
6.04 Mapping Peatlands in Boreal and Tropical Ecoregions
LL Bourgeau-Chavez, SL Endres, and JA Graham, Michigan Technological University, Ann Arbor, MI, United States
JA Hribljan, RA Chimner, and EA Lillieskov, Michigan Technological University, Houghton, MI, United States
MJ Battaglia, Michigan Technological University, Ann Arbor, MI, United States

© 2018 Elsevier Inc. All rights reserved.

6.04.1 Introduction 24
6.04.1.1 How Does Peat Form 24
6.04.1.2 Global Peatland Distribution 25
6.04.1.3 Peatland Classification Schemes 25
6.04.1.4 Why Peatlands Are Important to the Carbon Cycle 26
6.04.1.5 Biodiversity in Peatlands 27
6.04.1.6 Threats to Peatlands 27
6.04.2 Review of Peatland Mapping Approaches 28
6.04.3 Examples of Peatland Mapping in Boreal, Alpine, and Tropical Regions 30
6.04.3.1 Field Data Collection 30
6.04.3.2 Training Data and Air Photo Interpretation 32
6.04.3.3 Accuracy Assessment 32
6.04.3.4 Boreal Peatland Mapping 32
6.04.3.5 Alpine Peatland Mapping 35
6.04.3.5.1 Peatland coverage in the Ecuadorian Páramo 38
6.04.3.6 Tropical Lowland Peatland Mapping 38
6.04.4 Summary and Future Research 38
References 40
Further Reading 43

6.04.1 Introduction

Peatlands are a class of wetlands that are defined as having saturated soils, anaerobic conditions, and large deposits of partially
decomposed organic plant material (peat). Occurring in ecozones from the tropics to the arctic, peatlands are estimated to cover
just under 4.5 million km2, roughly 3–5% of the Earth’s land surface (Maltby and Proctor, 1996). Although they cover a small
amount of land globally, peatlands are estimated to store �30% of the Earth’s soil carbon (C) (Gorham, 1991; Botch et al., 1995;
Lappalainen, 1996; Zoltai and Martikainen, 1996; Clymo et al., 1998; Moore et al., 1998; Yu et al., 2010; Page et al., 2011),
making them crucial to the global C cycle. Therefore, it is vital to obtain improved estimates of peatland distribution across
the globe, as well as to monitor disturbances due to climate change or human activity. Efforts to map global wetlands
from MODIS or other coarse resolution optical sources are ineffective in detecting and mapping peatlands. With coarse
(250 m–1 km resolution) data, peatlands typically are grouped with a more general wetland class. Since peatlands are often small
and interspersed with upland and other wetland types, it is essential to use finer resolution data (�30 m or better) to distinguish
peatland types as described further in this article. Advanced remote sensing methods that use a combination of data sources and
imagery from multiple seasons are necessary to capture the hydrologic and phenological variation that characterizes the diversity
of peatlands that exist on the landscape. This article reviews the need for peatland mapping in boreal and tropical systems and
summarizes applications of remote sensing for this purpose. Before mapping any landscape, it is necessary to have an under-
standing of the systems to be mapped. Knowledge of the characteristics of the ecosystems allows for informed decision making
when choosing the combination of remote sensing data sources to best distinguish and classify the region of interest. In this
article, we begin with background information on peatlands, followed by a review of mapping approaches from the literature
and lastly, provide three examples of using multisensor, multitemporal optical, and radar data for mapping peatlands. The multi-
sensor and multidate approaches are shown through examples to be more effective than using a single date of imagery and/or
a single sensor.

6.04.1.1 How Does Peat Form

For peat to accumulate, the long-term rate of primary production must be greater than the rate of decomposition and losses
from other sources such as wildfire and dissolved carbon export (Wieder and Lang, 1983; Vitt, 2006). Although production and
decomposition rates vary considerably between boreal, alpine, and tropical peatlands, a production–decomposition imbalance
is required for peatland persistence. Peat is formed from a range of plant types, including both bryophytes: Sphagnum, feather,
and brown-mosses; and vascular plants: cushion plants, ericaceous shrubs, graminoids, palms, and trees. Peat is characterized
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as water-logged, anoxic, and often composed of recalcitrant plant litter, lending to particularly slow decomposition rates
(Moore et al., 2007). In comparison to other ecosystems, northern peatlands have low productivity (Frolking et al., 1998;
Moore et al., 2002), and low temperatures and anoxic conditions greatly inhibit decomposition, allowing peat to form. Scien-
tists initially believed that peatlands could only be formed in colder climates (Moore and Bellamy, 1974), reasoning that in
warmer temperatures the rate of decomposition would outpace plant production (Lloyd and Taylor, 1994; Raich and Potter,
1995; Fang and Moncrieff, 2001). Rather, tropical peatlands have demonstrated rapid peat accumulation rates, averaging
1–5 mm yr�1 and up to 10 mm yr�1 (Chimner and Karberg, 2008; Lähteenoja et al., 2009), much faster than temperate
and boreal peat accumulation rates that are typically less than 1 mm yr–1 (Gorham, 1991). Although annual tropical produc-
tion rates are generally high and much of the litter is easily decomposed, it has been suggested that lowland tropical peat is the
result of the slow decomposition of woody material (Chimner and Ewel, 2005), while boreal peat is formed from mosses,
graminoids, and woody material.

The accrual of peat over millennia leads to the formation of deep peat deposits, which may reach depths as great as 15–20 m
below the surface (Anderson, 1983; Clymo et al., 1998; Limpens et al., 2008; Turunen et al., 2002). Although the maximum depths
of some peat deposits are remarkable, there are some international inconsistencies regarding the minimum peat thickness required
for an ecosystem to be classified as “peatland.” In some countries thirty centimeters of peat is the minimum depth required for an
ecosystem to be defined as a peatland (Joosten and Clarke, 2002; Rydin and Jeglum, 2013); however, the two peat rich countries,
Russia and Canada, use a peat thickness of 50 and 40 cm, respectively, in national peatland inventories, (National Wetlands
Working Group, 1997; Loisel et al., 2017) which may complicate global peat estimates.

6.04.1.2 Global Peatland Distribution

Peatlands occur from the tropics to the arctic, covering 3–5% of the Earth’s land surface (Maltby and Proctor, 1996), spanning
approximately 4.0�106 km2 in the northern hemisphere and 4.5�104 km2 in the southern hemisphere (Yu et al., 2010). However,
a majority of the Earth’s peatlands exist in the boreal regions of the northern hemisphere. Of the boreal forest region, 25–30% of the
landscape is peatland (Gorham, 1991; Wieder et al., 2006). Tropical peatlands account for around 11% of all peatland area at
current estimates of 4.41�105 km2 (Page et al., 2011). The largest expanses of tropical peatlands are located in lowland areas of
Southeast Asia, especially Indonesia (Rieley et al., 1996; Page et al., 2011), and in the Amazon basin (Lähteenoja et al., 2009).
Africa’s lowland peatland area is largely unknown, except for the Congo Basin, where recent studies estimate peatland area at
1.45�105 km2 (Dargie et al., 2017). Peatlands are also located at high elevations in most mountain ranges (Cooper et al.,
2012). Tropical alpine peatlands are numerous in the Andes, many tropical islands, and in Africa (Smith and Young, 1987;
Chimner, 2004; Chimner and Karberg, 2008).

Six countries (boreal Russia, Canada, USA, Finland, Sweden, and tropical Indonesia) together account for 93% of all known
peatland area (Joosten and Clarke, 2002; Wieder et al., 2006). Southern hemisphere peatlands are far less abundant, perhaps owing
to limited land with appropriate conditions for peatland initiation and development (Gore, 1983). Outside of the tropics, southern
hemisphere peatlands are most plentiful in Patagonia and Tierra del Fuego with rare occurrences in Australia and islands outside the
Antarctic Circle (McGlone, 2002; Yu et al., 2010). With the large distribution of peatlands across a range of landforms, latitudes, and
elevations, it is no wonder that peatlands encompass a large array of types, with varying degrees of species richness and hydrological
conditions.

