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Abstract The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern
United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor
Bayesian inversions to constrain the monthly budget and to partition the total budget into natural (e.g.,
wetlands) and anthropogenic (e.g., livestock, waste, and natural gas) sources for the period June 2016 to
September 2017. Aerodynamic flux observations indicated that the landscape was a CH4 source with a mean
annual CH4 flux of +13.7 ± 0.34 nmol m�2 s�1 and was rarely a net sink. The scale factor Bayesian inversion
analyses revealed a mean annual source of +12.3 ± 2.1 nmol m�2 s�1. Flux partitioning revealed that the
anthropogenic source (7.8 ± 1.6 Tg CH4 yr

�1) was 1.5 times greater than the bottom-up gridded United States
Environmental Protection Agency inventory, in which livestock and oil/gas sources were underestimated
by 1.8-fold and 1.3-fold, respectively. Wetland emissions (4.0 ± 1.2 Tg CH4 yr

�1) were the second largest
source, accounting for 34% of the total budget. The temporal variability of total CH4 emissions was
dominated by wetlands with peak emissions occurring in August. In contrast, emissions from oil/gas and
other anthropogenic sources showed relatively weak seasonality.

1. Introduction

The Midwestern United States is one of the most intensively managed agricultural regions in the world. This
landscape is dominated by corn and soybean ecosystems that help support a livestock population of approxi-
mately 728 million animals within the U.S. Corn Belt (USDA NASS, 2014). This region is also one of the most
wetland-rich landscapes across the United States (US Forest Service, 2016). In addition, it includes a variety
of urban and industrial complexes and major oil refineries. Short-term methane (CH4) measurements from
a very tall tower within the region indicated that it is an important source of CH4 (Zhang, Lee, Griffis, Baker,
& Xiao, 2014). However, the CH4 budget, its source partitioning, and seasonality remain poorly constrained.

Recent space-basedmeasurements imply large uncertainties in the United States anthropogenic CH4 budget
(Jacob et al., 2016; Kort et al., 2014; Turner et al., 2015; Wecht et al., 2014). Bottom-up inventory emission data-
bases, such as EDGAR42 (Emission Database for Global Atmospheric Research, version 4.2, 2011, http://edgar.
jrc.ec.europa.eu), show that enteric fermentation, natural gas production, and manure management repre-
sent the top three anthropogenic CH4 sources for the region. Miller et al. (2013) combined an atmospheric
transport model and a geostatistical inverse modeling approach to estimate anthropogenic CH4 emissions
across the U.S. for 2007 and 2008. They found that the CH4 budget in the United States was underestimated
by 1.5 and 1.7 times in the EPA (U.S. Environmental Protection Agency, https://www.epa.gov/) and EDGAR42
inventories, respectively. This was largely attributed to underestimates of the livestock and natural gas
emissions. Furthermore, Bruhwiler et al. (2017) also highlighted the large uncertainties of regional to
continental scale CH4 emissions from using space-based observations, resulting from atmospheric transport
variability, satellite sampling bias, and the choice of upwind background CH4 concentration.

With the EDGAR42 bottom-up inventory used as a priori, Wecht et al. (2014) estimated North American CH4

emissions at high spatial resolution by inversions of SCIAMACHY satellite observations using the GEOS-Chem
chemical transport model and its adjoint. They suggested that U.S. livestock emissions were 40% greater than
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EDGAR42 and EPA inventories and that the low bias was associated with large underestimates in Iowa and
Southern Minnesota. They also found that emissions associated with oil and gas were reasonably
well-constrained by EPA. Turner et al. (2015) used 3 years of GOSAT satellite retrievals of column averaged
CH4 mole fraction (2009–2011) to constrain North American CH4 emissions with high spatial resolution, with
an inversion based on the GEOS-Chem adjoint. Their estimates of CH4 emissions across the U.S. were ~1.7 and
~1.5 times larger than the EDGAR4.2 and U.S. EPA national inventories. They attributed the bias to oil/gas and
livestock emissions, but they were unable to quantitatively separate the two, owing to their spatial overlap
and limited observational coverage.

Wetland emissions remain one of the key sources of uncertainty in the regional to global atmospheric CH4

budget, largely due to poor understanding of the biophysical processes controlling production and
consumption in saturated soils (Bloom et al., 2017; Nisbet et al., 2014). Within the U.S. Corn Belt, Zhang,
Lee, Griffis, Baker, and Xiao (2014) used tall tower measurements to infer a CH4 budget that was 5.8 times
greater than EDGAR42 and hypothesized that the difference could be attributed to wetland emissions. A
geostatistical inverse modeling study of Miller et al. (2014) indicated a large emission underestimate by
the existing inventory (e.g., Kaplan model; Kaplan, 2002) for Minnesota and Wisconsin wetlands. Recent
inverse modeling studies using satellite observations also support major wetland CH4 emissions for Florida
as well as the Midwest (Turner et al., 2015; Wecht et al., 2014).

