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Abstract
1. Precipitation regimes are changing in response to climate change, yet understand-

ing of how forest ecosystems respond to extreme droughts and pluvials remains 
incomplete. As future precipitation extremes will likely fall outside the range of 
historical variability, precipitation manipulation experiments (PMEs) are critical to 
advancing knowledge about potential ecosystem responses. However, few PMEs 
have been conducted in forests compared to short-statured ecosystems, and for-
est PMEs have unique design requirements and constraints. Moreover, past forest 
PMEs have lacked coordination, limiting cross-site comparisons. Here, we review 
and synthesize approaches, challenges, and opportunities for conducting PMEs in 
forests, with the goal of guiding design decisions, while maximizing the potential 
for coordination.

2. We reviewed 63 forest PMEs at 70 sites world-wide. Workshops, meetings, and 
communications with experimentalists were used to generate and build consensus 
around approaches for addressing the key challenges and enhancing coordination.

3. Past forest PMEs employed a variety of study designs related to treatment level, 
replication, plot and infrastructure characteristics, and measurement approaches. 
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1  | INTRODUC TION

The amount, timing, and distribution of precipitation are changing 
world- wide (IPCC, 2013). Precipitation extremes are increasingly 
falling outside the range of variability in which ecological com-
munities have evolved, potentially leading to novel interactions 
between organisms and their environment (Williams, Jackson, 
& Kutzbach, 2007). Consequently, ecosystem responses to past 
climate variability may not provide sufficient basis for predicting 
responses to future extremes (Mora et al., 2013; Nippert et al., 
2010).

Field- based precipitation manipulation experiments (PMEs) that 
control water inputs to push ecosystems beyond conditions under 
which they have developed are valuable for investigating responses 
to changing precipitation regimes (Beier et al., 2012; Kayler et al., 
2015). While PMEs do not simulate all facets of climate change (e.g., 
humidity, cloudiness, and temperature; Novick et al., 2016; Williams 
et al., 2013), they can simulate potential future precipitation regimes. 
Moreover, PMEs permit measurements of ecosystem response to 
a discrete and quantifiable treatment, with both replication and 
greater control over confounding factors than with observational 
studies (Niu, Luo, Dietze, Keenan, & Shi, 2014). Here, we highlight 
the ability of well- designed PMEs to provide valuable insights about 
the magnitude and underlying mechanisms of ecological responses 
(Altwegg, Visser, Bailey, & Erni, 2017) and end- points for model 
parameterization and validation (Luo et al., 2011; McDowell, Ryan, 
Zeppel, & Tissue, 2013).

Most PMEs have been conducted in low- statured ecosystems, 
particularly grasslands, while those in tall- statured ecosystems (e.g., 
savannas, woodlands, and forests; hereafter “forests”) are compar-
atively rare and geographically limited (e.g., concentrated in the US 
and Europe and in moisture- limited ecosystems; Figures 1 and 2). Of 

a total of 157 PMEs reviewed by E. Lebrija- Trejos et al. (unpublished 
data), 12% were in forests, while 79% were in grasslands and shrub-
lands. Moreover, the response of forest ecosystems to periods of 
extreme high rainfall has rarely been considered, despite projected 
increases in both drought frequency and total rainfall in humid re-
gions globally (Dai, 2013; IPCC, 2013).

Researchers conducting PMEs in forests face logistical and 
financial challenges because of the large vertical and horizontal 
reach and heterogeneity of the vegetation (Pangle et al., 2012), 
which limit the usefulness of small, relatively simple rain- out shel-
ters designed for short- statured ecosystems (Yahdjian & Sala, 
2002). However, forests have a disproportionate role in global 
carbon and water cycles (de Jong, Schaepman, Furrer, de Bruin, & 
Verburg, 2013). Knowledge of how other ecosystems respond to 
changing precipitation regimes may not translate directly to for-
ests, due to fundamentally different drivers of NPP and other pro-
cesses (Estiarte et al., 2016; Huxman et al., 2004; Wright, Williams, 
Starr, McGee, & Mitchell, 2013). Moreover, the long- lived nature 
of trees has direct impacts on resistance, recovery, and resilience 
to extremes across climatic gradients (Gazol, Camarero, Anderegg, 
& Vicente- Serrano, 2017), and trees have evolved different adap-
tations for resource acquisition and survival (e.g., deep roots, sub-
stantial interannual carbohydrate storage) than more water- limited 
grasses and shrubs (Baldocchi, Xu, & Kiang, 2004). Consequently, 
research questions often differ, with grassland PMEs typically 
emphasizing changes in community dynamics and functional trait 
composition at relatively fast turnover times, while forest PMEs 
often place greater focus on relationships between physiological 
mechanisms and response thresholds at larger spatial and temporal 
scales (Felton & Smith, 2017).

Past forest PMEs have employed a variety of treatment lev-
els, response metrics, measurement techniques, and sampling 

Important considerations for establishing new forest PMEs include: selecting ap-
propriate treatment levels to reach ecological thresholds; balancing cost, logisti-
cal complexity, and effectiveness in infrastructure design; and preventing 
unintended water subsidies. Response variables in forest PMEs were organized 
into three broad tiers reflecting increasing complexity and resource intensive-
ness, with the first tier representing a recommended core set of common 
measurements.