6.04.1.3 Peatland Classification Schemes

Boreal peatland types can be classified along chemical, botanical, and hydrological gradients (Zoltai and Vitt, 1995; Bridgham et al.,
1996). Perhaps the most common peatland classification system is based on the chemo-hydrological distinction of bog from fen.
Due to an accumulation of peat, the growing ground layer of bogs becomes elevated above the water table and are distinguished
from fens by being ombrotrophic, i.e., they receive almost all their water and associated nutrient and mineral input from precip-
itation. Conversely, fens are minerotrophic, i.e., they receive ground and surface water inputs (Drexier et al., 1999), resulting in
more nutrient and mineral availability in fens.

Of the peatland classes, bogs are generally the most acidic, nutrient poor, furthest removed from the water table, and possess
relatively low species richness. To maintain adequate moisture to facilitate growth, bogs only develop in areas where precipitation
is greater than potential evapotranspiration and droughts are rare (Maltby and Proctor, 1996). In boreal bogs, the roots of ericaceous
shrubs provide a lattice for dense populations of Sphagnum mosses to retain moisture at levels far above the water table (Malmer
et al., 1994). Although nitrogen has been thought to be the limiting growth factor to Sphagnum, the primary peat former in boreal
bogs and poor fens (Limpens et al., 2006), it may be that water and nitrogen are colimiting factors along a distance-to-water table
gradient (Graham and Vitt, 2016).

As fens are not solely dependent on precipitation, they are not restricted to areas of high precipitation and can form in any region
that has regularly saturated soils, such as river basins, topographic depressions, and ground water discharge zones (Maltby and
Proctor, 1996). Fens are further divided along the chemical, botanical, and hydrological gradients, with poor fens being the closest
to bog. Like bogs, poor fens typically have full groundcover of Sphagnum moss, have a pH less than 5.5, share many plant species,
but are not fully elevated above the water table and do receive some water input from surrounding landscapes. While bogs are
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restricted to the lowest end of the chemical gradients, fens have a wider range and higher levels of pH as a result of varying condi-
tions of incoming groundwater chemistry and the geologic setting of the watershed (Chimner et al., 2010).

Mixed with upland ecosystems, these different boreal peatland types often neighbor each other across the landscape, resulting
from the complexity of both abiotic and biotic factors (Vitt et al., 2003; Graham et al., 2015). Over long periods of time, peatland
types can change as a result of successional processes (Glaser, 1981). One common pathway is ombrotrophication, where peatlands
transition from minerotrophy to ombrotrophy by peat formation and accumulation to the point that the ground layer becomes
isolated from groundwater and surface runoff (Charman, 2002). When the water-logged edge of a peatland encroaches upon
the surrounding landscape peatlands commonly spread in a process called paludification (Kuhry and Turunen, 2006).

In addition to the chemo-hydrologic gradients, peatlands differ in vegetation cover. For the purposes of mapping, one of the
most important differences is the presence or absence of trees Fig. 1. Open, nonforested peatlands can be dominated by Sphagnum,
low ericaceous shrubs, and sedges. Boreal to temperate peatlands can also be dominated by low diversity forests of the Pine family
(Pinaceae) with Picea, Pinus, and Larix, being especially important genera. At higher pH levels, these peatlands can be dominated by
other conifers (e.g., Thuja).

Peatlands existing in tropical regions are located in lowland and high-elevation landscapes. For southeast Asia, which contains
77% of tropical peat (Page et al., 2011), three classes of peatlands have been suggested: coastal peatlands, basin or valley peatlands,
and the high-elevation peatlands (Rieley et al., 1996; Page et al., 1999). These divisions are based on peatland location, formational
pathway, and age of peat deposits (Page et al., 2006).

Low-elevation (basin or valley) tropical peatlands are generally angiosperm tree or palm dominated with limited bryophyte
cover, forming what are known as peat swamp forests. Tree biodiversity is much higher in tropical than boreal lowland peatlands.
Over 200 tree and palm species occupy tropical peat swamps in Indonesia alone. In contrast, pan-boreal peatlands contain less than
two dozen tree species (Wieder et al., 2006). Above-ground production in tropical peat swamp forests can exceed 1100 g Cm�2 yr�1,
but high decomposition rates of plant litter prevent it from accumulating as peat (Chimner and Ewel, 2005). Unlike boreal and
temperate peatlands, where peat is predominately formed from above-ground production, tropical lowland peat is formed mostly
from fine roots, branches, and trunks, creating a fibrous woody peat (Anderson, 1983; Page et al., 1999).

High-elevation tropical peatlands, 3500 m a.s.l. in the Andes Mountains (Fig. 1), may form in areas of restricted drainage from
the presence of cushion plants, which can form the bulk of peat and create conditions favoring continued peat formations (Sklenar
and Jorgensen, 1999; Fritz et al., 2011; Benavides et al., 2013; Hribljan et al., 2017). High-elevation peatlands can form in areas
which receive perennial overland and groundwater inputs. In Peru, the term “bofedales” meaning wetlands with peat layers is
used. Bofedales exist in areas that receive water from melting glaciers, rivers, lakes, and groundwater in addition to precipitation.
They are important sources of water and forage for livestock and represent hotspots of biodiversity (Ruthsatz, 2012).

6.04.1.4 Why Peatlands Are Important to the Carbon Cycle

The result of the accumulation of peat over millennia has been the immense sequestration of global carbon in peatlands, despite
their low abundance on the Earth’s landscape. Recent estimates of the total peatland C pool isz612 (530–694) Gt C (Yu et al.,

Fig. 1 Top row: Photos of peatlands in Ecuador showing sedge, cushion, and grass tropical alpine peatland types; and bottom row: photos of
peatlands in boreal Canada showing an open fen, treed fen, and wooded bog.
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2010), and potentially as high as 728 Gt C when including the most recent tropical estimates (z88.6 Gt C from Page et al., 2011).
This slightly surpasses that of estimated global vegetation (z560 Gt C) and is slightly less than that of C in the atmosphere
(z850 Gt C from IPCC, 2013; Turetsky et al., 2015). Of global peatlands, northern hemisphere peatlands have been estimated
to contain around 89% of C stocks while tropical peatlands are estimated to contain 8%, and southern hemisphere (nontropical)
peatlands 2% of C stocks (Yu et al., 2010). However, newer studies have found tropical peatlands may contain up to 19% of the
global peatland stocks (Page et al., 2011). Although boreal peatlands store more carbon in total, tropical peatlands store more
carbon stocks per area (Donato et al., 2011).

Accurate measurements of peatland carbon storage are dependent upon several key variables: the volume of peat, as a function of
the area and depth of peatland; the bulk density of peat (dry peat mass per cm3); and the carbon concentration of peat. Inaccuracies
arise in peatland C stock estimates due to uncertainties in defining peatlands and their spatial extents, heterogeneous peat depths
(Bauer et al., 2003; Fyfe et al., 2014), variable bulk density (Clymo et al., 1998; Turunen et al., 2002), and differences in carbon
concentrations (Chimner et al., 2014). Throughout northern peatlands, mean peat C concentration is �47%, and ranges from
30% to 60% with the lowest C concentrations in Sphagnum peat and highest values in herbaceous and woody peat (Loisel et al.,
2014). Peat carbon concentration from lowland tropical peatlands generally ranges from 40% to 62% with a mean of 54% C
(Page et al., 2011). High-elevation cushion plant dominated tropical peatlands in the Ecuadorian Andes were lower, with values
ranging from 14% to 36% C (Chimner and Karberg, 2008). Bulk density and carbon concentrations can vary considerably both
along a depth profile and along horizontal gradients.

Throughout the duration of the Holocene peatlands have been a considerable carbon sink (Charman et al., 2013). Long-term
rates of C accumulation during the Holocene are 18.6 g m�2 yr�1 for northern peatlands, 12.8 g m�2 yr�1 for tropical peatlands,
and 22.0 g m�2 yr�1 for southern peatlands (Yu et al., 2010). In addition to accumulating and storing large stocks of carbon, the
vegetative inputs to peat contain nitrogen as well, indicating that peatlands also sequester a significant amount of global nitrogen.
Estimates of northern peatland nitrogen storage are 10–13 Gt N (Moore et al., 2005; Loisel et al., 2014), around 9–16% of the
global nitrogen pool (Limpens et al., 2006). Numbers of this magnitude suggest that peatlands have a significant role in the global
nitrogen cycle as well, and could even limit nitrogen availability globally (McLauchlan et al., 2015; Loisel et al., 2014).