At finer spatial scales within the region, recent studies have quantified CH4 fluxes from wetlands, agricultural
crops, and livestock facilities. Olson et al. (2013) found that CH4 emissions from a temperate peatland in
north-central Minnesota showed instantaneous fluxes reaching a maximum of 290 nmol m�2 s�1 in
August, with an annual budget ranging from 15.7 to 33.2 g CH4 m�2 yr�1 over the period 2009 to 2011.
The instantaneous fluxes and annual budget were very sensitive to peat temperature and water table posi-
tion. In contrast, CH4 fluxes from individual corn and soybean plants were extremely small, ranging from
about +0.4 nmol m�2 s�1 during the day to about �0.8 nmol m�2 s�1 during the night (Zhang, Lee,
Griffis, Baker, Erickson, et al., 2014). Bavin et al. (2009) also showed that soil CH4 fluxes from conventional
and reduced tillage corn-soybean rotations weremost often below the flux detection limit of static chambers.

There is a paucity of studies that have examined enteric CH4 emissions and emissions related to manure
management from within the region. Methane emissions have been reported for dairy manure storage facil-
ities in Wisconsin (a simple storage basin) and Indiana (a storage lagoon, in which solids had previously been
removed) (Grant et al., 2015). On a per animal basis, CH4 emissions were larger from the storage basin than
the lagoon with mean daily emissions of 295 g CH4 head

�1 d�1 (374 g AU�1 d�1) and 47 g CH4 head
�1 d�1

(59 g AU�1 d�1), respectively (AU represents Animal Unit, where 1 AU = 500 kg live weight). These daily emis-
sions were shown to follow a positive linear relation with temperature. The relative lower emissions from the
lagoon storage facility were attributed to the lower availability of carbon due to removal of solids prior to
storage. The area-based flux estimates were 94 kg CH4 m

�2 yr�1 and 80 kg CH4 m
�2yr�1, respectively, and

were estimated to be less than the enteric emissions from these farms (Grant et al., 2015).

Enteric emissions from dairy cows can show substantial variability depending on size, sex, growth stage,
activity (i.e., lactating versus dry), and diet (Lassey, 2007). Because of limited studies conducted for the U.S.
Midwest, we draw on some recent studies from outside of the region. On-farm flux estimates, based on a
backward Lagrangian stochastic technique, showed that enteric emissions ranged from 270 to 380 g (lactat-
ing cow d)�1 for two dairy farms in Ontario, Canada, and accounted for about 40% of the total CH4 farm
emissions (Vanderzaag et al., 2014). Recent studies have shown that enteric emissions from dairy cows can
be significantly reduced by using inhibitors designed to improve carbon use efficiency. Hristov et al. (2015)
showed that enteric emissions varied from 400 to 500 g CH4 d

�1 and 290 to 390 g CH4 d
�1 over a 12 week

period without/with the use of an inhibitor (3NOP), respectively.

Here we build on our previous work (Olson et al., 2013; Zhang, Lee, Griffis, Baker, Erickson, et al., 2014; Zhang,
Lee, Griffis, Baker, & Xiao, 2014) and use tall tower aerodynamic flux measurements and SFBI analyses to
obtain improved constraints on the CH4 emissions from natural and anthropogenic sources within the region.
The objectives were to (1) estimate the regional CH4 budget, (2) partition the emissions into natural and
anthropogenic sources, and (3) identify sources and time periods associated with high CH4 emissions to
improve our understanding of potential mitigation options.
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2. Methods
2.1. Study Site

The University of Minnesota tall tower trace gas observatory (KCMP tall tower; 244 m height) is located 25 km
south of the Saint Paul-Minneapolis Metropolitan area in the Midwestern United States. The landscape is
highly heterogeneous with agricultural lands predominant to the east, south, and west. To the north and
northwest, there is a strong gradient from agricultural land to a relatively dense urban landscape. Detailed
land use statistics as a function of distance and direction from the tall tower study site have been reported
previously (Chen et al., 2016; Griffis et al., 2013). The study domain contains 10 states in the U.S. Midwest
including Minnesota, Illinois, Indiana, Iowa, Missouri, Ohio, North Dakota, South Dakota, Nebraska,
and Wisconsin.

