � 11 146.0 � 27 24.8 28.4
Total 138.3 � 58 141.0 � 21 134.7 � 22 15.1 14.2

Change FC 1.55 � 3.0 1.02 � 0.15 1.41 � 0.55 26.7 25.0
DEWA 1.44 � 3.6 0.93 � 0.17 0.80 � 0.30 13.6 13.4
NS 2.01 � 1.4 0.80 � 0.11 1.11 � 0.34 27.1 25.6
Total 1.59 � 3.1 0.92 � 0.21 1.45 � 0.46 12.2 11.9

Notes: The mean, standard deviation (SD) of spatial variations, and normalized root mean square error (NRMSE) for esti-
mating predicted errors by the original model and modified PnET-CN models are shown. The observed forest biomass data for
2000 and biomass change over decade were not used in the modification process and therefore could be considered as verifica-
tion of model results.
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spatial complexity of the C pools and fluxes over
the whole sites (Figs. 3–5). The SD of spatial varia-
tions among all the pixels was larger in the modi-
fied model, especially for NEP, which is the net C
sink of the ecosystem (Table 5).

Results of the modified model showed that,
among the three sites, NS had the largest biomass

C pool (168 Mg C/ha), NPP (41 Mg C�ha�1�yr�1),
and NEP (0.79 Mg C�ha�1�yr�1), while DEWA
had the largest soil C pool (42 Mg C/ha; Table 5).
Within each site, large C pools were observed in
the northern part of the FC (Fig. 3b, d), northern-
central part of the DEWA (Fig. 4b, d), and north-
ern part of the NS (Fig. 5b, d). Large C sinks were

Fig. 3. Spatial distributions of forest biomass (a, b), soil C (c, d), net primary productivity (NPP) (e, f), and net
ecosystem productivity (NEP) (g, h) as simulated by the original (a, c, e, g) and modified (b, d, f, h) PnET models
in the French Creek study site in the Delaware River Basin.
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observed in the southeast part of FC (Fig. 3h),
center part of DEWA (Fig. 4h), and center and
east part of NS (Fig. 5h).

Effects of environmental changes
In scenario simulations with the modified

model, NPP values changed dramatically over
time (Fig. 6). Net primary productivity decreased
substantially in the year of major disturbances and
increased gradually in the following years. Remov-
ing N deposition (N removed scenario) led to a
decrease in NPP over last 100 yr of modeling. Set-
ting the atmospheric CO2 concentration to a fixed
value (CO2 removed scenario) resulted in even
smaller modeled NPP in DEWA and NS. Remov-
ing both N deposition and elevated CO2 (CO2+N
removal scenario) led to the smallest NPP in all
sites. The effect size between the CO2 removed
and CO2+N removed scenarios represented the
effect of N deposition, while the effect size between
the N removed and CO2+N removed scenarios
represented the effect of elevated CO2. The effect
of N deposition appeared to be greater than that of
elevated CO2 during 1970–1990 in FC, and during
1970–1980 in DEWA and NS (Fig. 6b, c). However,
the effect of elevated CO2 was greater than the
effect of N deposition after 1990 in DEWA and NS
(Fig. 6b, c). The combined effect of N deposition
and elevated CO2 was also larger than sum of the
two separate effects. The difference between the
full scenario and other scenarios also increased
over time, especially in the last 30 yr of the model
simulations (Fig. 6). The forest biomass predicted
by the modified model under the CO2+N removed
scenario was 17–20% smaller than the biomass pre-
dicted in the full scenario, indicating that elevated
CO2 and N deposition increased forest biomass C
stocks in all three sites (Table 5). The removal of
both elevated CO2 and N deposition decreased
NPP in the last ten years by 17–21% and decreased
NEP by 29–48% compared to the full scenario.