6.04.1.5 Biodiversity in Peatlands

In addition to acting as global carbon sinks, peatlands also offer habitat to a variety of flora and fauna. Compared to other peatland
types, tropical peat swamp forests have the greatest diversity of flora. Between 30 and 122 different tree species greater than 10 cm in
diameter have been recorded in Southeast Asian peat swamp forests (Posa et al., 2011). Yule (2010) highlights the diversity of fish,
aquatic invertebrates and flora, and the interesting adaptations of terrestrial flora to these extreme environments. Notably, several
large vertebrates are using these ecosystems as a refuge from regional disturbances, including elephants, tapirs, several wild cats,
orangutans, proboscis monkeys, and rhinoceros (Yule, 2010).

Peatlands offer a great variety of habitats due to their internal diversity and a diversity of birds can be found throughout peat-
lands depending on forest cover (Kouki et al., 1992). This internal diversity provides a beneficial space for species that need different
environments to complete their lifecycle, such as a carabid beetle living on top of the dry hummocks of boreal peatlands in the
winter and in the damp Sphagnum lawns in the summer (Främbs, 1994). Woodland caribou in Canada have been found to prefer
peatland habitats over other land types, perhaps as a refuge from predators (Rettie and Messier, 2000). Amphibians, reptiles, birds,
and arthropods inhabit peatlands but are affected by the presence of pools, nutrient availability, acidity, and soil drainage
(Smits et al., 2002; Poulin et al., 1999; Mazerolle, 2001). The diversity of microhabitats in peatlands increases with size, so larger
peatlands tend to be more species-rich (Calmé and Desrochers, 2000).

6.04.1.6 Threats to Peatlands

As we, and the planet, accelerate from the Holocene to the Anthropocene, many critical changes can be expected to the functional
systems of the Earth (Steffen et al., 2007). Arctic and boreal regions, where the bulk of peatlands exist, have been and are predicted
to continue to be among the areas most strongly affected by rising temperatures and also changes in precipitation (Chapin et al.,
2000; Meehl et al., 2007; IPCC, 2014). The close relationship of water to the functioning of peatlands makes them particularly
vulnerable to rapidly changing climatic regimes and disturbances that may significantly alter the water table such as wildfire and
land use change. Frolking et al. (2011) predict that the most significant climate impacts on peatlands will be water drainage, partic-
ularly in the tropics, while thawing of permafrost and increased fire intensity and frequency will be a threat in the boreal as a result
of both drier conditions and drainage. There are numerous other threats facing existing peatlands, including peat extraction, forest
cutting, road construction, reservoir creation, oil sands mining, pollution, clear-cutting, and land-use change.

The draining of peatlands results in considerable emissions of CO2 and N2O and has been particularly exemplified in Southeast
Asia (Joosten, 2009). The lowering of the water table increases the exposure of accumulated peat to aerobic environments resulting
in more rapid decomposition, though the long-term effects are difficult to predict (Laiho, 2006). In Southeast Asia, peatlands
converted to Acacia and oil palm farms have resulted in considerable peat oxidation and subsidence, and subsequent large carbon
emissions (Hooijer et al., 2012).

The thawing of permafrost results in the exposure of previously preserved peat to microbial decomposition resulting in carbon
release, which may create positive feedback CO2-mediated rising temperatures (Schuur et al., 2008; Dorrepaal et al., 2009). The
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precise future carbon balance of warming permafrost peatlands remains unknown, yet they remain exceptionally sensitive to
continuing changes in the climate (Turetsky et al., 2007). Within the entirety of the northern circumpolar permafrost region, it
has been estimated that up to 50% of the belowground soil organic C pool is harbored (Tarnocai et al., 2009).

Wildfire is a common disturbance in some peatlands and temporarily changes peatlands from C sinks to sources (Wieder et al.,
2009), yet large peat C stocks stored at depth have been protected from burning by saturated conditions (Turetsky et al., 2015).
However, as a result of drying from climate change, wildfires are expected to become more frequent and more intense, and coupled
with lower water levels, deeper stores of peat could be vulnerable to burning (Turetsky et al., 2015). Furthermore, particulate matter
from peat fires has a negative impact on air quality, which has detrimental effects on human health (See et al., 2007).

Peatlands in tropical regions have been rapidly converted for timber production as well as agricultural products such as palm oil
(Koh et al., 2009), which has resulted in increased fires (Cochrane, 2003), drainage (Hooijer et al., 2012), and deforestation
(Miettinen et al., 2011). Changes such as these have resulted in large quantities of carbon released to the atmosphere and highlight
the importance of the carbon storage in peatlands (Van der Werf et al., 2009; Page et al., 2011).

The persistence of peatlands as a carbon sink depends on the simple balance of primary production exceeding that of decom-
position and losses from wildfire, disturbance, or dissolved carbon export, although these processes are dependent on numerous
interacting factors. Comprehensive models predict that globally peatlands may continue to act as a C sink, but these models
have considerable uncertainty (Charman et al., 2013). Remote sensing provides a method for mapping the existing peatland distri-
bution andmonitoring changes through time, including successional trends, as well as climatic and anthropogenic-induced change.

6.04.2 Review of Peatland Mapping Approaches

In general, wetlands are difficult to map and monitor using optical imagery alone, especially when they are covered by a closed
canopy of vegetation (Wieder et al., 2006) or embedded in complex steeply sloping mountain terrain. Synthetic aperture radar
(SAR) microwave energy is capable of penetrating a forest canopy and detecting inundated or wet soils beneath the vegetation,
thus improving wetland mapping capability, particularly when combined with optical imagery. SAR is an active sensor, emitting
microwave radiation and measuring the energy backscattered from the elements being imaged (e.g., wetland plants). LiDAR (light
detection and ranging) data have also been used to detect water beneath a canopy using the intensity of the return (Lang, 2009). In
addition, others have used LiDAR-derived DEM products to detect wetland depressions (Wu et al., 2014; Bourgeau-Chavez et al.,
2016). More and more, researchers have been utilizing multiple sensors (thermal, optical, LiDAR, and SAR), ancillary datasets (e.g.,
DEM, and precipitation), and multiple seasons of imagery to better detect wetlands. The use of sensor fusion techniques across mul-
tiseasonal datasets has enabled species-specific mapping of vegetation, which is often assumed to be best detected with hyperspec-
tral data. Using multiple seasons of data allows improved discrimination of wetland types by assessing the seasonal variations in
phenology related to changes in plant structure and chlorophyll concentrations as well as seasonal patterns of inundation/soil
moisture.

Peatlands develop and persist under a complex set of interacting regional and local factors. The type of peatland that develops at
a site is a function of the specific hydrologic regime, climate, chemistry, landform, substrate, vegetation, and in high northern
latitudes the presence or absence of permafrost (Vitt, 2006). Some of these variables can be used to identify peatlands in the field
and in remotely sensed imagery (e.g. hydrologic regime, vegetation, and landform). SAR sensors have been demonstrated to be
sensitive to biomass and moisture condition of the canopy and ground layers of vegetated landscapes (Hess et al., 1995), including
peatlands (Bourgeau-Chavez et al., 2017; Hribljan et al., 2017). Because of varying moisture/flooding conditions and vegetation
structure, different wetland types have been distinguished using two or more dates of L-band (�24 cm wavelength) SAR imagery
alone without optical imagery (e.g. Clewley et al., 2015; Bourgeau-Chavez et al., 2013a, 2016; Whitcomb et al., 2009). Advanced
Land Observation System (ALOS) Phased array–type L-band synthetic aperture radar (PALSAR) is an L-band (�24 cm wavelength)
radar that orbited the earth onboard the Japanese platform from 2006 to 2011. The PALSAR sensor operated in different modes
including single, dual, and quadrature polarization. The fine beam dual (FBD) polarization data of ALOS PALSAR are considered
to be the most valuable for mapping on a regional basis due to their moderate resolution (20 m), 70 m�70 m areal coverage, and
two polarimetric channelsdhorizontal send and receive (L-HH) and horizontal send and vertical receive (L-HV). The L-HH-polar-
ized data have been found to be most useful for detection of flooding beneath a vegetation canopy (Hess et al., 1995), while L-HV is
more sensitive to differences in biomass (Bourgeau-Chavez et al., 2009). Recent wetland mapping research has demonstrated the
strength of merging PALSAR and optical data for the distinction of forested, shrubby, and herbaceous wetland types (Bourgeau-
Chavez et al., 2015b). Others have had success combining C-band (�5.7 cm) SAR and optical data (Dingle Robertson et al.,
2015; Kloiber et al., 2015) as well as C-band SAR with LiDAR data (Millard and Richardson, 2013). Several C-band satellites
have provided global data since the early 1990s (e.g., ERS, Envisat, Radarsat, Sentinel-1). This shorter wavelength is not capable
of penetrating a dense forest canopy, but is useful for low stature vegetation (e.g., herbaceous vegetation, open canopy forests)
and in the lowest biomass sites, is better than L-band at detecting moisture variation (Bourgeau-Chavez et al., 2013b).