2.2. Methane Mixing Ratio Observations

The KCMP tall tower has been instrumented with meteorological and trace gas sensors since April 2007.
Carbon dioxide, water vapor, and nitrous oxide have been measured at sample heights of 32, 56, 100, and
185 m (Griffis et al., 2013, 2017; Zhang, Lee, Griffis, Baker, & Xiao, 2014). Turbulence is measured at 100 and
185 m using sonic-anemometers (model CSAT3; Campbell Scientific Inc., Logan, Utah). Near-continuous
measurement of CH4 mixing ratios was initiated in May 2016 using a Trace Gas Analyzer (TGA200A,
Campbell Scientific Inc., Logan, Utah, USA). This system uses a state-of-the-art interband cascade laser that
is thermoelectrically cooled to a temperature of 17 °C. The manufacturer’s reported measurement noise,
based on the Allan variance, is 7.0 nmol mol�1 for an integration period of 100 ms. Our field tests indicated
that the noise is approximately 9.5 nmol mol�1 for an integration period of 60 min (Figure 1). As shown later,
this measurement noise is extremely small compared to the temporal fluctuations in the tall tower
observations. The TGA is calibrated hourly against an ultrapure zero air standard and a working CH4

span gas that was propagated from our Earth System Research Laboratory (National Oceanic and
Atmospheric Administration [NOAA] Earth System Research Laboratory) gold standard (Cylinder ID:
CB11952, mole fraction = 1,849.9 nmol mol�1, reproducibility = 1 nmol mol�1, WMO-CH4-X2004A
Calibration scale). Sample air is pulled continuously from inlets at 185 and 3 m at a total flow rate of approxi-
mately 15 SLPM at approximately 50 kPa. The 185 and 3m sample inlets are subsampled at 30 s intervals. The
air samples are dehumidified using a Nafion dryer system prior to analysis.

2.3. Flux-Gradient Method

The CH4 mixing ratio gradients and fluxes provide information related to the landscape (i.e., mesoscale;
approximately hundreds of km2) footprint, while the SFBI analyses constrain sinks and sources at the regional
scale (approximately thousands of km2) (Zhang, Lee, Griffis, Baker, & Xiao, 2014).

The aerodynamic flux was estimated from

FC ¼ �KCma
dC
dz

þ Fs (1)

where the eddy diffusivity (KC) was estimated from the momentum flux measured using eddy covariance at a

Figure 1. Results of sampling a standard gas cylinder including (a) the 10 Hz time series with the mean ± 1 SD (red symbols/bars) and mean ± 1 SE (black), (b) the
power spectrum of the concentration series (as spectral densities), and (c) an Allan variance plot.
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height of 185 m (Wood et al., 2016), ma is the molar density of dry air, dC/dz is the CH4 mixing ratio gradient,
and Fs is an estimate of the change in hourly CH4 storage integrated over a height of 185 m. An enhancement
factor of 1.35 was applied to Kc to account for the difference between momentum and a trace gas scalar
diffusivity (Simpson et al., 1998).

2.4. Inverse Modeling Framework

Here we apply a Bayesian inversion to interpret the tall tower observations in terms of a constraint on the
regional CH4 sources in the U.S. Midwest. The Stochastic Time-Inverted Lagrangian Transport (STILT) model
(Gerbig et al., 2003; Lin et al., 2003, 2004) was used to estimate the tall tower concentration source

Figure 2. The a priori annual average emissions from (a) livestock, (b) natural gas + oil, (c) coal mining, (d) waste, (e) natural wetlands, and (f) total (unit is
log10(nmol m�2 s�1)). Anthropogenic source categories including livestock, oil/gas, coal mining, and waste were from Maasakkers et al. (2016), and the natural
wetland emissions were derived from Bloom et al. (2017). The KCMP tall tower is indicated by the black crosses in each panel.
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footprint using the sample inlet (receptor) at a height of 185 m and atmospheric drivers (e.g., planetary
boundary layer [PBL] height, wind, and atmospheric stability) obtained from the Weather Research and
Forecasting (WRF) model version 3.8.1 (Nehrkorn et al., 2010). The source footprint was then multiplied by
a bottom-up emission inventory (a priori sources) and combined with the background mixing ratios to
provide an initial estimate of the hourly CH4 mixing ratios at the tall tower receptor (Figure 2).
2.4.1. Prior Information
The Bayesian inverse analysis relies heavily on the prior spatial distribution of associated source categories,
and it is therefore critical to use emission inventory data that have high spatial accuracy for proper attribu-
tion. EDGAR42 is one of the most comprehensive bottom-up inventories but has been reported to show poor
spatial accuracy in regional CH4 emissions, particularly from the livestock and oil/gas sectors (Miller et al.,
2013; Turner et al., 2015; Wecht et al., 2014). In EDGAR42, the oil/gas emissions are too heavily weighted
by the spatial distribution and usage rather than the production (Miller et al., 2013; Maasakkers et al.,
2016). Further, the oil/gas sector has a strong correlation (R2 > 0.8) with waste emissions because both are
largely distributed according to human population. Therefore, a Bayesian inversion using EDGAR42 as the
a priori estimate could wrongly attribute sources (e.g., assign CH4 emissions from oil/gas production sites
to livestock). For these reasons, we decided to use the gridded EPA inventory (Maasakkers et al., 2016) to
represent the a priori anthropogenic sources.