DISCUSSION

To improve the performance of a process-based
model at the regional scale, model calibration or
parameterization should target the parameters
that the major output variables are sensitive to,
and represent the spatial variation of forest C
dynamics (Thorn et al. 2015). In this study, we
modified the wood turnover rate, the maximum

Fig. 4. Spatial distributions of forest biomass (a, b),
soil C (c, d), net primary productivity (NPP) (e, f), and
net ecosystem productivity (NEP) (g, h) as simulated
by the original (a, c, e, g) and modified (b, d, f, h) PnET
models in the Delaware Water Gap study site in the
Delaware River Basin.
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photosynthesis rate, and the disturbance years in
the PnET-CN model. The main objective of these
modifications was not only to improve the accu-
racy of the model prediction compared to field
observation, but also to increase the ability of the
model to capture the spatial complexity of forest
C cycling at the landscape scale.

Importance of wood turnover rate, maximum
photosynthesis rate, and stand age in C cycle
modeling
Mortality is a key driver of the spatial distribu-

tion of forest biomass and also affects soil C
pools and sinks. A better estimation of mortality
rate can strongly improve modeling of biomass

Fig. 5. Spatial distributions of forest biomass (a, b), soil C (c, d), net primary productivity (NPP) (e, f), and net
ecosystem productivity (NEP) (g, h) as simulated by the original (a, c, e, g) and modified (b, d, f, h) PnET model
in the Neversink study site of the Delaware River Basin.
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and its spatial variation (Delbart et al. 2010).
Comparisons among multiple process-based
models often result in divergent predictions in C
sinks, which were caused by different formula-
tions for turnover rates (Warszawski et al. 2013).
Compared with C flux data, long-term biomass
change data were more effective in constraining
C turnover rates (Du et al. 2015). In this study,
the wood turnover rates calculated from the
observed mortality rate were directly used in the
modified model. The smaller observed wood
turnover rates in all three vegetation types are
very likely due to the forests in the DRB gener-
ally being in their mid-ages, and subject to smal-
ler mortality rates (Coomes and Allen 2007, Xu
et al. 2016b). Our results showed that smaller
wood turnover rates resulted in larger C accu-
mulation in the live biomass C pool, but reduced
the C stocks in soil. Increasing autotrophic respi-
ration from larger biomass leads to a decreasing
NPP. However, heterotrophic respiration is likely
to be limited by the smaller C input to the soil C
pool. As the balance between NPP and hetero-
trophic respiration, NEP did not have a consis-
tent trend in its response to a smaller wood
turnover rates. The effect of modified wood turn-
over can be detected in northern part of NS,
where Amax did not change substantially and
the forests are relatively older (Fig. 5).

Lower optimized AmaxA and AmaxB values
for the red oak-red maple forest type, but not for

the northern hardwood forest type, indicated
that the original model parameters (which were
developed in the northern hardwood forests in
the New England area) could be used in the
northern hardwood forests in the DRB, but may
substantially overestimate forest biomass and
productivity in other forest types. To adapt their
climate conditions, northern hardwood trees
usually exhibit greater photosynthetic rates in
the relatively shorter growing season (Pan et al.
2006). When these photosynthetic rates were
used in the southern oak-dominated deciduous
forests, it caused overestimates in productivity
and biomass. Because AmaxA and AmaxB are the
parameters of a linear function of foliage N con-
centration and photosynthesis rate, consistently
lower photosynthetic rates related to foliage N
concentration in southern trees (Prentice et al.
2014) could reflect relatively lower N use effi-
ciency, while northern hardwoods are likely to
have greater N use efficiency under more N lim-
ited conditions (Aber and Melillo 2002). In the
red oak-red maple forest, the smaller AmaxA and
AmaxB values used in the modified model led to
smaller living biomass and soil C pools and
smaller NPP and NEP.
Successional stage is a critical factor determin-

ing forest C dynamics. Many process models
have been used to simulate the effect of forest
harvesting and forest regrowth processes (Chi-
ang et al. 2008, Potter et al. 2008, Wang et al.

Table 5. Model-predicted forest biomass (VegM, Mg C/ha), soil C (SoilM, Mg C/ha), net primary productivity
(NPP, Mg C�ha�1�yr�1), and net ecosystem productivity (NEP, Mg C�ha�1�yr�1) in the three study sites of the
Delaware River Basin, using the original model, modified model under full scenario, and modified model
under CO2+N removed scenario.