4. Differences in site conditions combined with unique research questions of ex-
perimentalists necessitate careful adaptation of guidelines for forest PMEs to 
balance local objectives with coordination among experiments. We advocate 
adoption of a common framework for coordinating forest PME design to enhance 
cross-site comparability and advance fundamental knowledge about the re-
sponse and sensitivity of diverse forest ecosystems to precipitation extremes.

K E Y W O R D S

climate extremes, drought, ecological thresholds, savannas, shrublands, woodlands
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designs, and this lack of coordination has limited our ability to 
compare across sites and draw robust conclusions over large 
scales (Table 2). A coordinated, cost- efficient approach would 
facilitate implementation of PMEs across diverse forest types 
and advance fundamental understanding about forest responses 
to precipitation change (Vicca et al., 2012). To guide decisions 
on forest PME design, we sought to synthesize the advantages 
and disadvantages associated with different options, balancing 
coordination and cost- efficiency with adaptability. We consider 
four key components of forest PME design: (a) defining the treat-
ment, (b) infrastructure, (c) plot design, and (d) response variables 
and measurement techniques. For each, we discuss key design 
considerations and identify trade- offs among approaches, and 
integrate these into a decision framework to maximize oppor-
tunities for coordination and synthesis (Table 1). While previous 

reviews have emphasized the importance of PMEs and called for 
coordinated approaches (Beier et al., 2012; Fraser et al., 2013; 
Wu, Dijkstra, Koch, Peñuelas, & Hungate, 2011), none have ad-
dressed the unique challenges of designing experiments for for-
ests. While we focus our analysis on precipitation extremes, we 
acknowledge the importance of also designing PMEs to address 
other complex aspects of precipitation change, such as season-
ality or the intensity and/or number of events, and that the con-
cepts and recommendations presented here may not apply to all 
PMEs.

2  | DETERMINING PME TRE ATMENTS

2.1 | Defining precipitation extremes

A fundamental goal of PMEs is to simulate changing precipitation 
regimes; therefore, clear criteria for characterizing such regimes 
are needed. Given sufficient climate data, meteorological precipi-
tation extremes can be quantified statistically as the tails of the 
historical distribution (Smith, 2011). For example, identifying the 
1% and 99% quantiles of a long annual precipitation record pro-
vides a simple metric to characterize once- in- a- century events that 
are expected to increase in frequency (Fischer, Sedláček, Hawkins, 
& Knutti, 2014). The importance of characterizing extremes based 
on site- specific climate data is highlighted by the marked differ-
ences in precipitation distributions across climates, with wet and 
dry extremes in humid regions varying by 30%–40% from average 
years, while in arid regions, these deviations increase to >60% and 
>150% for dry and wet years respectively (Knapp et al., 2015).

An alternative is to design PME treatments based on ecological 
precipitation extremes that account for site and ecosystem differ-
ences by identifying the change needed to trigger an extreme plant 
community response (Smith, 2011). This approach emphasizes un-
derlying mechanisms controlling individual plant and ecosystem re-
sponses, and is less concerned with simulating actual historical or 
future extremes. Additionally, this approach accounts site- specific 
edaphic, topographic, and climatic characteristics (Gerten et al., 
2008; Zeppel, Wilks, & Lewis, 2014).

F IGURE  1 Global distribution of forest 
precipitation manipulation experiments

F IGURE  2 Mean annual temperature, precipitation, and biome 
of forest precipitation manipulation experiment sites based on 
Whittaker (1975), modified by Craine (2013). Solid symbols are 
forests, open symbols are shrublands
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TABLE  1 Framework for guiding decisions on forest precipitation manipulation experiment (PME) design

Study design 
component Decision category Options Recommendation

Defining the  
PME treatment

Amount removal/addition Long- term onsite precipitation data available Calculate the site- specific 1% and 99% 
quantiles

Long- term site data not available Estimate quantiles (e.g., using web- based 
tool; Lemoine et al., 2016)

Temporal distribution Simulate meteorologically defined precipita-
tion extremes based on historical record

Passive approach (recommended for most 
PMEs, unless not suitable for site- specific 
objectives)

Simulate subannual changes in precipitation 
that differ from historical patterns

Active approach

Snow manipulation Snow provides substantial inputs to growing 
season plant water availability

Include snow manipulation in the PME 
treatment

Small contribution of snow to growing 
season, rooting zone soil moisture

Snow manipulation unnecessary

Infrastructure PME removal Durability and resistance is of high priority; 
budget not a major constraint

Metal is ideal, otherwise use other locally 
available materials (wood, bamboo, plastic)

Relatively low tree density; high winter 
snowfall; site easily accessible for repairs; 
minimal concern about striping effects

Fixed trough system installed with appropri-
ate spacing and height; gutters to divert 
water off plot; measure actual amount

Relatively high tree density; winter snowfall 
largely absent; remote location makes 
repairs difficult; concern about striping 
effects (requires rotating infrastructure)

Flat panel frames installed with appropriate 
spacing and height; gutters to divert water 
off plot; measure actual amount

PME addition Possible to collect rainfall or throughfall 
above the treatment plots

Passive gravity flow

Collection of rainfall or throughfall above the 
treatment plots not possible

Irrigation with sprinklers or manual watering

Study design Plot location Consider the effects of topography on 
possible water subsidies into plots

Ideally on near- flat ground or along 
hydrologically isolated upper edge of ridge/
hilltop