The EPA inventory is available only as national totals for different source types (EPA, 2016). Maasakkers et al.
(2016) used a range of databases at the state to local source levels to disaggregate the inventory and allo-
cated the spatial distribution of emissions for individual source types and presented a gridded inventory of
U.S. anthropogenic CH4 emissions with 0.1° × 0.1° spatial resolution and detailed scale-dependent error char-
acterization. Their estimate showed a significant spatial difference compared with EDGAR42, particularly for
oil/gas systems and manure management. The gridded EPA inventory for the year 2012 placed higher emis-
sions over oil/gas production areas and lower emissions over distribution areas, consistent with recent top-
down constraints across the U.S. (Miller et al., 2013; Turner et al., 2015).

Initially, (1) enteric fermentation, (2) manure management, (3) natural gas, (4) oil, (5) coal mining, (6) waste, (7)
natural wetlands, and (8) others (i.e., forest fire hotspots and stationary combustion emissions) were adopted
here as a priori source categories. However, spatially overlapping characteristics of enteric fermentation andman-
ure management, as well as natural gas and oil, respectively, placed strong limitations on identifying and separ-
ating them individually within the inversion framework (Turner & Jacob, 2015). Therefore, we combined enteric
fermentation and manure management as livestock and combined natural gas and oil as gas/oil. Furthermore,
Bloom et al. (2017) provided a full (2009–2010) and extended (2001–2015) estimate of wetland emissions, based
on knowledge of regional to global wetland CH4 sources and its biophysical controls. We adopted the full esti-
mate of wetland emissions with a gridded resolution of 0.1° × 0.1°, which was developed based on satellite-
derived surface water content and precipitation reanalyses, as well as environmental parameterizations.

Other sources such as forest fire hotspots and stationary combustion were insignificant for the Midwest and
not feasible to independently constrain from atmospheric data. Therefore, these sources were not included in

Table 1
Sites of Flask CH4 Observations Used in This Study

NOAA code Location Country Latitude Longitude

AMT Argyle, Maine United States 45.035 �68.682
DND Dahlen, North Dakota United States 47.5 �99.24
ESP Estevan Point, British Columbia Canada 49.383 �126.544
ETL East Trout Lake, Saskatchewan Canada 54.35 �104.983
HIL Homer, Illinois United States 40.07 �87.91
LEF Park Falls, Wisconsin United States 45.945 �90.273
MWO Mt. Wilson Observatory United States 34.225 �118.059
NWR Niwot Ridge, Colorado United States 40.053 �105.586
SGP Southern Great Plains, Oklahoma United States 36.607 �97.489
THD Trinidad Head, California United States 41.054 �124.151
UTA Wendover, Utah United States 39.902 �113.718
WBI West Branch, Iowa United States 41.725 �91.353
WGC Walnut Grove, California United States 38.265 �121.491

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG004356

CHEN ET AL. 650



the a priori estimate. The five source categories included in the a priori emission inventory were the following
(Bloom et al., 2017; Maasakkers et al., 2016): (1) livestock, including enteric fermentation and manure
management; (2) gas/oil, including natural gas production, processing, transmission, and distribution, as
well as petrochemical production; (3) waste, including landfills and wastewater treatment; (4) coal mining,
both surface and underground; and (5) monthly natural wetlands and peatlands from Bloom et al. (2017).

We define the a priori errors for livestock, gas/oil, waste, and coal mining sources at 0.1° × 0.1° resolution
based on the corresponding scale-dependent errors developed by Maasakkers et al. (2016) for the gridded
EPA inventory. Bloom et al. (2017) derived 324 ensemble models of wetland CH4 emissions in 2009 and
2010, based on 3 CH4: C temperature dependencies (i.e., the temperature dependence of the ratio of C
respired as CH4), 9 heterotrophic respiration configurations, 4 wetland extent scenarios, and 3 global scaling
factor (i.e., a global budget estimate from wetland emissions) configurations. Here we used the ensemble
mean of 324 model realizations for the year 2010 as the a priori estimate, and its coefficient of variation as
the associated a priori error. Based on the derived a priori errors (i.e., 79–95%) we rounded them to 100%
for each source category.

2.5. Concentration Footprint Functions

Concentration source footprint functions were determined based on the STILTmodel. For each hour between
June 2016 and September 2017, we released 500 particles from the KCMP tall tower at a height of 185 m and
transported them backward for 7 days to ensure that the trajectories adequately represented source contri-
butions from within the U.S. Furthermore, we used observations (Table 1) from the NOAA Carbon Cycle and

Figure 3. Source footprint functions (units: log10(ppm μmol�1 m2 s)) for measurements at the KCMP tall tower (indicated by crosses). (a) December 2016; (b) March
2017; (c) August 2017. (d) Normalized cumulative contribution as a function of source footprint scale (ppm μmol�1 m2 s) and the corresponding distance
from the tall tower (km).
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Greenhouse Gases program near the outer edge of the source footprint to represent the background CH4

mixing ratios. These observations are from discrete air samples collected approximately weekly in flasks
(Dlugokencky et al., 2009, 2011) and are zonally and monthly
averaged at 4° latitudinal resolution.