Site Variables Original Modified CO2+N removed Effect (%)

FC VegM 139 � 17 139 � 14 112 � 12 �20
SoilM 41 � 5 37 � 4 32 � 3 �12
NPP 4.1 � 0.5 4.0 � 0.4 3.2 � 0.4 �21
NEP 0.42 � 0.12 0.50 � 0.13 0.26 � 0.11 �48

DEWA VegM 146 � 14 145 � 14 116 � 13 �20
SoilM 48 � 5 42 � 4 38 � 4 �11
NPP 4.2 � 0.4 4.3 � 0.4 3.4 � 0.3 �20
NEP 0.39 � 0.04 0.55 � 0.18 0.36 � 0.15 �40

NS VegM 163 � 9 168 � 16 139 � 15 �17
SoilM 60 � 5 41 � 5 38 � 4 �8
NPP 5.2 � 0.4 4.4 � 0.4 3.6 � 0.3 �17
NEP 0.53 � 0.08 0.79 � 0.19 0.56 � 0.16 �29

Notes: Values are reported as mean � standard deviation. The effects of elevated CO2 and N deposition were calculated as
the percentage change of each variable from the full scenario to the CO2+N removed scenario using the modified model. Nega-
tive effect values indicate that elevated CO2 and N deposition resulted in increased values of the variables in the full scenario.
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2014a). In the PnET model, after a destructive
disturbance and losses of C stocks, forest bio-
mass and soil C pools increase during recovery,
and NPP and NEP increase in earlier develop-
ment years or decades and then decrease after
the canopy is closed and with increasing respira-
tion (Wang et al. 2014b). As a result, younger
forests are expected to have smaller C pools and

larger productivity compared to older forests
approaching an equilibrium stage. This trend has
been tested and verified by long-term field mea-
surements and chronosequence studies (Law
et al. 2003, Birdsey et al. 2006). Our results show
that incorporating stand age data (Pan et al.
2011) into the PnET model can dramatically
change the simulated distribution of C pool and

Fig. 6. Changes in average net primary productivity (NPP) from 1910 to 2010 in French Creek (a), Delaware
Water Gap (b), and Neversink (c) under different model scenarios. Difference between curves showed the effect
N deposition and elevated atmospheric CO2.
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fluxes in the DRB forests (Figs. 3–5). For exam-
ple, the center area of DEWA experienced a clear
cut in the late 1960s, but the impact of this distur-
bance was not detected by the original model. In
the modified PnET model results, this area had
relatively smaller biomass and soil C stocks and
became a hotspot of C sequestration with the lar-
gest NEP.

Performance of the improved model
The goal of the model modifications was two-

fold: to account for the real and substantial spa-
tial variability in forest C stocks and fluxes,
which is expressed by the SD around the mean
model output for each site, and to improve the
accuracy of the model output, which is expressed
in the differences in modeled vs. measured data
and the NRMSE. In the end, the hoped-for goal
was simultaneous increases in SD and decreases
in NRMSE.

The modification process generally improved
the performance of the PnET-CN model in the
DRB forests. The observed and predicted mean
biomass in each site matched well. Our modifica-
tions also largely increase the SD of all the model
outputs (e.g., error bars in Fig. 2, and SD in
Tables 4 and 5), which suggests the model can
better capture the spatial variation in these small
regions. However, the modified model still pre-
dicted SD much smaller than the observed SD.
The highly scattered data points in Fig. 2b high-
light the difficulty of simulating the heterogeneity
of forest C dynamics. One of the reasons is that
the calibrated photosynthetic rates had to be aver-
aged by forest types while the calibrations were
performed at the individual plot scale. As a result,
some spatial variation was lost, which is an inevi-
table limit in the application of a spatially explicit
process model and comparing the landscape-scale
results with plot-level measurements.