While several researchers have developed methods for mapping wetlands from multisource imagery, peatlands represent a new
level of detection since they typically have saturated soils but are usually not inundated and they range in vegetation cover from
open to shrubby to forested. Distinguishing bogs from fens can be difficult in the field, as well as with remote sensing; however,
the landscape context can aid in distinguishing bogs from fens. Further, because microwave data are sensitive to changes in moisture
patterns the application of multidate imagery provides the potential to detect the differences in hydrologic patterns of bogs, which
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are precipitation-fed, versus fens, which are hydrologically connected to groundwater and more likely to have greater fluctuations in
water table depth, moisture and inundation over time (Bourgeau-Chavez et al., 2017).

Since different peatland types have different ecological structure, it is important to use medium (10–30 m) or high (<5 m) reso-
lution imagery to map and monitor more specific peatland types (i.e., wooded bog, open fen, etc.) and extent, and to distinguish
them from the functionally different nonpeat forming wetlands (i.e., swamp, marsh, wet meadow). The choice of resolution is
closely linked with the goal of the mapping effort, the size of the area to be mapped, and the timeliness and efficiency with which
the map is to be produced. For regional areas, creating and updating high-resolution maps on a routine basis is generally cost and
time prohibitive. Completing an area the size of boreal North America would require multiple years of effort at huge expense. There-
fore, a trade-off exists between resolution and timeliness, such that timely maps can be efficiently created at a coarser resolution over
the entire region, while high spatial resolution maps can generally be completed in the same timeframe for a subset of the area.

Mapping with coarse resolution imagery, such as 250 m or 1 km MODIS, leads to more generalized wetland classes and the
inability to distinguish most peatlands from other wetland types. For example, Gumbricht (2012) mapped global wetlands and
included a class of peat domes in the tropics but was unable to map most other peat types (note that an accuracy assessment of
this map was never performed, see Table 2). There have been various efforts to create more detailed wetland maps for small regions
of boreal Canada using aerial imagery (Vitt, 2006), LiDAR data (Chasmer et al., 2014), hyperspectral (Thomas et al., 2003), and
polarimetric C-band SAR (Touzi et al., 2007). All of these focused on single date imagery. There is an effort underway to usemedium
resolution Landsat and C-band Radarsat data (Fournier et al., 2007; Grenier et al., 2007) for nationwide wetland mapping for the
Canadian Wetland Inventory (CWI) with a minimummapping unit of 1 ha. The CWI classification system requires mapping to five
main classes (bog, fen, marsh, swamp, and shallow open water), and allows for vegetation type to be mapped in its hierarchical
system, but it does not require specific distinction of open (rich) fens from treed (poor) fens or wooded bogs. A summary of boreal
peatland mapping publications from the literature is provided in Table 1 with accuracies and whether or not they distinguished
peatlands. Whitcomb et al. (2009) and Clewley et al. (2015) (not listed in the table) both used two seasons of L-band data to
map wetlands of Alaska with high accuracy; however, they did not distinguish peatlands from other wetland types. Grenier et al.
(2007) and Li and Chen (2005) worked on developing approaches for merging Landsat and Radarsat for the CWI mapping,
and Grenier et al. had 50–100% accuracy of peatland classes and 67–76% overall accuracy, while Li and Chen had 71–92% accuracy
for peatland classes and 83% overall accuracy.

Dingle Robertson et al. (2015) and Millard and Richardson (2013) both used polarimetric Radarsat-2 data in combination with
other sources to map peatlands withmoderate success (Table 1). Polarimetric SAR refers to radar data that are collected in two orthog-
onal polarizations (generally horizontaldH and verticaldV) and the full amplitude and phase information is recorded from quad-
rature polarization (HH, HV, VH, and VV) send and receive polarizations. This mode fully characterizes the illuminated area on the
ground and allows for more information than nonpolarimetric data. Polarimetric decompositions of the data allow for understanding
the dominant scattering mechanisms and breaking down the signal into those more closely related to vegetation structure versus those
more related to surface moisture/inundation. Merchant et al. used multiangle polarimetric SAR to map peatlands using support vector

Table 1 List of reported accuracies for Boreal wetland and peatland mapping publications from the recent literature remote sensing sources and
map classifiers employed

Publication Reported accuracy Input data Classifier

Whitcomb et al. (2009) 89.5% overall peatlands not
distinguished

Summer and winter JERS L-band SAR RF

Grenier et al. (2007) 67%–76% overall
50%–100% peatland classes

Radarsat-1 C-HH and Landsat OBIA

Li and Chen (2005) 83% overall
71%–92% peatland classes

Radarsat-1 C-HH and Landsat, DEM data OBIA

Dingle Robertson et al. (2015) 70% overall
46%–90% peatland classes

WorldView-2, DEM, polarimetric Radarsat-2 OBIA

Millard and Richardson (2013) 73% Overall
50%–79% peatland classes

Polarimetric Radarsat-2 and LiDAR derivatives RF

Thompson et al. (2016) 87% overall (peatland vs.
nonpeatland)

National Forest Inventory k-NN dataset
(forest structure data), WorldClim
dataset (bioclimatic), DEM

BRT, logistic
regression

Bourgeau-Chavez et al. (2017) 93%, overall accuracy
88%–97% peatland classes

L-band PALSAR, C-band ERS, and
Landsat optical-IR thermal

RF

Knoth et al. (2013) 91% overall (bare peat,
white birch, tussock
cottongrass, sphagnum
classes mapped)

UAV-based NIR OBIA

Merchant et al. (2016) 81%–84% overall
76%–97% peatland classes

Multiincidence angle polarimetric Radarsat-2 SVM

OBIA, Object based image analysis; RF, random forests; BRT, boosted regression tree; SVM, support vector machines.
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machine (SVM) algorithmswith high accuracy, particularly for SAR alone as the source of input data. Themultiple angles also allow for
sensing different parts of the forests and vegetation as the path lengths increase with incidence angles and penetration to the ground
through the canopy decreases. All of the examples in Table 1 use state-of-the-art classifiers (OBIA, RF, BRT, and SVM).

There have been fewer peatlandmapping efforts for tropical regions, particularly alpine peatlands (Table 2). Draper et al. (2014)
used the PALSAR 50 mmosaic provided by JAXA, SRTM DEM, and Landsat data to create a map of a large portion of the Amazonia
lowlands with 64–96% accuracy for the peatland classes using a SVM classifier. All of the sources were single date imagery. Margono
et al. (2014) mapped Indonesia with single-date Landsat and PALSAR and DEM derivatives, but they conducted their accuracy
against other wetland maps, not field data. Hribljan et al. (2017) mapped tropical alpine peatlands with high accuracy
(77–96% for peatland classes) using multiseason PALSAR, Radarsat-1, and Landsat data as well as SRTM derivatives and this is
described in more detail in the next section.

Note that when comparing accuracies of these maps, some of the researchers did not use independent field data sets for valida-
tion. Margono et al. (2014) compared their maps to existing wetland maps to calculate their accuracy. In addition, unless otherwise
noted, those using random forests (RF) used the out-of-box accuracy provided by RF, which is biased because it is not an indepen-
dent source (Bourgeau-Chavez et al., 2015b; Millard and Richardson, 2015).