Examples of the concentration footprint functions during years 2016
and 2017 at the tall tower are shown in Figures 3a–3c. For each
month, based on the a priori inventory, we calculated the cumula-
tive contribution of surface emissions to the tall tower mixing ratio
at a range of concentration footprint scales and the corresponding
distance from the tall tower (Figure 3d). These analyses indicated
that areas where the footprint strength was greater than
1e � 4 ppm μmol�1 m2 s contributed significantly to the tall tower
mixing ratios (i.e., they accounted for about 75% of the total contri-
bution). These intense areas contain Minnesota and a significant
portion of the U.S. Midwest. The tall tower observations, therefore,
are representative of the larger Midwest region (Griffis et al., 2013;
Zhang, Lee, Griffis, Baker, & Xiao, 2014) and should provide a
reasonably robust estimate of CH4 emissions and their partitioning
via the SFBI approach.

2.6. Methane Budget and Partitioning

Here we used the SFBI method to constrain the regional budget and
to partition it into its source contributions (Chen et al., 2016; Kim et al.,
2013). The SFBI method was applied monthly from June 2016 to
September 2017,

Figure 4. Hourly mean CH4 mixing ratios measured at (a) 3 m and (b) 185 m as a function of wind direction. The color bar represents the friction velocity value
(m s�1). (c) Mean methane mixing ratios (±1 standard deviation) as a function of wind direction binned using 15 degree intervals. (d) Relation between CH4
mixing ratios measured at 3 m versus 185 m. The color bar indicates the friction velocity value. Each data point represents an hourly average value. Note that the
1:1 line is obscured by the best fit linear regression line.

Figure 5. (a) Median monthly vertical CH4 mixing ratio gradient and (b) median
monthly flux-gradient estimate. The error bars represent the standard error.
Note that August 2016 is not reported due to a large fraction of missing hourly
observations.
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y ¼ KΓþ ε (2)

where y is the mixing ratio observed at the tall tower minus the back-
ground mixing ratios, Γ contains the scaling factors for different
source types, K is the Jacobian matrix representing the sensitivity of
the observation variables to the specific source types, and ε is the
system error, which consists of measurement uncertainties andmodel
uncertainties. The columns of K correspond to the mixing ratios for
each of the source types being optimized, and Γ consists of the a
posteriori scale factors for the different source types.

Applying Bayes’ theorem, along with a normal distribution assump-
tion, the maximum a posteriori solution of Γ is to minimize the cost
function J(Γ):

2J Γð Þ ¼ y� KΓð ÞTSε�1 y� KΓð Þ þ Γ� Γað ÞTSa�1 Γ� Γað Þ (3)

where Sε and Sa are the observational and a priori error covariance
matrices, and each element of Γa = 1. The solution to ∇ΓJ(Γ) = 0 is
then given by:

Γpost ¼ KTSε�1K þ Sa�1� ��1
KTSε�1yþ Sa�1Γa
� �

(4)

Here observational errors include measurement and modeling uncer-
tainties. The mixing ratio measurement error for the TDL was based
on the Allan variance test described above (9.5 nmol mol�1 for an
integration period of 60 min). Further, Gerbig et al. (2003) conducted
a wide range of sensitivity tests by varying the released number of
particles from 50 to 1,000 in the STILT model, and each test was run
100 times to analyze the particle number dependence and reproduci-
bility. Following the work of Gerbig et al. (2003), a relative uncertainty
of 13%was assigned for the number of particles used in the backward
trajectories. In this study, the transport error associated with the num-
ber of particles used ranged from ~6 to 9 ppb. We used different PBL
schemes, that is, Yonsei University (Hong et al., 2004) and Mellor-
Yamada-Janjic (Janjic, 2002), to simulate the mixing height from the
WRF-STILT simulations. The modeled mixing heights were then
compared to that inferred from the radiosonde observations (Kim
et al., 2013; Miller et al., 2008) to derive the relative uncertainty asso-

ciated with the simulated PBL height, which was estimated to be 27%. The transport error associated with the
PBL height simulations ranged from ~10 to 16 ppb. Finally, it is critical to use mass conserving wind fields to
drive the transport (Gerbig et al., 2003). TheWRF simulations used in this study are constructed specifically for
mass conservation and have been found to perform better than other meteorological products (Miller et al.,
2013; Nehrkorn et al., 2010). A detailed uncertainty analysis associated with aggregation error is presented in
section 3.

3. Results and Discussion
3.1. Methane Mixing Ratios and Fluxes

Mean CH4 mixing ratios at 3 and 185 m (1 June 2016 to 30 September 2017) were 2,024.4 ± 132.4 nmol mol�1

and 1,982.0 ± 54.4 nmol mol�1, respectively (Figure 4). Wind direction had a relatively weak influence on the
CH4 mixing ratios at 3 m (Figure 4). For example, advection from the urban airshed to the north resulted in
CH4 mixing ratios that were about 100 nmol mol�1 higher than the ensemble meanmixing ratio. There is also
a small but noticeable increase in CH4 mixing ratio from the southwest wind sector, which is predominantly
agricultural land use. Hourly CH4 mixing ratios at the 185 and 3 m levels were highly correlated (r2 = 0.976,
n = 5,305, p< 0.0001). The large deviations from the 1:1 line (Figure 4d) were generally associated with weak
turbulent mixing (i.e., when friction velocity was less than 0.1 m s�1).