Plot size Consider the size needed to account for 
horizontal reach of tree roots and species 
diversity

Plot diameter at least twice the height of 
canopy trees, plus a buffer area

Plot replication Replication versus pseudoreplication A minimum of three replicate plots recom-
mended per treatment

Gradient analysis—regression approach (with 
multiple treatment levels)

Recommended as a means to increase 
statistical robustness

Trenching Low concern about negative impacts on 
roots and rhizosphere

Trenching depth depends on rooting depth, 
soil depth, soil permeability, and slope

High concern about negative impacts on 
roots and rhizosphere

Avoid trenching; compensate by using larger 
plot size and/or buffer area, together with 
strategic plot placement to minimize water 
subsidies

Infrastructure control Closed canopy structure Infrastructure impacts likely negligible

Open canopy structure Infrastructure control may be important

Response 
variables

Recommended core 
variables (see Supporting 
Information Table S3 for 
details)

Site and microclimate characterization Soil physical and chemical properties, 
vegetation, topography, soil moisture, 
precipitation, air temperature, relative 
humidity

Individual plant responses Stem diameter increment, height, leaf area, 
canopy phenology, dieback, mortality

Ecosystem responses Above- ground biomass, litterfall, root 
production, decomposition
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2.2 | Determining the precipitation 
treatment amount

Previous approaches to defining PME treatment magnitude (the 
amount added or removed) have generally avoided creating condi-
tions extreme enough to induce significant plant dieback or mortality. 
For example, in our literature review of 67 forest PMEs (Supporting 
Information Tables S1 and S2), most had treatments substantially 
less severe than the historically determined 1% and 99% quantiles 
(Figure 3). Consequently, it has been difficult to detect soil mois-
ture thresholds required to cause an extreme ecological response. 
Additional, more extreme experiments are needed to explore the 
mechanisms of sensitivity and thresholds (Estiarte et al., 2016; Meir, 
Wood, et al., 2015).

When historical records are used to determine the target precip-
itation extremes, site- specific data provide the best metric, although 
data interpolated from nearby stations are a reasonable alternative, 
particularly if they offer longer records (Lemoine, Sheffield, Dukes, 
Knapp, & Smith, 2016). Designing PME treatments based on ecolog-
ical precipitation extremes is more difficult than simply adding or 
removing precipitation in a fixed ratio. Biological responses are accu-
rately found by carefully controlling soil moisture levels until specific 
biological thresholds are reached (e.g., Elliott, Miniat, Pederson, & 
Laseter, 2015; Meir, Wood, et al., 2015; Mitchell, O’Grady, Hayes, 
& Pinkard, 2014). While ecological thresholds can be detected by 
imposing different PME treatment levels, this approach is often 
cost- prohibitive at scale, and rare in practice (but see Luo, Jiang, 
Niu, & Zhou, 2017). Alternatively, a sufficiently extreme treatment 

F IGURE  3 Forest precipitation 
manipulation experiments expressed 
on a dryness index following Budyko 
(1974), where PET is mean potential 
evapotranspiration and P is mean 
precipitation (note the logarithmic scale). 
Black circles indicate ambient values; open 
circles indicate experimental precipitation 
removals (shifted to the right) or additions 
(left). Red and blue circles indicate the 
first and 99th percentile of precipitation 
respectively. Methods are further 
described in Supporting Information 
Table S1; additional information on 
these studies is included in Supporting 
Information Table S2 (Asbjornsen et al. 
2018)

percentile
percentile
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continued over multiple years can be used to identify soil moisture 
thresholds that elicit nonlinear ecological responses (i.e., reduced 
NPP, mortality; Estiarte et al., 2016; Mitchell et al., 2016). Given that 
soil moisture is often a more direct driver of plant response than 
precipitation alone, this latter approach may be most consistent with 
many PME objectives.

High variability in ambient precipitation can create challenges to 
PME design, as the treatment year may overlap with abnormally high 
(or low) precipitation years, thereby weakening (or strengthening) 
the treatment (Hoover, Duniway, & Belnap, 2015). Where there are 
already trends in mean precipitation, this problem can be magnified. 
The most feasible approach to addressing this issue is to include at 
least three treatment years, although some ecosystems may require 
longer durations (Meir, Mencuccini, & Dewar, 2015). Ideally, a post-
treatment study period should also be included to assess resilience 
and recovery, which may vary substantially among ecosystems and 
species (Gazol et al., 2017).

2.3 | Accounting for the temporal distribution of 
precipitation

Once the treatment magnitude has been determined, a passive ap-
proach is often used (80% of forest PMEs reviewed) in which each 
precipitation event is reduced or increased by a constant ratio. 
Knapp et al. (2017) found that passive removal closely approxi-
mates the attributes of both extreme dry and wet years across a 
broad range of ecosystem types. Thus, if the primary interest is 
to understand ecosystem responses to precipitation extremes, 
passive PMEs provide an efficient approach. Designing PMEs to 
simulate subannual extreme events or changes in precipitation dis-
tribution (Robinson et al., 2013) requires more complicated active 
approaches, such as removing all precipitation during certain sea-
sons, deploying panels before large precipitation events, or irrigat-
ing during specified periods (Gherardi & Sala, 2013; Knapp, Harper, 
Danner, & Lett, 2002).