6.04.3 Examples of Peatland Mapping in Boreal, Alpine, and Tropical Regions

In this article, we present three examples of using a combination of multidate optical and SAR imagery to map peatlands in (1)
boreal Alberta, Canada; (2) alpine peatlands of Ecuador; and (3) tropical lowlands of Peru. Common to all of these examples is
the use of the machine learning classifier, RF (Brieman, 2001) and two or three dates of Landsat and SAR imagery from L-band
PALSAR. C-band SAR data are also used in the first two examples and SRTMDEM derivatives are used in the tropical peatland exam-
ples. RF is considered to be a state-of-the-art machine learning classifier. It is a robust method that can be applied to large areas with
consistency. RF consists of multiple decision trees generated from a random subset of input training data and bands. Once the forest
of decision trees is created, an individual pixel’s classification is determined by which class receives the most “votes” across all deci-
sion trees. One advantage of the algorithm is that it can easily handle missing attributes, such as cloud-obscured pixels, as decision
trees built without the missing attributes can be used to classify the compromised data.

In all cases, the RF approaches relied on field data for training and validation, and air photo or high-resolution satellite image
interpretation using the seven elements of image interpretation (tone, texture, shape, shadow, association, size, pattern, Olson,
1960) to scale the field plots from the minimum mapping unit (0.2 ha in all cases) to create larger training polygons for input
to RF. A schematic of the approach is presented in Fig. 2. For the first two test cases, training data were collected for each PALSAR
frame and the mapped areas were divided by these frames (including Landsat data which have a larger footprint) and run through
RF andmosaicked postclassification. This approach was used because the effects of rain or drying on SAR backscatter are great, there-
fore remote sensing training data from one frame cannot be readily used in an adjacent frame unless similar environmental condi-
tions existed in each. However, for the third case study, lowlands of Peru, field data were limited and methods for mosaicking
adjacent frames and methods to normalize the scenes to one another were necessary. Further research in using various approaches
to normalizing adjacent scenes or creating super forests of field data are underway to streamline the classification process. For this
third example, a preliminary map is shown in this article as research continues and additional field data are gathered.

6.04.3.1 Field Data Collection

Critical to all map classifications is quality field data collected at the appropriate scale (mmu) for training and validation of the
maps. All field data collections should follow a protocol based on the minimum mapping unit that is related to the spatial

Table 2 List of reported accuracies, remote sensing sources, and map classifiers employed for tropical wetland and peatland mapping publications
from the recent literature

Publication Reported accuracy Input data Classifier

Draper et al. (2014) 64%–96% peatland classes
95.4% overall

Landsat, ALOS PALSAR, and SRTM SVM

Hribljan et al. (2017) 77%–96% peatland classes
90% overall

Multitemporal Landsat TM/PALSAR/
RADARSAT-1/TPI

Random forestsdindependent
validation sites

Evans and Costa (2012) 81% overall peatlands not
distinguished

Multi-temporal L-band PALSAR,
RADARSAT-2, and ENVISAT/ASAR

OBIA

Margono et al. (2014) 89% overall compared to other maps
Peatlands not distinguished

Landsat, SRTM, and PALSAR bagged classification
tree model

Gumbricht (2012) Not reported
Tropical peat domes distinguished

MODIS, MERIS (Globcover),
SRTM, soils, precipitation

Spectral angle mapper

OBIA, object based image analysis; SVM, support vector machine.
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resolution of the sensors. For SAR, spatial averaging and/or speckle filtering needs to be applied to correct for the inherent speckle
noise. This is due to the coherent nature of the SAR systems and results in bright and dark adjacent pixels, a sort of “salt and pepper”
effect. Therefore, a single pixel of SAR data cannot be used to relate to field variables, instead, a group of pixels must be averaged or
otherwise filtered to reduce speckle. For medium-resolution sensors (10–20 m), we use 0.2 ha as the minimum mapping unit
(mmu). This allows for 3�3 window speckle filtering of the 12.5 m pixel spacing of the SAR data (�37.5 m�37.5 m). The corre-
sponding field data are then collected in 40 m�50 m plots which approximate the mmu.

The protocol for selection of sites to sample in the field consisted of systematic and/or random sampling within the regions of
interest. Ideally, locations of somewhat homogeneous cover (an example of treed vs. open fen shown in Fig. 3) are randomly

Fig. 2 Schematic diagram showing the approach used in the article to map peatlands from a combination of SAR and optical multidate imagery
using the machine learning classifier RF trained with field collected/aerial image interpreted polygon data.

Fig. 3 Field sampling plot (red box) shown in relation to the 1-m resolution aerial imagery (NAIP), 20-m resolution PALSAR, 30-m resolution Land-
sat, and the classified map (after Bourgeau-Chavez et al., 2017). The red box shows field-measured plots of 40 m � 50 m, the black dots are the
centers of the plots. The black-outlined polygons are examples of air photo interpreted areas used for training the RF classifier.
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sampled. However, complete random sampling may result in few actual wetland sites of interest being sampled. Therefore,
a previous map of a region or quick interpretation of Google Earth imagery may help to constrain the areas sampled and then
random sampling within the regions may be applied, noting that there may be constraints on distance from roads, waterways or
other methods for reaching a site. For the first two example studies presented in this article, a field area such as represented by
the red box of Fig. 3 (40�50 m) was characterized, the black dot represents the central GPS location that would be collected along
with field photos in each cardinal direction (N, S, E, and W) as well as a nadir photo. Once at a preselected field location, a homo-
geneous area of 0.2 ha was characterized. The field data collected in addition to photos included GPS location, characterization of
the wetland type (bog, fen, marsh, swamp, upland), species diversity, dominant species composition, moisture status (inundated,
soggy, moist, dry), height and density of the vegetation, and peat depth. Vegetation indicators and water chemistry can also be used
in the field to aid in distinguishing bogs from fens. In addition, hand drawing of maps on the field sheet and delineations of unique
vegetation types and species transition areas within wetland complexes were transcribed onto laminated aerial photographs.
Included in those delineations was the larger extent of the particular cover type in the laminated aerial image of the area.

Fig. 3 shows how the field and 1 m air photo compares to the resolution of Landsat and in this case 20�20 m resolution PAL-
SAR, and finally how that looks in the final map classification conducted for peatlands of the Great Lakes (Bourgeau-Chavez et al.,
2017). Field data collection at the minimum mapping unit (0.2 ha) was crucial to training the satellite data for mapping peatland
classes and for validation of final products. The field data collected were used in developing training and validation polygons for
classification and accuracy assessment. Navigation to each site in the remote regions of Alberta, Canada, and Ecuador was some-
times difficult, requiring traversing difficult landscapes by foot or all terrain vehicle, or by boat across rivers and lakes. Some of
the data used for the Peru lowland mapping were also collected with this protocol, but because of the remoteness of this region
and the logistical difficulties of field data in this region, data from other sources were also used in this mapping (e.g. Draper
et al., 2014; Lähteenoja et al., 2009).

6.04.3.2 Training Data and Air Photo Interpretation

Training and validation polygons were interpreted by an image analyst through the use of field data and air photos to use as input to
RF. Black and white infrared aerial photography was acquired in GeoTIFF format from the Alberta Environment and Sustainable
Resource Development Ministry. The black and white infrared aerial photography allows for better distinction of tone and texture
for peatland delineation. Fig. 4 is an example of the photography used for delineation with polygons that were interpreted from the
field data and aerial photography for Alberta Canada. Areas with smooth texture tend to be wetlands. Within the smooth texture
areas, the darker toned areas tend to have more black spruce whereas the lighter regions tend to be more open. For the tropical
regions, imagery available on Google Earth and WorldView-2 data were used when available. In all cases, the amount of training
data created per class was proportional to the area of that class for each region. This is a necessity for RF classification (Millard and
Richardson, 2015).

6.04.3.3 Accuracy Assessment

To create a robust validation dataset for each of the peatland type maps, training polygons which were equivalent to approximately
20% of the total polygon area of each class were withheld from the classifications and reserved for validation. Whole polygons and
not partial polygons were reserved. Polygons created from field data were automatically withheld, and the remaining polygons were
randomly selected. This approach was used because the out-of-box validation of RF does not represent an independent dataset for
validation (Bourgeau-Chavez et al., 2015b; Millard and Richardson, 2015). The accuracy assessments included producer’s accuracy,
which is a measure of how accurately the analyst classified the image data (errors of omission¼100dproducer’s accuracy) and
user’s accuracy, which is a measure of how accurately a classification performed in the field (errors of commission¼100duser’s
accuracy) (Congalton and Green, 1999; Congalton and Green, 2008).