Although the modified model significantly
improved the mean values of predicted biomass,
prediction errors based on NRMSE did not always
decrease, and in the case of NS, actually increased.
As mentioned earlier, spatial heterogeneity in bio-
mass observed in plots was the result of complex
biotic and abiotic factors. Even after modification
of a few key parameters, the model still cannot
fully account for the effects of diverse factors
when the model must use averaged parameters
and driving climate/soil data derived from coarse

resolution data sets (Lichstein et al. 2014). As an
example, the low-elevation areas in NS commonly
contain patches of hemlock trees, which tend to
have larger growth rates and hence can accumu-
late more biomass C stock at young stand ages.
However, because hemlock is not identified as a
forest type in the 1-km-resolution forest type map,
the model-predicted biomass in the low-elevation
NS areas was limited by the observed young
stand age. Although the modified model could be
improved by better observations of stand age, this
would cause even greater NRMSE from the
observed high biomass in hemlock forests. This
case also indicated the potential for further model
improvement by calibrating additional forest
types and better accounting for the effect of spe-
cies composition (Porte and Bartelink 2002).
Soil C pools estimated by the original model

were smaller than the field-measured soil C
stocks from the same research sites (Xu et al.
2016a). Reduced wood turnover rate in the modi-
fied model resulted in even smaller soil C pools.
A possible reason for this model-data inconsis-
tency is that the soil profile depth in the PnET-
CN model is not clearly defined. Soil C pools
estimated by the model are therefore not easily
comparable with field measurements that are
sampled by depth increments. The ability of the
PnET model to represent the soil C dynamics is
also limited by the simplified belowground pro-
cesses and the lack of spatialized input informa-
tion of soil characteristics.

Effects of N deposition and elevated CO2 in the
DRB forest
In field measurements, the observed biomass

C change is a combined effect of natural, baseline
forest growth and growth enhancement due to
environmental changes such as elevated CO2

and N deposition (Caspersen et al. 2000, Fang
et al. 2014). Process-based models provide a use-
ful tool to quantify the contribution of these envi-
ronmental changes separately, which cannot be
identified by observations alone (Ollinger et al.
2008, Pan et al. 2009).
Results of model scenarios (Fig. 6) demon-

strated that elevated CO2 and N deposition had
a large impact on NPP in recent decades. The
effect of N deposition was larger than that of ele-
vated CO2 before 1980. But after 1980, the effect
of elevated CO2 was greater in two of the three
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sites. The effect of N deposition estimated in this
study was smaller than the effect estimated by
Pan et al. (2009). Possible reasons include the
decreasing N deposition in the historical input
data after 2000, and the smaller AmaxA and
AmaxB values used in the modified model. In
addition, young forests appeared to have smaller
response to N deposition than mature forests as
we improved representation of land-disturbance
consequence with spatial forest age data in this
study. It is also implied that the effect of elevated
CO2 will likely increase continuously in the
future even in forests, which was considered to
be limited by N supply.

The combined effect of the two factors was
greater than the sum of the two separated
effects, which demonstrated a positive interaction
between N deposition and elevated CO2 and is
consistent with the results from controlled experi-
ments and with other model simulations (Nowak
et al. 2004, Richardson et al. 2010). By removing
these factors from the modified PnET-CN model,
we found that 19% of the current biomass C stock
and 39% of the NEP were attributable to the
effects of elevated CO2 and N deposition, sug-
gesting that environmental change had substan-
tially changed the C dynamics in the DRB forest
in recent decades. Because of the effects, these for-
ests remained vigorous with high productivity
when they would otherwise have lower produc-
tivity as they grow older. Using similar scenarios
designs, the effect of other factors such as ozone
damage, climate change, and landscape change
induced by disturbance and their interactions can
also be addressed using the PnET-CN model. The
modified model would be able to provide more
precise evaluation of these effects, and their spa-
tial distribution within the study sites.