Figure 6. (a) Monthly linear regression between the observed and simulated CH4
mixing ratios for a priori and a posteriori simulations between June 2016 and
September 2017 (uncertainty values indicate a 95% confidence interval); (b) a
priori, a posteriori estimate and the tall tower observations of CH4 mixing ratios.

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG004356

CHEN ET AL. 653



Vertical CH4 gradients were very small in the winter (December through March) compared to the midsummer
(July through August, Figure 5a), indicating that within the aerodynamic flux footprint, microbial activity was
the main driver of emissions (i.e., not fuel production or consumption). Further, there was a relatively low fre-
quency of negative mixing ratio gradients, implying that the agricultural landscape was rarely a net CH4 sink.

The mean aerodynamic CH4 flux was +13.7 ± 0.34 (mean ± standard error) nmol m�2 s�1 (Figure 5), which
equates to a net CH4 source of about 6.9 g CH4 m

�2 yr�1, and is in good agreement with previous estimates
at the landscape scale (Zhang, Lee, Griffis, Baker, Erickson, et al., 2014).

3.2. Bayesian Analyses

After the first inversion, the averaging kernel (AK) was calculated to quantify the sensitivity of retrieved emis-
sions to their true values (Chen et al., 2016; Kim et al., 2013; Rodgers, 2000). The AK values indicated a very low

sensitivity of tall tower observations to the coal mining source, probably
due to the limited near-field distribution relative to the tall tower receptor
(Figure 2c). Therefore, we eliminated the coal mining source term from
further consideration and applied a second inversion where we only
included the livestock, oil/gas, waste, and natural wetland and peatland
source categories. This second inversion produced the final optimized
emission estimates.

Figure 6a illustrates the linear regressions between the measured and
simulated CH4 mixing ratios based on the a priori and a posteriori
estimates. The optimized CH4 mixing ratios showed a much stronger
correlation (R2 = 0.72 and p = 6.2e-5) than the a priori estimate
(R2 = 0.17 and p = 0.21), and the slope increased from 0.29 ± 0.17 to
0.72 ± 0.12, indicating that the optimization helped to reduce the model
bias and significantly improved the constraint on the emissions (Figure 6
b). Based on the cost function analysis (equation (3)), the optimization is
constrained to a certain degree by the error construction of observations
and the a priori estimate; for example, decreasing the observational errors
or increasing the a priori errors leads to an increase in the optimized scal-
ing factors and acted to increase the slope of the linear regression
between the modeled and observed CH4 mixing ratios. A detailed analysis
of the improvement of the inverse model performance is provided in
section 3.4.

From the second inversion, there was a mean scaling factor of 1.5 relative
to the gridded EPA inventory for anthropogenic sources (Table 2). Among
them, optimized livestock and oil/gas sources were 1.8 and 1.4 times
greater (Figure 7a), respectively, in close agreement with other recent
studies (Miller et al., 2013; Turner et al., 2015). The optimized mean annual
anthropogenic CH4 emission was 12.3 ± 2.1 nmol m�2 s�1 for the Midwest
region. Compared to the source attribution for the national-scale budget,
there was a higher contribution from livestock and lower contribution
from oil/gas sources for the U.S. Midwest, corresponding to its
agriculture-dominated land use characteristics.

Wetlands within our study domain are largely distributed in central and
northern Minnesota as well as Wisconsin (Cohen et al., 2016), among the

Figure 7. Annual regional CH4 emissions within the U.S. Midwest from differ-
ent studies including (a) anthropogenic and (b) natural sources. The error
bars indicate the uncertainties of the regional emission estimate from each
source, respectively.

Table 2
Annual Mean A Priori and A Posteriori Emissions and Scaling Factors for Each Source Category (from October 2016 to September 2017)

Emissions (Tg CH4 yr
�1) Wetlands Livestock Oil/gas Waste Total Anthropogenic

A priori 3.8 2.6 1.2 1.3 8.9 5.1
A posteriori 4.0 ± 1.2 4.8 ± 1.5 1.6 ± 0.6 1.4 ± 0.6 11.8 ± 2.0 7.8 ± 1.6
Scale factor 1.1 1.8 1.3 1.1 1.3 1.5
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most sensitive areas to the tall tower receptor based on the concen-
tration footprint functions (Figure 3). The optimized wetland
emissions are in excellent agreement with the estimate from Bloom
et al. (2017) (Figure 7b) and represent the second largest source
(4.0 Tg CH4 yr�1), accounting for 34% of total CH4 emissions within
the Midwest region (Table 2).