2.4 | Accounting for snow

A major challenge in forest PME design is manipulating winter pre-
cipitation in areas receiving persistent snow. In many high- latitude 
or high- altitude regions, annual precipitation has increased over the 
last century, but without a clear trend in winter precipitation (Ren, 
Arkin, Smith, & Shen, 2013). However, climate change projections in-
clude winter precipitation increases of up to 30% by 2100 and both 
historical records and models show increasing winter precipitation 
variability (Giorgi & Bi, 2005; Hayhoe et al., 2008). Climatic warming 
also reduces snowpack depth and duration (Kumar, Wang, & Link, 
2012) and increases the incidence of rain relative to snow (Feng & 
Hu, 2007).

Although some grassland ecosystems also receive appreciable 
amounts of snow, their short stature significantly reduces the logis-
tical complexity of snow manipulation (Sanders- DeMott & Templer, 
2017). Snow fences commonly used for grassland PMEs (e.g., Wipf 

& Rixen, 2010) are not well suited for forests because of their small 
area of influence and because trees reduce wind speeds, limiting the 
effectiveness of this approach. Snow removal in forests is commonly 
achieved by manual shovelling or by leaving the PME infrastructure 
in place over the winter (Blankinship & Hart, 2012). Manual shov-
elling typically requires PME infrastructure with removable panels 
or troughs to facilitate access. Efficiencies of snow interception by 
PME structures may be lower than for rainwater, with greater losses 
due to wind and gravity. Wider troughs have a greater snow- holding 
capacity, but can fail under snow loads if not properly designed. As 
with rain, this approach may produce a patchy distribution of snow, 
increasing heterogeneity in soil moisture and freezing.

Changing winter precipitation has a large direct impact on eco-
logical processes where precipitation occurs mostly in winter and 
snowmelt significantly influences growing season soil moisture. 
Conversely, where soils are saturated during the spring thaw even in 
a dry year, reducing snow may not affect growing season water avail-
ability, so manipulating snow may not be a priority. Notwithstanding, 
the loss of winter snowpack increases soil freezing (Henry, 2007), 
damaging tree roots and reducing uptake of water and nutrients 
(Campbell, Socci, & Templer, 2014). Consequently, a fundamental 
consideration is the impact of snow manipulation on both water 
availability and soil temperature (Sanders- DeMott & Templer, 2017). 
Effects on soil temperature can be minimized by removing a portion 
of snowpack shortly before thawing. Where simulating soil freeze–
thaw dynamics in a lower snow climate is a goal, snow should be 
removed consistently throughout the winter.

3  | INFR A STRUC TURE FOR ESTABLISHING 
PMES IN FOREST ECOSYSTEMS

The infrastructure used to establish forest PMEs has ranged from 
relatively simple passive throughfall exclusion gutter networks or 
gravity- fed rainfall addition, to more complex active designs, includ-
ing automated panels and irrigation systems (Misson et al., 2011; 
Pangle et al., 2012; Pretzsch et al., 2014; Figure 4). The greatest limi-
tation to forest PMEs has been their relatively high cost; this section 
focuses on providing guidelines for cost- efficient and broadly ap-
plicable passive approaches. Of the forest PMEs we reviewed, 49% 
were removals, 23% were additions, 20% were both, and the remain-
ing 7% were redistributions (Table 2).

3.1 | Construction design and materials: 
precipitation removal PMEs

Two main types of infrastructure have been used to passively re-
move throughfall in forest ecosystems. The fixed trough system 
consists of flexible polyethylene sheeting secured to a frame (e.g., 
Pangle et al., 2012). Where a trough line intersects a tree, the tree 
can be fitted with a collar bonded to the trough with rolled clamp-
ing strips and caulking tape. Alternatively, pipe can be run from one 
trough to another around stems. Flat panel frames consist of rigid 
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plastic panels supported by frames (Nepstad, 2002). Advantages in-
clude the ability to place individual panels to avoid trees, and easy 
removal for cleaning, litter redistribution or repair. Panels can be 
moved periodically to reduce the effects of “striping”—the creation 
of wet and dry microsites beneath and between panels or troughs.

Many studies using passive throughfall exclusion structures 
require a system of gutters to divert the intercepted water away 
from the plot (Pangle et al., 2012). Flow meters can be attached to 
the gutters to quantify the actual throughfall removed, which may 
differ from the areal ground coverage due to factors such as wind, 
stemflow, and spillage. However, flow meters will slightly underesti-
mate the water removed due to water remaining on (and evaporat-
ing from) the troughs, especially in small events. Ideally, throughfall 
should also be measured in control plots to obtain baseline values 
(Levia & Frost, 2006).

Determining the appropriate height and spacing of forest PME 
infrastructure involves several trade- offs. Troughs or panels need 
to be high enough (approximately 1.5 m) to allow for understorey 
growth, air movement, and access, yet construction costs and dif-
ficulty of maintenance and cleaning increase with height. Typically, 
troughs are located beneath the canopy, which can be challenging 

in low- statured woodlands and shrublands (Figure 4). Fixed troughs 
also require provisions for access, such as removing sections or spac-
ing them far enough apart to walk between. Flat panels tend to be 
spaced on a grid, and their modular nature allows for the structure 
to be readily moved.