Implications of using carbon stock field
measurements for improving a spatially explicit
model

Model simulations extended our understanding
of the DRB forest C cycle spatially and temporally
(from 61 plots to the area of three sites, and from
two measurements ten years apart to a 210-yr
time sequence) and generated additional informa-
tion about C stocks and fluxes (from measured
live biomass to modeled biomass and soil C pools,
as well as NPP and NEP). In this study, forest bio-
mass C stock measurements were used as the key

benchmark in the model verification processes.
Compared to C fluxes variables, which are fre-
quently used in model calibrations based on eddy
covariance data, forest biomass better represents
the spatial variation of forest C cycling and syn-
thesizes more information about the long-term
processes of forest dynamics since it is an accu-
mulative variable (Miehle et al. 2006, Kondo et al.
2013). Moreover, field measurement of biomass is
feasible in all the forested area, whereas eddy
covariance towers are far scarcer and cannot be
installed in highly complex topographies. The
FIA database has collected periodic measure-
ments of forest biomass all over the country, and
the structure of the database is similar to our
observational data from the three sites in the DRB
forest (Potter et al. 2008). Biomass data as perhaps
the most available and robust field measurements
should be considered more frequently as the
benchmark data for constraining and improving
process-based models. The methods of model
modification used in this study could therefore be
easily used at a larger scale and in different
locales to improve model predictions of forest C
and N cycling.
Because spatially explicit process-based models

have become important tools for exploring hetero-
geneous carbon dynamics on landscapes, the
PnET models have been developed or coupled
with other models for spatial applications (Pan
et al. 2006, De Bruijn et al. 2014, Gustafson et al.
2015). However, the reliability of those models is
often limited by the spatial extent of the observa-
tion data that were used to parameterize the mod-
els. Our study demonstrated a feasible method
for using forest biomass measurements from
multiple plots to improve representations of a
process-based model on landscapes, which can
provide more relevant and useful information for
local forest management, such as the distribution
of carbon sequestration hotspots and the impacts
of N deposition and elevated CO2 on specific for-
ests in the study area.
Our study shows that the relationship between

maximum photosynthesis rate and foliage N
concentration is one of the key principles in the
PnET model that links the C and N cycles and
determines forest productivity on a monthly
basis (Aber and Federer 1992). However, few
studies have measured this relationship in differ-
ent forest types, and the spatial variations of the

 ❖ www.esajournals.org 16 May 2017 ❖ Volume 8(5) ❖ Article e01802

XU ET AL.



parameters are not well constrained. In fact, the
lack of information on these parameters is a
major source of uncertainty in using the PnET
model in different vegetation types (Thorn et al.
2015). Although remote sensing involving with
hyperspectral sensors and expensive field probes
tried to fill this data gap (Martin et al. 2008), the
numerical approach used in our model calibra-
tion provided an effective method to quantify
this relationship and to test the variability of
these parameters across different forest composi-
tions, ages, and environmental conditions.

To further improve the PnET-CN model,
which is particularly important and necessary
for regional or local applications, input data of
higher spatial resolution should be used and
more long-term field measurement data are
needed (Campbell et al. 2009). Foliage N concen-
tration is an important and sensitive variable that
determines maximum photosynthetic rates in the
PnET model (Pan et al. 2004b). If field measure-
ments of foliage N concentrations are available,
they should be used to parameterize the model
for each forest type. Soil WHC is one of the most
important input data and is the only soil prop-
erty that is required in the PnET-CN model. The
NRCS Web Soil Survey, a new soil database with
high spatial resolution, has recently been pub-
lished (Soil Survey Staff 2014) and could be used
as a better source of soil WHC data to improve
the model. Large areas of the northeastern
United States are covered by mixed forests, and
species composition can change over time. More
accurate model predictions will result if the
model applied to this region uses input data that
retain fine-resolution forest type variability, and
with more forest types parameterized in the
model (Jenkins et al. 1999). Incorporating forest
species dynamics in the model may also greatly
improve the ability of the PnET model to capture
spatial variability. Improving model simulations
to generate more robust output and spatial varia-
tions that reflect actual spatial heterogeneity is
necessary to extrapolating results of the field
survey to the entire DRB forest and to test the
effects of additional environmental changes
(e.g., ozone) or disturbances (e.g., invasive pests).
Ultimately, robust model output is essential to
improving our understanding forest carbon
dynamics and for improved forest carbon man-
agement.
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