
Forestry An International Journal of Forest Research

Forestry 2018; 91, 575–588, doi:10.1093/forestry/cpy016
Advance Access publication 27 July 2018

Testing a new component ratio method for predicting total tree
aboveground and component biomass for widespread pine and

hardwood species of eastern US

Brian J. Clough1*, Grant M. Domke2, David W. MacFarlane3, Philip J. Radtke4, Matthew B. Russell1

and Aaron R. Weiskittel5

1Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
2US Forest Service Northern Research Station, St. Paul, MN 55108, USA

3Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
4Department of Forest Resources and Environmental Conversation, Virginia Polytechnic Institute, Blacksburg, VA 24061, USA

5School of Forest Resources, University of Maine, Orono, ME 04468, USA

*Corresponding author. E-mail: brian@silviaterra.com

Received 8 February 2017

The US National Greenhouse Gas Inventory uses the component ratio method (CRM), a volume conversion
approach that incorporates models for tree biomass components, for forest carbon assessments. However,
the performance of the CRM relative to other methods, as well as influences on its accuracy and precision,
must be evaluated. We constructed a data-driven CRM (n-CRM), used it to predict total tree and component
biomass for six US tree species, and compared this approach to a reference allometric model. We also
assessed the influence of size, crown dynamics, and stem growth on the performance of both methods.
Results show that the n-CRM was more accurate for four species, resulting from the inclusion of more pre-
dictor variables. Both methods had high uncertainty, but the precision of n-CRM predictions was two to eight
times higher for small diameter trees (<10 cm) across all species. Accuracy and precision of the crown compo-
nent models (i.e. branches and foliage) was low, though better for pines than for hardwoods. Species-level
analysis suggests that poor precision is influenced by crown traits and the size distribution of fitting datasets.
Our results highlight needed improvements to the n-CRM, and motivate further development of data that
facilitate predictive evaluation of biomass models.

Introduction
For the US, Canada and many other nations with national forest
inventory (NFI) systems, individual tree measurements form the
basis for the monitoring, management and projection of forest
biomass stocks (Lambert et al., 2005; Woodall et al., 2011;
Neumann et al., 2016). Many different methods for tree biomass
prediction have been proposed, but they can generally be broken
down into three classes: (1) biomass equations that predict total
tree or tree component biomass directly from tree measure-
ments, typically stem diameter at breast height (dbh); these are
often referred to as ‘allometric’ equations (Sileshi, 2014); (2) ‘bio-
mass expansion factor’ (BEF) approaches that convert tree total
or merchantable stem volume into total tree biomass by inte-
grating wood density with the stem volume estimates to predict
stem mass and the total tree mass (Segura and Kanninen, 2005;
Westfall, 2012); and (3) ‘hybrid’ approaches that use some ele-
ments of the previous two classes (i.e. a BEF for bole volume and
biomass, allometric models for belowground and crown compo-
nents; e.g. Ver Planck and MacFarlane, 2015).

The Forest Inventory and Analysis (FIA) program in the US
utilizes a hybrid biomass estimation approach referred to as the
component ratio method (CRM; Woodall et al., 2011; Domke
et al., 2012). In the CRM, inside bark bole biomass is estimated
by expanding predictions from an allometric stem volume mod-
el with species-specific estimates of wood density. Stump and
crown components are then directly estimated using additional
allometric models (Raile, 1982; Jenkins et al., 2003), and bark
biomass is calculated using published bark ratio and bark spe-
cific gravity values for North American tree species (Woodall
et al., 2011). The CRM has the advantage of providing biomass
estimates that are consistent with volume estimates calculated
from FIA data, but is limited in that it makes strict assumptions
about several parameters that will affect total tree biomass
estimates, including: (1) wood and bark specific gravity; (2) aver-
age bark to wood ratio of the stem; and (3) allometric scaling
coefficients of branch and foliage biomass models. While previ-
ously these assumptions were necessary to ensure consistent
biomass estimates within FIA, new datasets, coupled with data-
driven methods for fitting models such as Bayesian estimation
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techniques, provide an opportunity to expand the CRM to better
account for among and within species heterogeneity in overall
biomass assessments.