Compared to the CH4 emission estimate at the national scale from the
most recent space-based study (Turner et al., 2015), our work suggests
that the natural, anthropogenic, and total CH4 emissions in the
Midwest account for 41.7 ± 12.5%, 18.2 ± 3.7%, and 22.5 ± 3.8% of
the U.S. budget, respectively (Figure 8). This further supports the
importance of the U.S. Midwest to the national and global CH4 budget
and highlights the need to understand how these emissions are likely
to respond to changes in land management and climate.

3.3. Seasonality Analysis

The temporal variability of total optimized CH4 emissions was domi-
nated by wetlands (Figure 9). Since emissions from oil/gas, livestock,
and waste showed relatively weak seasonality, the contribution from
wetland emissions well explained the seasonal variation of the tall

tower CH4 mixing ratios. The wetland emissions were very weak from November to February, began to rise
after snowmelt in March, and peaked in August. This seasonality agrees closely with eddy covariance obser-
vations and retrospective modeling studies at Bog Lake Fen, Marcell Experiment Forest Station in northern
Minnesota (Olson et al., 2013).

To further explore the climate sensitivity of the regional methane emissions, the weighted means of selected
environmental variables from the National American Regional Reanalysis (Mesinger et al., 2006) data were
computed for the entire study domain. Here the weighting is based on the intensity of the source footprint
function for each grid cell. The seasonal and interannual variations of optimized wetland emissions appear to
be consistent with variations in air temperature. We found that the peak CH4 emissions in August were
coincident with maximum source footprint-weighted soil temperature, which also agreed with earlier obser-
vations at the Marcell Experiment Forest Station, where CH4 emissions peaked with peat temperature (Olson
et al., 2013). Olson et al. (2013) reported increased CH4 emissions at Bog Lake Fen in warm years including
1994, 2001, and 2005 and suggested that temperature dominated the temporal variability, while water table

depth played a lesser role.

The notably higher temperature (1.5 °C within the growing season) in
2016 compared to 2017 likely enhanced wetland emissions. For
instance, the weighted September air temperature was 2.3 °C higher
in 2016, and the corresponding regional wetland emissions were
62% higher compared to 2017. Conversely, there appears to be very
limited impact of precipitation differences on the wetland emissions.
For example, June 2016 and September 2017 experienced dramati-
cally different precipitation amounts (106.0 versus 24.7 mm, respec-
tively), yet the regional wetland emissions (4.16 versus
4.22 nmo m�2 s�1) were not statistically different.

Finally, it is possible that the warmer conditions stimulated higher
CH4 emissions from manure. For instance, the June and September
air temperatures were 1.1 and 2.3 °C higher in 2016, and the corre-
sponding regional livestock emissions were 56% and 60% higher than
in 2017. Since enteric emissions are less dependent on air tempera-
ture (i.e., animal body temperature is regulated), stronger air tempera-
ture sensitivity for manure emissions is expected (Dong et al., 2006;
Sommer et al., 2004; Wood et al., 2013).

Figure 8. Regional and national methane budgets for natural and anthropogenic
sources. The error bars indicate the uncertainties of the regional emission estimate
from anthropogenic and natural sources, respectively.

Figure 9. Optimizedmonthly variation of CH4 emissions for each source category,
including the livestock, oil/gas, waste, and wetlands.
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3.4. Uncertainty Analysis

To probe how aggregation error influenced the Bayesian inversion, we decreased the spatial resolution of the
a priori emissions and meteorological fields from 0.1° × 0.1° to 0.5° × 0.5° for each source category. We then
reran STILT to obtain the source footprint functions at 0.5° × 0.5° resolution and applied the SFBI in an other-
wise identical fashion to our previously described approach. The low-resolution inversion showed that when
decreasing the resolution: (1) the correlation among source categories became stronger, for example, the
correlation coefficient (R) between livestock and oil/gas increased from 0.35 to 0.56, and (2) the scale factor
for the livestock source increased while that for the oil/gas source decreased. Further, we found that the AK
for oil/gas source decreased from 0.89 to 0.55, indicating a weak sensitivity to the tall tower observations. As
expected, averaging the inventory over a coarser grid caused spatial overlapping among source categories,
leading to higher correlation among them. Using a priori information with a coarser resolution reduces the
amount of independent information contained in the a priori inventory. The source(s) of interest cannot
be separated and results in a lower sensitivity to the tall tower observations, providing a weak constraint
within the inverse modeling framework.

Further, we examined the potential impact of having an upward/downward bias in the background CH4 con-
centrations on the Bayesian inversion. Here we conducted a range of sensitivity tests by varying the monthly
background mixing ratios (from mean � 2 SD to mean + 2 SD) based on the discrete flask-air observations
from the NOAA Carbon Cycle and Greenhouse Gases program. These sensitivity analyses revealed that the
annual budget ranged from 10.3 to 12.4 Tg CH4 yr�1, which showed only a minor variation (5%–12%)
compared to the best estimate (Table 3). These analyses suggest that the optimized annual budget and
the source attribution show low sensitivity to the uncertainties in the background mixing ratios, and support
that background CH4 values are reasonably constructed and provide a reliable estimate for the Bayesian
inversion framework.