3.2 | Design of precipitation addition PMEs

Several approaches have been used for rainfall addition forest PMEs. 
Passive gravity flow systems divert captured throughfall into a lower 
elevation irrigation plot (e.g., Hanson & Wullschleger, 2003). Active 
irrigation allows the quantity and timing of water to be automati-
cally controlled based on meteorological variables or soil moisture 
content (e.g., Linder, Benson, Myers, & Raison, 1987) and is most ef-
fective using a network of sprinklers placed 0.5–1.5 m above- ground 
level (Figure 4), or above the trees if to more accurately simulate 
rainfall (e.g., Pangle et al., 2012). Manual watering may be an option 
for small PMEs (Richter et al., 2012).

Experimental irrigation has been implemented most extensively 
in forest plantations, where water supplementation is often an im-
portant management tool (e.g., Jokela, Dougherty, & Martin, 2004). 

F IGURE  4 Various structural designs used to divert throughfall: (a) Fixed troughs used by the PINEMAP project (Ward et al., 2015). (b) 
Underside of framing braces at the Hubbard Brook LTER. (c) Fixed trough system used at Thompson Farm in Durham, NH. (d) Polycarbonate 
troughs and metal framing at the Sevilleta LETR (Pangle et al., 2012). (e) Flat panel system at Caxiuanã National Forest (Nepstad, 2002); 
arrows show the flow path from panels to a plastic- lined trough. (f) Polyethylene sheet panels at Lore Lindu National Park, Indonesia (van 
Straaten, Veldkamp & Corre, 2011). (g) Automated retractable roof at the KROOF project, Kranzberg Forest, Germany (Pretzsch & Schütze, 
2016; Pretzsch et al., 2014). Photo credits: (a) Geoffrey Lokuta, (b, c) Cameron McIntire, (d) Aimee Classen, (e) Daniel Metcalfe, (f) Oliver van 
Straaten, (g) Leonhard Steinacker

(a)

(b)

(e) (f) (g)

(c) (d)
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More recently, water addition PMEs have been conducted to assess 
climate change impacts in water- limited woodlands or dry forests 
(Plaut et al., 2013; Ruehr, Martin, & Law, 2012). In contrast, despite 
predictions that wetter sites will likely experience more extreme wet 
spells (IPCC, 2013), the response of mesic forests to precipitation 
additions has been poorly investigated, with previous studies utiliz-
ing relatively small plots (e.g., Gao, Zhao, Shen, Rao, & Hu, 2017; 
McCulley, Boutton, & Archer, 2007; Yavitt, Wright, & Wieder, 2004; 
but see Hanson, Todd, & Amthor, 2001). A unique study assessed the 
century- scale response of trees growing along irrigation channels, 
and reported lower growth increases when compared with a short- 
term 3- year irrigation period (Dobbertin et al., 2010; Feichtinger, 
Eilmann, Buchmann, & Rigling, 2015). Clearly, conducting more 
water addition forest PMEs represents a critical research need.

4  | STUDY DESIGN FOR FOREST PMES

4.1 | Location, size, and replication of the PME plots

Ideally, plots should be as similar as possible and on nearly flat 
ground or along the shoulder of a small ridge or hilltop to minimize 
lateral flow into the plot. Relatively large plot size (ideally ≥30 m2) 
and low replication is an inherent trade- off faced by most forest 
PMEs. Although a common rule of thumb is to size plots at least 
twice the height of canopy trees, plot dimensions should be based 
on site- specific knowledge of lateral root distribution, preferably 
erring larger in the face of uncertainty and including a buffer to avoid 
edge effects (Pangle et al., 2012). In more diverse ecosystems, larger 
plots may be needed to include target tree species. Across the for-
est PMEs we reviewed, a minority reported including a buffer zone, 
and the median plot size was under 100 m2 (Table 2). Few studies 
included plots >1,000 m2, and only two (both tropical) studies em-
ployed 10,000 m2 plots.

Ideally, experiments should include replicate plots for each treat-
ment, although pseudoreplication (treating measurements from 
within a single plot as replicates) is a common compromise. Only 
55% of forest PMEs with plots >1,000 m2 were replicated, whereas 
88% of PMEs with plots <1,000 m2 were replicated. When using a 
pseudoreplicated design, thorough plot characterization and collec-
tion of pretreatment data are crucial (Carpenter, 1989). Alternatively, 
including a range of PME treatment intensities and a regression 
approach provides greater statistical power for characterizing re-
sponse surfaces, detecting threshold dynamics (Beier et al., 2012; 
McDowell et al., 2016; Plaut et al., 2013), and capturing these re-
sponses in models (Kayler et al., 2015).

4.2 | Trenching to minimize water subsidies

Three types of water subsidies can compromise the intended treat-
ment: (a) lateral subsurface or overland flow, (b) extension of roots 
beyond the plot, and (c) root access to deep soil water or ground-
water. The first two sources can be mitigated by trenching around 
the plot, as in 31% of published forest PMEs (Table 2). The depth of 
the trench required (typically >1 m) depends on rooting depth, soil 
depth, soil permeability, and slope. Trenches can be established on 
all sides, or just upslope, and plastic lining installed to impede lat-
eral water flow and root growth. If a treatment plot is trenched, the 
control plot must be as well to account for any trenching artefact. A 
major disadvantage of trenching is damage to roots and the rhizo-
sphere, but these effects diminish with time (Pretzsch & Schütze, 
2016). Where access by roots to deep water sources is in question, 
verification by monitoring groundwater levels or using stable iso-
tope ratios of xylem and soil water is important (Dawson et al., 2002; 
Hanson et al., 2001).