A key issue for any biomass estimation approach is accur-
ately predicting total tree biomass, which is important for verifi-
able national forest carbon inventories. However, an ideal
biomass estimation method should also accurately predict bio-
mass components, as these are relevant to the valuation of
wood products and usage of the tree (Domke et al., 2012;
MacFarlane, 2015). However, for hybrid approaches such as the
CRM simultaneously estimating total and component biomass
with sufficient accuracy and precision is challenging. Using a sin-
gle allometric equation to directly estimate total biomass gen-
erally gives better results than adding up the sum of predicted
components (e.g. stems, branches, leaves), because of the addi-
tive errors of each of the predicted components (Parresol, 2001;
MacFarlane, 2015). BEFs extrapolate total biomass from the
stem, so their total mass estimation is limited by the accuracy
of the underlying stem volume equations, which are not neces-
sarily well correlated with the volume and biomass of crown
components. A recent analysis by Radtke et al. (2017) showed
that the CRM underestimates live tree biomass in the eastern
US by ~6–17 per cent and that direct estimation via species-
specific allometric models was more accurate than any of the
volume conversion methods they considered. Similar discrepan-
cies between volume conversion and allometric modeling
approaches have been observed for population-level biomass
estimates in the US (Domke et al., 2012), as well as in
Scandinavia (Jalkanen et al., 2005). While small, this body of evi-
dence corroborates a recent review of biomass methods by
Weiskittel et al. (2015) who suggested that allometric models
are ‘probably’ more accurate; at least for total biomass esti-
mates. However, given that NFIs are typically used for both
volume and biomass stock assessments, BEFs and hybrid
approaches, such as the CRM, as well as models used by most
European nations (Neumann et al., 2016), have become com-
mon and relatively widespread. Ensuring consistency between
biomass and volume stock assessments is a great benefit of
these methods, as it facilitates the accounting of carbon fluxes
related to harvested wood products (Domke et al., 2012).

Given the competing these needs (e.g. consistency between
bole biomass and volume estimates, accurate estimation of com-
ponents), hybrid approaches such as the CRM are a good com-
promise solution. Separate estimation of branch and foliage
components via allometric models allows for greater flexibility in
predicting these biomass pools, which is preferable given the vari-
able nature of tree crowns. However, in order to guarantee accur-
ate and precise estimation of both total and component biomass,
the performance of these sub-models must be carefully evaluated
when embedded into a hybrid approach such as the CRM.
Currently, the CRM uses component ratio equations developed
based on biomass ‘pseudodata’ by Jenkins et al. (2003), yet pre-
vious work has shown that this approach exhibits significant
bias and uncertainty in the prediction of crown components
(MacFarlane, 2015; Clough et al., 2016a, b). Further, the impact
of component models on the overall accuracy and precision of
total biomass estimates from hybrid approaches is unknown.
Since hybrid approaches are likely to remain commonplace for
NFIs that report both carbon and volume estimates, addres-
sing these methodological gaps is an important priority.

Recent advances in forestry data science present the oppor-
tunity to revisit the CRM, with the aim of addressing these
important issues. These include the compilation of new datasets
that allow for direct evaluation of both total and component
biomass models (Radtke et al., 2017), as well as the proliferation
of new computational approaches that allow for prediction
uncertainty to be conditioned on these data. Bayesian estima-
tion techniques provide a particularly convenient framework for
integrating the uncertainty of component models as in a hybrid
biomass estimation approach and, when specified with ‘weakly
informative’ priors (Gelman et al., 2003), allow these uncertainty
estimates to be largely informed by the fit of component mod-
els to the best available data.

This study presents a new, modified version of the CRM
(n-CRM) and compares this hybrid approach to a standard allo-
metric approach for estimating total tree biomass, with the
overall goal of understanding how aboveground components of
the hybrid approach (branch, foliage, stump and bark) contrib-
ute to the error in total mass estimation. We perform this ana-
lysis for six common, widespread species of the eastern US
(three hardwoods and three conifers), and we adopt a Bayesian
simulation approach that allows us to access estimates of pre-
diction accuracy and uncertainty at the tree scale. The specific
objectives of the study were to: (1) develop and parameterize
the n-CRM and compare it to total mass allometric models for
each of the six study species; (2) analyze a suite of individual
traits to determine which factors have the largest influence on
the accuracy (i.e. residual error between predicted and observed
biomass) and precision (i.e. relative uncertainty estimates) for
each species; and (3) assess differences among species and/or
taxa (hardwoods vs. conifers) to formulate recommendations
for further improvements of the n-CRM approach.

Methods
Data
Data for this study were drawn from the US Forest Service legacy bio-
mass database, a repository of more than 250 000 individual tree attri-
bute records that has been collated from published and unpublished
sources, for the purposes of developing and calibrating tree-scale bio-
mass and volume models (LegacyTreeData, 2016), along with data from
an ongoing project to enhance the legacy database (Radtke et al.,
2017). The key data for constructing and fitting the n-CRM were: (1) bole
volume to a 10 cm top; (2) wood specific gravity; (3) bark ratio (i.e. bark
volume as a fraction of wood volume) of the bole; (4) bark specific grav-
ity; and (5) aboveground biomass and component biomass (i.e. stem,
branch, foliage) data. Wood specific gravity, bark specific gravity and
bark ratio data were used to estimate both stem and stump biomass.
Total aboveground biomass, dbh and total height measurements for the
trees were used for fitting the standard allometric model. The legacy
database is a data compilation, so while it is the best resource available
for fitting models of US tree species, it is not a systematic sample of tree
attribute data. Consequently, we confined our analyses to six species in
the dataset, three hardwood species (red maple (Acer rubrum L.), sweet-
gum (Liquidambar styraciflua L.), and white oak (Quercus alba L.)) and
three pine species (loblolly pine (Pinus taeda L.), slash pine (Pinus elliottii
Engelm.) and longleaf pine (Pinus palustris Mill.)). Each of these species
had reasonable samples (i.e. >100 observations of each attribute) of the
aforementioned variables across a range of tree sizes and locations
(Table 1).
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Table 1 Summary statistics for fitting and validation datasets.