Finally, by assembling key parameterizations in the models from Bloom et al. (2017), a range of a priori
wetland emission scenarios were applied for the sensitivity tests (Table 4), to assess how well the inversion
constrained the wetland source. The sensitivity studies showed similar seasonality and an annual wetland

Table 3
The A Posteriori Emissions With Various Sensitivity Tests on Background Mixing Ratios

Background
mixing
ratios

A posteriori emissions (Tg CH4 yr
�1)

Wetlands Livestock Oil/gas Waste Total Anthropogenic

Mean � 2 SD 4.5 5.4 1.7 1.5 13.1 8.6
mean � 1 SD 4.3 5.3 1.6 1.2 12.4 8.1
Mean 4.0 4.8 1.6 1.4 11.8 7.8
mean + 1 SD 3.6 4.5 1.6 1.4 11.1 7.5
mean + 2 SD 3.3 4.2 1.4 1.4 10.3 7.0

Table 4
Wetland CH4 Model Ensemble Configurations

Tests

Global
scale factor

(Tg CH4 yr�1)

CH4: C
temperature
dependence

(Q10) Heterotrophic respiration Wetland extent scenario

Wetland
emissions
(Tg CH4 yr�1)

S1 124.5 1.0 Ensemblemean from themultiscale Synthesis and
Terrestrial Model Intercomparison Project

(MsTMIP)a,b

GLOBCOVER spatial extentc and SWAMPSc

inundation temporal variability
parameterization

3.76
S2 124.5 2.0 3.74
S3 124.5 3.0 3.54
S4 166.0 1.0 3.63
S5 166.0 2.0 4.26
S6 166.0 3.0 3.41
S7 207.5 1.0 4.0
S8 207.5 2.0 4.38
S9 207.5 3.0 4.16

aHuntzinger et al. (2013). bWei et al. (2014). cSchroeder et al. (2015). dBontemps et al. (2011).
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budget that ranged from 3.41 to 4.38 Tg CH4 yr
�1 or 86.1% to 110.7% of the best estimate (4.0 Tg CH4 yr

�1).
This supports a relatively robust constraint of the wetland source in the Bayesian inversion.

An important question is, to what extent can we improve the CH4 budget estimate for the U.S. Midwest?
Currently, there are two critical limitations, including the spatially sparse tall tower concentration observa-
tions and the lack of direct flux measurements of key land use categories. Building on previous inverse
studies (Chen et al., 2016; Griffis et al., 2017; Michalak et al., 2017; Turner et al., 2015), the following recom-
mendations are made in order to help reduce regional scale uncertainties. There is a need for (1) improved
high-resolution information on activity data to better specify the a priori source distribution, (2) improved
spatial representation of atmospheric CH4 concentrations, and (3) direct measurement of CH4 fluxes from
underrepresented and important land use categories. To address some of these concerns our ongoing
research is making use of aircraft measurement campaigns to provide new insights regarding the spatial
patterns of CH4 concentrations during key times of the year. In light of the importance of enteric emissions
for the region, we have planned intensive flux measurement campaigns to improve emission estimates from
large representative livestock facilities within the region. Furthermore, the measurement of the stable
isotopes of CH4 at the tall tower has significant potential to help with source attribution partitioning, error
reduction in the inversion, and could provide an efficient way to assess systematic biases in the atmospheric
inversion methodology.

4. Conclusions

Hourly CH4 observations from a tall tower in the Upper Midwest United States were used to constrain the CH4

emissions from natural and anthropogenic sources for the region based on aerodynamic flux measurements
and SFBI analyses. The data and analyses support the following conclusions:

1. Themean annual landscape and regional scale CH4 emissions (13.7 ± 0.34 versus 12.3 ± 2.1 nmol m�2 s�1)
agreed reasonably well within the margin of uncertainty.

2. Regional natural, anthropogenic, and total CH4 emissions were 4.0 ± 1.2, 7.8 ± 1.6, and
11.8 ± 2.0 Tg CH4 yr

�1, accounting for 41.7 ± 12.5%, 18.2 ± 3.7%, and 22.5 ± 3.8% of the overall U.S. natural,
anthropogenic, and total CH4 budgets, respectively.

3. Wetlands were the second largest regional source, contributing 34% to the regional budget.
4. The seasonality of total CH4 emissions was dominated by wetlands. Wetland emissions increased signifi-

cantly following snowmelt and reached a maximum in August.
5. The anthropogenic source categories were 1.5 times greater than the bottom-up inventory, with livestock

and oil/gas sources underestimated by 1.8-fold and 1.3-fold, respectively.
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