4.3 | Infrastructure control

The PME infrastructure may have unintended effects on the forest 
floor environment due to shading, reduced air movement, and the 
introduction of small- scale heterogeneity in soil moisture. The di-
rect physical effects of irrigation infrastructure are likely quite minor 
relative to throughfall removal. Ideally, PMEs would include an infra-
structure control for each treatment (a similar structure that does 
not affect precipitation; Figure 4). However, the additional cost may 
not be justified, particularly if light and air movement are already 
limited and gutters are highly transparent (Hanson, Todd, Edwards, 
& Huston, 1995; Pangle et al., 2012). Few forest PMEs included an 
infrastructure control (Table 2).

5  | SELEC TING RESPONSE VARIABLES 
AND ME A SUREMENT TECHNIQUES

While the particular research questions, logistics, and budget 
will influence decisions on response variables and measurement 
techniques, we provide a generalized framework for guiding this 

TABLE  2 Percent of reviewed forest precipitation manipulation 
experiments (see Supporting Information Table S2) that include 
specific design elements and fall within each plot area size range, 
excluding three studies with insufficient information (67 out of 70 
reviewed studies; Asbjornsen et al. 2018)

% Studies

Design

Replication (n ≥ 2) 81

Infrastructure control 10

Buffer 41

Trenching 25

Plot size

≤10 m2 21

<10–100 m2 31

<100–1,000 m2 31

<1,000 m2 18



2318  |    Methods in Ecology and Evolu
on ASBJORNSEN Et Al.

process, categorized into three tiers (Supporting Information 
Table S3). Tier I represents a set of recommended core measure-
ments selected to balance cost and effort with ability to enable 
meaningful cross- site comparisons and syntheses among forest 
PMEs (e.g., Vicca et al., 2012). Tier II and III measurements require 
increasing expense and expertise, and can be adapted to specific 
research goals.

5.1 | Site and microclimate characterization

Pretreatment characterization of site and microclimate conditions 
provides an important baseline for comparing responses and ac-
counting for plot variability. Key Tier I site parameters include 
measurements of precipitation, air temperature, relative humidity, 
and soil moisture. Soil moisture is ideally measured continuously 
with sensors or potentiometers at multiple depths, or with frequent 
point measurements. Additional Tier II and III measurements include 
soil physical and chemical properties, soil hydraulic properties, and 
water content and potential.

5.2 | Measurements of plant physiological and 
growth responses

The temporal and spatial scales of forest response to extreme events 
requires that PME measurements integrate across multiple scales. 
Leaf- scale physiological and whole- plant growth responses can pro-
vide sensitive indicators of future ecosystem change that may not 
be detectable for many years. Establishing linkages across scales 
requires careful selection of response variables, summarized below.

5.2.1 | Leaf- level responses

Plant physiological responses include variables that respond quickly 
to environmental conditions, such as leaf water content, and 
predawn and mid- day water potential (to evaluate the degree of 
stress experienced by the plant hydraulic system). Considering the 
link between plant water and carbon relations, measurements of 
stomatal conductance, photosynthesis, and short- term growth (e.g., 
shoot extension) can be early indicators of physiological responses 
to water limitation (Flexas & Medrano, 2002; Hommel et al., 2014; 
Ripullone et al., 2009). While some of these measurements require 
specialized equipment and expertise (Tier II or III), plant functional 
traits (Tier I) are relatively simple to characterize and provide valu-
able insights about plant response to moisture stress (Stahl et al., 
2013).

5.2.2 | Whole tree- level responses

Measuring sap flow has the advantage of directly quantifying 
water fluxes at the tree scale and providing continuous data on in-
tegrated plant responses to the treatment (Limousin et al., 2009). 
The cumulative influence of treatment on growth is typically as-
sessed using repeated measurements of stem diameter (Tier I; de 

Swaef, De Schepper, Vandegehuchte, & Steppe, 2015). Automated 
dendrometer bands can provide information at a high temporal 
resolution, allowing the separation of true growth from changing 
water storage (Brinkmann, Eugster, Zweifel, Buchmann, & Kahmen, 
2016). Stem increment data (Tier I) can be scaled to derive cumula-
tive biomass change via allometric equations over longer time pe-
riods. Combining tree- ring measurements with stable carbon and 
oxygen isotopes of wood can provide more specific information 
on the underlying physiological mechanisms driving growth trends 
(Brienen, Hietz, Wanek, & Gloor, 2013; Voltas, Chambel, Prada, & 
Ferrio, 2008). Quantifying nonstructural carbohydrates in twigs, 
stems, and roots can elucidate plant- level patterns of C alloca-
tion to current versus future growth and maintenance (Dickman, 
McDowell, Sevanto, Pangle, & Pockman, 2015; Körner, 2003). The 
impact of drought on plant hydraulics can be determined through 
measurements of the percentage loss of conductance, typically 
on excised roots and branches (Cochard, Cruiziat, & Tyree, 1992). 
Measures of leaf senescence, leaf area, crown dieback, root/shoot 
ratios, defence, and stress compounds, and mortality are often em-
ployed to assess how precipitation change impacts plant heath and 
survival (e.g., Gaylord et al., 2013). While measurements of whole- 
tree growth and dieback are considered Tier I, other Tier II and III 
measurements can be added to address specific study objectives 
(Supporting Information Table S3). Together, integrated assess-
ments of plant carbon relations, hydraulic function, and organ or 
whole- plant injury can be used to infer drought resistance and re-
silience (McDowell et al., 2011; van der Molen et al., 2011).