6.04.3.4 Boreal Peatland Mapping

The primary study area for developing the boreal peatland mapping approach was located in northeastern Alberta, Canada approx-
imately 175 km north of Edmonton (Fig. 5). This region falls within the extensive low-lying valleys and plains of the Boreal Plains
Ecozone and contains extensive peatland complexes (>30%) intermixed with uplands. This ecozone extends from Manitoba and
Saskatchewan through nearly two-thirds of Alberta (Fig. 5 inset). The Alberta study area is permafrost-free and represents a mosaic
of upland and lowland ecosystems including swamp, fen, bog, and marsh. The peatlands were dominated by black spruce (Picea
mariana) bogs, open sedge fens and Larix laricina and Picea mariana treed fens. Hydrologic and water chemistry differences between
boreal bogs, treed fens (poor), and open sedge/herb (rich) fens give rise to different plant community composition (Vitt and Chee,
1990). It is important to distinguish these different types, both fen versus bog and plant composition because the differences in
hydrology and biomass result in different fire behavior and fuel consumption, which is the main threat to boreal peatlands in
this region. Methods for mapping North American boreal peatlands (Bourgeau-Chavez et al., 2009, 2015b, 2017) were developed
and refined using a merging of multiseason Landsat (optical/thermal) and multiseason L-band (PALSAR) and C-band (e.g. ERS)
SAR data. Extensive field data were collected over a four-year period, resulting in 350 field locations (0.2 ha locations) for use as
training or validation. These were supplemented with training polygons interpreted from aerial images as described above.
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Fig. 4 Black and white infrared aerial imagery of Alberta Canada (from the Alberta Environment and Sustainable Resource Development Ministry)
was used to create training polygons of different peatland types based on field data and image interpretation.

Fig. 5 Map of peatlands in Alberta Canada based on multidate PALSAR and Landsat imagery using the RF classifier (after Bourgeau-Chavez et al.,
2017). Old burned areas (preimage collection) are masked out since they are regenerating areas that were not sampled in the field or trained in RF.
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SAR HH polarization allows the differentiation of the hydrological differences between bogs and fens, while optical/thermal
cross validates wet condition and aids in the differentiation of covertype along with SAR HV polarization which is sensitive to
biomass (Bourgeau-Chavez et al., 2009, 2015b, 2017). A comparison of Landsat to PALSAR for a peatland-rich subarea of Alberta
near Wabasca is shown in Fig. 6 along with the classified map of this area. This figure provides a look at the imagery and how bogs,
treed, and open fens, as well as swamps and marshes appear in comparison to upland conifer and deciduous ecosystems.

Although Bourgeau-Chavez et al. (2017) tested several mapping algorithms (including eCognition object-based image analysis,
maximum likelihood classifiers, thresholding, and RF), the machine learning (RF) classifier was found to be more efficient, consis-
tent, and repeatable between image analysts. A schematic of the RF mapping process is presented in Fig. 2. This approach takes
advantage of the field data and scaling with air photo interpretation to improve the quantity of training data for input to RF. RF
was used to map four peatland-rich study regions of the Alberta Canada region with a total area of 3,384,890 ha (Fig. 5). The overall
map accuracy was 93%, with all peatland classes having greater than 88% accuracy and all other classes having 75% or greater accu-
racy. Note that the dark-red areas are older fire scars. These areas burned before the imagery was collected and are in a state of regen-
eration. These were not a focus of study and were masked out. To map the regenerating types, field data would need to be collected
within these various burned areas to develop appropriate training data. This will be a focus of future work.

To determine the improvement in using the multiseason and multisensor dataset, a subset of the full map (Wabasca study area
Fig. 5) was employed in a comparison study. The Wabasca study area classified through RF first using a single date of Landsat
Summer data only, then Summer Landsat and SAR imagery, and lastly using the full multidate Landsat and SAR dataset to deter-
mine the statistical improvement, if any, in themapping accuracy. The results are in Table 3which demonstrate that using the multi-
date data from both optical and radar sensors improves the statistical accuracy for all peatland classes with the exception of the

Fig. 6 False color composite of Landsat 5 bands 4, 3, 2 from September 2009 (left); PALSAR false color composite of July 2007 HH and HV and
August 2007 HH polarization (center); and the resulting RF classified map (right) of a subsetted area of the map in Fig. 5.

Table 3 Comparison of accuracy statistics for Wabasca study area using random forests
(RF) for (A) summer Landsat-only vs. (B) summer SAR-Landsat; and (C) multidate SAR-Landsat

Class

(A) Summer

Landsat-only

(B) Summer

SAR Landsat

(C) Multidate

SAR Landsat

UA PA UA PA UA PA

Water 100 100 100 100 100 100
Wooded bog 68 73 74 75 99 98
Treed fen 62 64 57 76 88 77
Open fen 83 88 84 85 80 93

All RF runs included the thermal channel. Terms are user’s accuracy (UA) and producer’s accuracy (PA). After
Bourgeau-Chavez et al. (2017).
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User’s accuracy for open fen, which stays about the same (80–84%). User’s accuracy improves for wooded bog from 68% to 99%
accuracy and treed fen from 62% to 88% when multidate, multisensor data are used (Table 3). Similar improvements were made in
producer’s accuracy for the forested sites, with wooded bog improving from 73% to 98% and treed fen from 64% to 77% (Table 3).

This mapping approach was also applied to an area of the southernmost extent of the North American boreal forest, Michigan’s
Upper Peninsula (Bourgeau-Chavez et al., 2017) with 94% overall accuracy and peatland accuracy of 63–84%. In this case, the
shrubby fens were being confused in some instances with the treed fens. The open fens sometimes have trees but are defined as
having <6% canopy cover. Treed fens are classed with >6–70% trees, which is a wide range. When shrubby and treed fens are
combined into a woody fen class the accuracy increases to 91% producer’s accuracy and 86% user’s accuracy. The peatlands of Mich-
igan are much smaller and dominated by fens (open, shrubby and treed) with very few bogs in comparison to Alberta Canada, but
Michigan’s Upper Peninsula has many more swamps and marshes. Currently, peatland mapping of Northwest Territories Canada is
also underway using this methodology (Fig. 2), in a permafrost-rich region of the taiga shield and taiga plains. This multisensor,
multidate RF classification approach is thus suitable to mapping peatlands across a wide range of boreal landscapes.

The medium-resolution boreal peatland maps are allowing research to assess the vulnerability of peatlands to wild land fire.
Through comparison of the spatial distribution of peat types with maps of burn severity, it has been determined that bogs are
burning in Alberta with as much or more consumption than uplands in several cases. Fens are generally wetter and are burning
less severely in the spring fires that are affecting northern Alberta in the 2009–2011 time frame. A long-term study of these mapped
peatlands through the SAR satellite record is allowing for analysis of variations in soil moisture from the early 1990s, which shows
many of them becoming drier through time, making them more susceptible to deeper burning.

6.04.3.5 Alpine Peatland Mapping

There has been a more limited mapping of alpine peatlands than lowland boreal and tropical peatlands. Alpine peatlands are chal-
lenging to map because they are commonly small and often intermixed with other wetland types (Eva et al., 2004; Anaya et al.,
2015). Furthermore, some mountain ranges have persistent cloud cover making it difficult to obtain cloud-free images (Anaya
et al., 2015). In addition, nonpeatland areas can be floristically similar to the peatlands and are hence hard to differentiate
when only using optical sensors. SAR data can be beneficial to alpine peatland mapping because of the ability to detect moisture
and biomass variations. Some Alpine areas, including the páramo study area, are also challenging for SAR because the nonpeatland
areas are also wet most of the year. A multisensor SAR-optical approach had not yet been applied to alpine peatlands, in part
because of the complex topography of most alpine landscapes which can cause excessive distortions of the SAR signals (e.g., layover,
fore-shortening) and must be corrected (Atwood et al., 2014). The multidate, multisensor SAR and optical approach shown to be
useful in boreal peatlands by Bourgeau-Chavez et al. (2017) was therefore applied to the páramo region of the Andes in north-
eastern Ecuador to test its suitability (Hribljan et al., 2017).