5.3 | Ecosystem scale structure and processes

Linking the physiological and growth responses discussed above 
to ecosystem scale changes is critical to establishing long- term 
consequences of precipitation extremes in forest ecosystems. 
This requires integrating multiple factors over longer (seasonal or 
annual) time- scales, including ecosystem productivity, soil biogeo-
chemical pools and fluxes, water balance, and plant community 
response.

5.3.1 | Ecosystem productivity

Assessing PME effects on above- ground productivity requires col-
lecting stem increment and standing biomass data (discussed above). 
Other important Tier I data include litter production, reproductive 
allocation, and canopy phenology (using litter baskets). For below- 
ground responses, approaches range from assessing fine root pro-
duction with root- ingrowth cores to provide a standard index (Tier 
I), to more sophisticated measures of fine root productivity using 
sequential coring or minirhizotrons (Milchunas, 2009; Vogt, Vogt, 
& Bloomfield, 1998). The high variability typical with root meas-
urements can be assessed pretreatment and used to optimize rep-
lication via power analysis (Steidl & Thomas, 2001). To account for 
striping beneath troughs or panels, it is important to stratify sam-
pling across these positions. Other components of below- ground 
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allocation (e.g., mycorrhizal fungi and carbon exudation to free- living 
rhizosphere microbes) require targeted (Tier II and III) sampling ap-
proaches (Mohan et al., 2014).

5.3.2 | Biogeochemical cycling

Changes in soil moisture can impact nutrient pools and fluxes 
(Cregger, McDowell, Pangle, Pockman, & Classen, 2014). Because 
forest ecosystems are typically nutrient limited (Elser et al., 2007), 
this is an indirect way for PMEs to affect forest productivity (Gessler, 
Schaub, & McDowell, 2017). As these measurements generally re-
quire lab facilities, most are considered Tier II or III (Supporting 
Information Table S3). Potential parameters include inorganic nutri-
ent pools, total organic C and N, soil respiration, N mineralization, 
and decomposition rates (Klein, 2014; Schlesinger et al., 2016). 
Inorganic nutrients can be monitored using ion- exchange resin de-
ployed up to several times annually (Fisk, Ratliff, Goswami, & Yanai, 
2014; Robertson et al., 1999). Soil respiration can be measured in 
permanently installed collars using a portable CO2 analyser. Total or-
ganic C and N stocks should be measured pretreatment across the 
soil profile and again every 3–5 years (Conant, Smith, & Paustian, 
2003). Decomposition rates can be assessed using litter bags de-
ployed at the beginning of the study, or annually throughout the 
study, using either native litter or standardized substrates (e.g., 
tea bags, wood dowels; Keuskamp, Dingemans, Lehtinen, Sarneel, 
& Hefting, 2013). Possible leaching of nutrients below the rooting 
zone in precipitation addition experiments could be quantified using 
lysimeters (Watmough, Koseva, & Landre, 2013).

5.3.3 | Water balance

Precipitation extremes likely alter surface evaporation, transpira-
tion, soil water content, and hydrologic flows, which in turn, will 
affect hydrologic budgets across broad spatial scales (Asbjornsen 
et al., 2011; Caldwell et al., 2016; Wullschleger & Hanson, 2006). 
While the size of most PMEs limits their scalability, plot- level assess-
ments of water balance are feasible by measuring its key components 
(Tier II; Supporting Information Table S3): transpiration (Et), canopy 
interception (Ei), soil evaporation (Es), precipitation (P), and deriv-
ing water yield (Q) as: Q = P − Et − Ei − Es. Et is typically measured 
via whole- tree sapflux (Steppe, De Pauw, Doody, & Teskey, 2010) 
scaled using species- specific sapwood area estimates (Hernandez- 
Santana, Hernandez- Hernandez, Vadeboncoeur, & Asbjornsen, 
2015). Canopy interception can be estimated from throughfall and 
precipitation (Holwerda, Scatena, & Bruijnzeel, 2006). In closed can-
opy forests, Es is typically small, but in more open forests, Es should 
be measured or modelled (Bruijnzeel, 2000).

5.3.4 | Plant community response

Increasing frequency of precipitation extremes can change the 
plant community on longer time- scales due to differential effects 
on seedling establishment and survival, and dieback and mortality of 

canopy trees. Assessing plant understorey mortality, regeneration 
dynamics, and species composition (all considered Tier I measure-
ments) may provide a sensitive indicator of future plant demographic 
change (Anderegg, Anderegg, & Berry, 2013; Martinez- Vilalta & 
Lloret, 2016; Rother, Veblen, & Furman, 2015). However, care must 
be taken to avoid confounding effects of the infrastructure (e.g., 
striping, shading) and disturbance during data collection activities. 
Plant community changes can have cascading effects on other biotic 
interactions (e.g., herbivory, pests and pathogens, invasive species, 
insect dispersers or pollinators), as well feedbacks to faunal com-
munities (Caldeira et al., 2015; Redmond, Cobb, Clifford, & Barger, 
2015).

6  | LIMITATIONS OF FOREST PMES AND 
AVAIL ABLE TOOL S FOR ADDRESSING THEM

A major limitation of PMEs is that precipitation extremes co- occur 
with other global changes (e.g., increasing CO2, atmospheric depo-
sition, temperature, humidity) in complex ways (Trenberth et al., 
2014), which are logistically impossible or financially prohibitive to 
address with PMEs. Moreover, interactions among multiple factors 
may cause response levels to decline over time (Leuzinger et al., 
2011), while stress history “memory” may confer plant communi-
ties exposed to previous droughts with improved drought resistance 
(Backhaus et al., 2014). Another challenge shared by PMEs is their 
limited ability to capture processes that occur on larger spatial or 
temporal scales, especially since treatments often run only a few 
years, and the difficulties in extrapolating plot- level data to land-
scape and watershed scales. These issues are particularly challeng-
ing in forest PMEs due to the longevity of trees and the associated 
costs of implementing additional treatments. Superimposing forest 
PMEs on existing climate change experiments can help reduce the 
costs and effort for assessing interactions among multiple drivers, 
yet such opportunities are relatively rare. Conducting PME treat-
ments over one or more decades offers the best opportunity to 
assess longer term climate change impacts. Additionally, emerging 
tools related to modelling and remote sensing can help address some 
of these limitations, provided that appropriate data are collected for 
their integration with PMEs.

6.1 | Modelling

With appropriate data for integration and testing, models can en-
hance what we learn from forest PMEs in several ways. First, models 
can be used to examine different global change factors alone and 
in combination to help resolve their individual and combined influ-
ences (McDowell et al., 2013; Ollinger, Goodale, Hayhoe, & Jenkins, 
2008; Wright et al., 2013). Second, the limited duration of experi-
ments makes it difficult to anticipate tipping points or longer term 
feedbacks involving nutrient cycles, community composition, or 
plant biogeography (Saura- Mas, Bonas, & Lloret, 2015). Here, too, 
models can add context by supporting virtual experiments across 
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broader spatial and temporal scales, and predicting response thresh-
olds (Gustafson, De Bruijn, Miranda, & Sturtevant, 2016; Sitch et al., 
2008). Finally, advances in land- surface modelling and data- model 
fusion have improved the degree to which plot- scale data on ecolog-
ical processes and plant physiological mechanisms can be integrated 
with biophysical processes that regulate climate (Bonan & Doney, 
2018; Dietze, LeBauer, & Kooper, 2013), hydrology (Christoffersen 
et al., 2014), and plant demographics (McMahon, Parker, & Miller, 
2010). This opens up the potential for integrating short- term re-
sponses observed in PMEs with longer term regional-  to global- scale 
feedbacks simulated by Earth system models.

6.2 | Canopy reflectance

Canopy- level remote sensing data provide a useful means of provid-
ing estimates of plant composition and canopy water status needed 
to spatially extend results and refine wider scale drought monitor-
ing. Although the size of PME treatment plots precludes the use of 
most satellite- based data, rapid growth in the use of drones and 
lightweight multispectral and hyperspectral sensors offer promising 
alternatives. However, depending on sensor resolution, experimen-
tal infrastructure might complicate analysis except in closed canopy 
forests (or experiments with an infrastructure control plot). At the 
leaf level, the presence of water in foliage influences reflectance 
through the direct effects of water itself, primarily in the infrared 
region (e.g., at 1,450 and 1,950 nm), as well as a broad pattern of 
declining reflectance beginning at 1,400 nm (Kokaly, Asner, Ollinger, 
Martin, & Wessman, 2009). The consistency of these features has 
led to the development of simple water stress indices (Gao, 1996; 
Penuelas, Pinol, Ogaya, & Filella, 1997). Less understood are the 
indirect effects of water stress on leaf area, leaf angle, and pig-
ments, which influence canopy spectral properties and are sensi-
tive to changes in water status (Ollinger, 2011). With the improved 
understanding of plant responses that PMEs make possible, concur-
rent measurements of canopy reflectance can help resolve these 
relationships.

7  | CONCLUSION: TOWARDS A 
COORDINATED APPROACH FOR FOREST 
PMES

Advanced understanding of how future precipitation extremes will 
affect forests requires PMEs that push ecosystems beyond their 
physiological and ecological thresholds. Ideally, future PMEs would 
be distributed across diverse ecosystems and employ a common ex-
perimental design, response variables, and measurement techniques 
to facilitate cross- site analyses and identification of broad- scale pat-
terns (http://wp.natsci.colostate.edu/droughtnet/).

We presented a framework to guide the design and imple-
mentation of forest PMEs that we hope will support cross- site 
synthesis (Table 1). We highlighted inherent trade- offs among dif-
ferent approaches, and emphasized the opportunity to significantly 

advance knowledge about response to precipitation extremes using 
cost- efficient experimental approaches. We organized common re-
sponse variables used in forest PMEs into three tiers of complexity 
(Supporting Information Table S3), to assist researchers in identify-
ing suitable metrics for each research context. Although most rel-
evant for future forest PMEs, opportunities exist for applying this 
framework to existing experiments (e.g., by adopting the core vari-
ables) and to past forest PMEs (e.g., studies that included some core 
variables, and by normalizing the PME treatment based on the site- 
specific precipitation record as in Figure 3).
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