The páramo contains a diverse range of ecosystem types including extensive well-drained grasslands, scrubland, high Andean
forests, and peatlands (Hofstede et al., 2003). Three distinct types of peatlands were identified in this region; cushion, grass, and
sedge peatlands. Cushion peatlands are poorly drained areas clearly dominated by the conspicuous cushion and matt-forming
species (Distichia spp., Plantago rigida, Disterigma empetrifolium, Oreobolus ecuadoriensis). Cushion plants are usually<10 cm tall.
Grass peatlands are poorly drained areas structurally dominated by a matrix of grasses (Cortaderia sericantha, C. nitida, Festuca
spp.), a sparse layer of shrubs (e.g., Loricaria sp., and Hypericum lancioides) and a rich herb layer (e.g., Niphogeton sp., Huperzia
spp., Gunnera maguellanica and Hypochaeris spp.). Sedge peatlands are poorly drained areas dominated by a dense matrix of several
species of Cyperaceae (e.g., Carex spp., Uncinia, spp. Eleocharis spp.) and a sparse layer of herbs and mosses might be present (e.g.,
Niphogeton sp., Gunnera maguellanica). Extensive field surveys aided in estimating mountain peatland spatial extent in this chal-
lenging alpine environment. The field data collection resulted in 91 field sites including 22 cushion peatlands, 41 grass peatlands,
10 sedge peatlands, and 28 upland sites. High resolution satellite imagery (e.g. Worldview-2) was used to expand these field data to
create additional training data through image interpretation.

Since the páramo was dominated by nontreed peatlands, two different wavelengths of SAR data were used: L-band from ALOS
PALSAR and C-band from RADARSAT-1. The shorter wavelength of C-band (�5.7 cm) has been found as more suitable to detect
changes in moisture in low stature vegetated sites (Bourgeau-Chavez et al., 2013b). In addition, optical imagery combined with
digital elevation model (DEM) data were used. Landsat data provide information on vegetation type and wetness to some degree
in these low-stature vegetated systems and SAR provides information on hydrological characteristics of wetlands and vegetation
structure. Due to the large topographic variation in the study area, it was important to include DEM data for accurate terrain correc-
tion of the imagery and for topographic analysis. We used SRTM data filled with ASTER DEM data. In addition, a topographic posi-
tion index (TPI), derived from the DEM data, was included to inform the classifier about landform and slope position, identifying
low-lying conditions suitable for peat development. Using multiple dates of imagery allows the capture of phenological differences
between plant species and differences in hydrology among seasons, further improving peatland differentiation. The multisource
multidate map is presented in Fig. 7. To determine the importance of the different input data sources a comparison of different
band combinations was completed. The RF classifier was run with the same supervised training data set and in all cases multi-
date data to evaluate the performance of (1) Landsat alone; (2) Landsat and TPI; (3) Landsat and Radarsat; (4) Landsat, Radarsat
and TPI; (5) Landsat/PALSAR/Radarsat and TPI; and (6) PALSAR Radarsat, and TPI. This allowed for comparing SAR only, in this
often cloud-covered environment, and Landsat-only, which is often used alone in map applications, as well as combinations of the
data sources.
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Results of the statistical comparison of the different data sources showed that using PALSAR/Radarsat/TPI (Fig. 8) without
optical data had less than desirable results, with only 61% overall accuracy and low peatland class accuracies ranging from 48%
to 81%. This was disappointing because it would be useful to be able to use SAR from multiple dates and sources in this often
cloud-covered location. Polarimetric SAR may provide improvements as described earlier, and they should be evaluated. Next,
the Landsat-only map had a fairly high overall accuracy of 86%; however, there was a moderate error in distinguishing between
the peatland classes (Table 4, Fig. 8). Adding multidate Radarsat into the classifier (Table 4, Fig. 8) slightly improved the overall
accuracy (87%), especially for grass peatlands. There was, however, a slight drop in cushion peatland accuracy. When TPI was also
used in the mapping (Table 4), overall accuracy remained the same, but there was a further improvement in the user’s accuracy for
all peatland classes, as well as an increase in producer’s accuracy for grass peatland. The producer’s accuracy for sedge and cushion
peatland dropped slightly. When Landsat/Radarsat/PALSAR/TPI (Table 4, Fig. 8) were used together, the overall accuracy was the
greatest at 90%, and the individual peatland class accuracies increased or stayed the same for all classes except the producer’s accu-
racy for cushion peatland, which decreased slightly to 80%.

In comparing the different input data sources for mapping, it is important to also look at the maps themselves and not just
review the statistics on accuracy. Fig. 8 shows a comparison of the map from Landsat alone, Landsat and Radarsat, SAR and TPI
(Radarsat, PALSAR, and TPI) and the multidate, multisensor Landsat, Radarsat, PALSAR, and TPI. While the overall accuracy of
all but the SAR-TPI classification had 86–90% accuracy, the map products vary. Landsat is a workhorse in mapping landcover,
but in distinguishing wetlands and peatlands it falls short. Although the Landsat-only map (Fig. 7) does a great job at distinguishing
many of the upland classes, it greatly overestimates a number of peatlands, especially the sedge peatland class, probably due to the
fact that the vegetation in the nonpeatland shrubby and open areas was quite similar to the peatland vegetation. In contrast, the
SAR/TPI map was underestimating the area of peatland in much of the map, likely because the hydrology of the nonpeatlands

Fig. 7 Ecuador alpine peatland map of a 5500 km2 study area based on multidate, multisensor Landsat, PALSAR, Radarsat-1, and TPI (after
Hribljan et al. 2017). Mapping area below 3500 masl is grayed out. Upper left inset shows the mapped area location.
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is also sometimes wet and thus difficult to distinguish with SAR alone and it often falls short without the aid of optical imagery to
detect the vegetation type differences. While in other areas the SAR/TPI was overestimating the peatland area (e.g. in the steepest
terrain), it is the synergy of the SAR (which is sensing backscatter differences due to hydrology) and Landsat (that is sensing the
vegetation types) that allows for an improved distinction of peatland types. The C-band Radarsat HH polarization imagery was
of higher importance than PALSAR for distinguishing the peatland types, but adding the L-band PALSAR data (HH and HV)
into the classification refined the accuracy of nearly all of the map classes (Table 4).

The multidate Landsat/Radarsat/PALSAR/TPI map had an overall accuracy of 90%. This map shows 48,218 ha of peatland,
which represents 17.8% of our páramo study area. Overall, the accuracy of this method for distinguishing peatlands from nonpeat-
lands was very high: the combined peatland classes in this map had user’s and producer’s accuracy of 95%. This was so high because
many of the classification errors were among peatland vegetation classes.

Fig. 8 Comparison of random forests classified maps using Landsat (top left); SAR (PALSAR and Radarsat-1) and TPI (top right); Landsat and
Radarsat-1 (bottom left); and all layers (Landsat, Radarsat, PALSAR, and TPI, after Hribljan et al., 2017). Multidate data were used in all cases to
create the classified maps.

Table 4 Comparison of user’s accuracy (UA) and producer’s accuracy (PA) for peatland classes of five different RF classifications of the paramo of
Ecuador using Landsat; Landsat and Radarsat; Landsat, Radarsat, and TPI; Landsat, Radarsat, PALSAR, and TPI; and PALSAR, Radarsat, and TPI

Class

Landsat only Landsat-Radarsat

Landsat-Radarsat-

TPI

Landsat-Radarsat-

PALSAR-TPI

PALSAR-Radarsat-

TPI

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Sedge peatland 89 81 92 86 94 83 94 86 70 54
Cushion peatland 93 85 92 83 93 81 95 80 81 55
Grass peatland 68 87 72 90 74 93 77 96 54 48
Overall accuracy 86 87 87 90 61

After Hribjlan et al. (2017).
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6.04.3.5.1 Peatland coverage in the Ecuadorian Páramo
This multidate, multisensor map (Fig. 6) provides the first estimate of regional peatland coverage and combined with field sampling
of peat cores, C storage in the Andean páramo. We detected 482 km2 of peatlands across our mapping region, an increase
of�3.4�and 23.7�over the previous mapping efforts of Beltrán et al. (2009) and the Ecuadorian Ministry of the Environment
(MAE) (http://mapainteractivo.ambiente.gob.ec/), respectively. Our results highlight peatlands as an important feature of the
high-altitude páramo environment. Moreover, the current mapping products are the only products available in Ecuador to inform
environmental policy and ecosystem management. This is a critical concern for Ecuadorian land managers that are in need of high-
quality baseline mapping data to define sustainable land use practices and prioritize restoration activities in the rapidly changing
páramo landscape.

6.04.3.6 Tropical Lowland Peatland Mapping

The final case study presented focuses on a very large remote peatland complex in Amazonia Peru covering 176,000 km2 and span-
ning 68 PALSAR scenes. This region is very remote and difficult to access and, currently, there are limited field data available. The
landscape is a mosaic of uplands and wetlands, both peat forming (open peatland that is dominated by herbs, palm swamps, and
pole forest peatlands) and nonpeat forming (seasonally flooded forest and occasionally flooded forest). Through synthesis of field
data from multiple sources, a total of 359 field locations were compiled and grouped into like classes. The field data were located
primarily in the eastern part of the study area along roads and rivers. Many of the points consisted of transect data with multiple
points in one complex. These points were grouped to form single training polygons which further reduced the number of field
training locations. Since the field data are not distributed equally across the study area, mapping by PALSAR scene as was done
in the previous two examples would be impossible. Therefore, new mosaicking methods were tested for classifying peatlands in
this large area with limited field data. These methods included matching images from similar seasons/moisture conditions and
using principal component analysis (PCA) to find the dominant features.

In addition, precipitation data were used to select a set of wet and dry season images from the PALSAR database for creating two
mosaics, one for each season. The same years and similar dates were chosen when possible and then dates with similar moisture
were mosaicked for each season (wet and dry). A PCA was also used based on the input of all available temporal PALSAR data (�10
dates per scene). PCA is a multivariate statistical technique to identify dominant spatial and temporal backscatter signatures. We
found band one to be useful in identifying consistent patterns across scenes, and this was used along with the mosaicks of
wet and dry season data in the RF layer stack. Cloud-free Landsat was very limited for this area and similar dates were not available
across the study area. We, therefore, used the circa 2000 Landsat 7 cloud-free composite created by Hansen et al. (2013) for Peru.
Another Landsat composite existed for circa 2014 but it was abandoned due to the striping over the study area (Landsat 7). The
cloud-free 2000 image composite included Landsat bands 3 (red), 4 (NIR), 5 (SWIR), and 7 (SWIR).

In this lowland tropical area, peatland doming occurs so DEM data were also included to try to capture these features. A TPI was
derived from the SRTM to help differentiate peatland doming from uplands.

The preliminary map (Fig. 9) had high individual class accuracy, especially for peatlands (78–99% accuracy) and the map had
an overall accuracy of 93%. A comparison of this map based on single-date Landsat, dry season PALSAR, wet season PALSAR, PAL-
SAR PC1, and SRTM TPI was made to the layers used by Draper et al. (2014) which included one date of Landsat, SRTM and one
date of PALSAR (which appears to be from the dry season, but is not reported). The map using the Draper remote sensing layers in
RF had a similar accuracy table to what was reported in the 2014 article (64–96% accuracy for peatland classesdnote that Draper
used SVM, not RF). In comparison, the multidate SAR-optical-DEM map showed improvement in statistical accuracy for many of
the peatland classes. Since the multidate SAR-optical-DEM approach included a wet season PALSAR mosaic, it appears to pick up
much more seasonally flooded forests (light green of Fig. 9), which may be inaccurate. This map is preliminary and work continues
to improve it through additional field training data and removal of inappropriate training data (such as polygons that straddle two
or more classes). Millard and Richardson (2015) found a selection of training data and input variables to have a strong influence on
the overall accuracy of RF classification. It is important to have the proportion of training data mimic the proportion on the land-
scape for RF since it is highly sensitive to the size of the training dataset (Millard and Richardson, 2015). This is difficult to accom-
plish in such a remote location where most of the field data were collected in a small portion of the map area. This preliminary map
is currently under review by the team, including regional experts who have a great deal of experience on the landscape. This is an
important step in developing an accurate map, because statistics may show the map as highly accurate, but it may not be represen-
tative of the landscape as a whole.

6.04.4 Summary and Future Research

Peatlands are just one of many ecosystems experiencing a rapidly changing environment. Changes to peatlands occur as a result of
both anthropogenic (e.g., agriculture conversion, drainage, mining) and climatic (e.g., permafrost thaw, increased fire intensity and
frequency) effects. While these changes unfold remote sensing offers the ability to monitor these changes at broad scales and capture
the resulting impacts.
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Table 5 Accuracy assessment for the tropical lowland map of Peru peatlands created from multidate PALSAR, SRTM, and one date of Landsat

Mapped classes

Reference ground truth classes

Urban/

barren Water

Open

peatland

Palm swamp

peatland

Pole forest

peatland

Seasonally

flooded forest

Occasionally

flooded forest Sum

Commission

error (%)

User

Acc. (%)

Urban/barren 208 0 0 0 0 0 0 208 0 100
Water 0 199 0 0 0 0 0 199 0 100
Open peatland 3 0 191 15 0 0 0 209 8.6 91.4
Palm swamp

peatland
0 0 0 158 1 4 0 163 3.1 96.9

Pole forest
peatland

0 0 3 5 205 28 3 244 16 84

Seasonally
flooded forest

1 0 0 8 0 165 2 176 6.2 93.8

Occasionally
flooded forest

0 0 12 16 0 5 197 230 14.3 85.7

Sum 212 199 206 202 206 202 202
Omission (%) 1.9 0 7.3 21.8 1.5 18.3 2.5
Prod. Acc. (%) 98.1 100 92.7 78.2 99.5 81.7 97.5

Overall accuracy is 93%.

Fig. 9 Lowland Peruvian Amazon preliminary peatland map based on multidate PALSAR, Landsat, and SRTM. Refinement of this map is underway
with further assessment by regional experts and collection of additional field data for training.
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Effective use of remote sensing for any environmental application requires an understanding of both the sensor’s characteristics
and interactions between the sensor and the environment, a relationship not to be understated, especially whenmapping peatlands.
To accurately map peatlands, generally, more information about the landform, vegetation types (and seasonal phenology), vege-
tation structure, ground moisture and inundation (seasonal hydrology) provides improved mapping capability rather than relying
on a single source of remote sensing data. The combination of one or more sensors for detection and mapping of land cover classes
has been suggested as a technique to improve map accuracy by allowing for a range of characteristics to be detected (Henderson and
Lewis, 2008) and several researchers have explored such techniques for mapping peatlands as has been described in this article.

The application of remote sensing to mapping and monitoring peatlands includes quantifying the loss of peatland area to palm
plantations in the tropics (Koh et al., 2011), calculating rates of deforestation in Southeast Asia (Miettinen et al., 2011), and land
use change in Malaysia (Miettinen et al., 2016). In the boreal zones remote sensing has been used to map permafrost thaw (Beilman
and Robinson, 2003), model NPP in Saskatchewan (Kimball et al., 2000), predict surface hydrology in Sphagnum-dominated peat-
lands (Harris and Bryant, 2009), classifying peatlands in Canada (e.g. Bourgeau-Chavez et al., 2017; Millard and Richardson, 2013),
monitoring organic layer soil moisture in peatlands (Bourgeau-Chavez et al., 2017b) and mapping fire severity in peatlands from
Landsat (Bourgeau-Chavez, 2014). Analyses of these types help estimate not just total carbon storage, but also rates of C gain or loss
as a result of disturbance over time.

There are numerous problems associated with accurate estimation of the extent of peatlands, which include a lack of standard-
ized definition of peat depth and soil properties to be considered a peatland (30–50 cm depth); the inaccessibility of many areas to
conduct required ground surveys; differences in methodology for delineating peatlands, for both on the ground techniques and
remote sensing; and ongoing land use change that results in the loss of peatland area (Page et al., 2006). Improved delineation
of peatland types from remote sensing ameliorate some of these problems and lead to improved estimates of peatland carbon stocks
in global models (e.g. Yu et al., 2010). A variety of methods have been developed in an attempt to map with higher accuracy at
medium spatial resolution or with greater efficiency at a finer resolution. Advances in sensing instruments and image processing
software have allowed significant improvement in mapping capability, efficiency, and accuracy as has been summarized in this
article. In addition to the state-of-the-art classifiers used in many recent mapping efforts, new investigation into Deep Learning algo-
rithms and using UAVs for assessing field characteristics (training and validation) in these remote peatland areas should improve
the mapping of peatlands in both tropical and boreal environments.

See also: 1.07. The EUMETSAT Polar System. 9.19. Remote Sensing Data and Methods for Identifying Urban and Peri-Urban
Smallholder Agriculture in Developing Countries and in the United States.
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