CRM datasets

Bole volume Bark specific gravity

Volume (m3) dbh2h (cm2*m)

N Mean SD Mean SD N Mean SD

Red maple 137 0.34 0.29 12 272.98 10 451.93 193 0.52 0.05
Sweetgum 470 0.44 0.5 16 064.42 17 248.41 732 0.37 0.07
White oak 236 0.57 0.6 20 339.48 20 894.66 297 0.53 0.07
Loblolly pine 567 0.87 0.66 25 063.26 18 731.39 1808 0.32 0.1
Longleaf pine 449 0.69 0.5 22 662.05 15 817.77 625 0.38 0.1
Slash pine 469 0.46 0.5 15 710.22 15 414.63 831 0.35 0.05

Wood specific gravity Bark ratio

N Mean SD N Mean SD

Red maple 233 0.49 0.06 348 0.13 0.03
Sweetgum 745 0.47 0.02 745 0.14 0.04
White oak 306 0.64 0.03 333 0.14 0.04
Loblolly pine 3814 0.46 0.05 567 0.19 0.06
Longleaf pine 626 0.56 0.07 799 0.14 0.07
Slash pine 1723 0.51 0.06 1114 0.22 0.09

Branch biomass (kg) Foliage biomass (kg) dbh (cm)

N Mean SD Mean SD Mean SD

Red maple 142 86.98 245.93 6.02 7.35 20.82 9.44
Sweetgum 323 46.38 55.72 3.86 4.55 21.02 8.9
White oak 199 135.65 167.12 15.04 18.06 24.12 11.32
Loblolly pine 531 38.23 39.15 9.51 9.83 21.63 10
Longleaf pine 159 66.34 78.51 13.63 13.95 23.5 11.41
Slash pine 409 30.34 28.78 9.45 9.65 18.94 7.5

Allometric model and validation data
Fitting datasets

Total biomass (kg) dbh (cm)

N Mean SD Mean SD

Red maple 142 269.75 485.57 20.82 9.44
Sweetgum 323 239.11 278.51 21.02 8.9
White oak 199 467.78 534.65 24.12 11.32
Loblolly pine 531 241.57 331.92 21.63 10
Longleaf pine 159 348.53 349.13 23.5 11.41
Slash pine 409 190.75 253.3 18.94 7.5
Validation datasets
Red maple 58 311.95 855.96 17.28 14.43
Sweetgum 155 526.85 723.34 27.11 14.9
White oak 48 1372.14 1747.97 36.58 19.73
Loblolly pine 369 184.8 270.46 19.98 7.87
Longleaf pine 95 600.77 455.15 29.05 10.75
Slash pine 152 260.25 381.67 20.68 10.3

Note that the CRM utilizes several data sources (stem volume, wood and bark specific gravity, biomass components) while the allometric model
uses only total aboveground biomass.
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Modeling approach
The first step was to construct a data-informed hybrid model, modified
from the currently used CRM approach, which follows Woodall et al.
(2011). In brief, Woodall et al.’s (2011) approach uses standard regional
volume equations and species-specific tree density estimates within a
BEF approach to estimate bole biomass (Domke et al., 2012), with separ-
ate estimates for wood and bark density, as well as a model for stump
volume, based on the volume equations of Raile (1982). These are
expanded to give total biomass and then other component biomass
pools are estimated via component ratio models developed by Jenkins
et al. (2003) which predict the fraction in each pool from dbh. For more
complete details on the CRM approach, refer to Woodall et al. (2011).

The n-CRM employed in our study followed the protocols outlined in
Woodall et al. (2011), but with several important differences. Of course,
the most important is that rather than using fixed scaling coefficients
and expansion factors, we allow all n-CRM parameters to follow statis-
tical distributions, and therefore reflect the uncertainty of each compo-
nent in biomass estimates. Under the standard CRM approach, wood
and bark specific gravity are fixed values, drawn from published
tables (Miles and Smith, 2009) and the bark ratios are predicted from
allometric models using dbh (Jenkins et al., 2003). In n-CRM, we allowed
the latter parameters to vary, following a statistical distribution derived
from the legacy data. Additionally, we also adopted some changes to
the component allometric models used in CRM. Specifically, n-CRM used
allometric models that estimate stem, branch and foliage biomass directly,
rather than using the component models of Jenkins et al. (2003), since
Clough et al. (2016a, b) suggest that this is a more accurate approach for
predicting biomass components. Each of these components was predicted
from tree dbh and height. Finally, the CRM applies an additional adjustment
when predicting sapling biomass, but given that we have observed biomass
data across a range of tree sizes we did not adopt this approach in n-CRM.
Since the legacy data do not possess observations of stump volume, we
follow the CRM in calculating the volumes of stump wood and bark empir-
ically using models defined by Raile (1982). Table 2 outlines the set of com-
ponent models used within n-CRM.

Total tree biomass was predicted as a function of dbh (cm) and total
tree height (m) to provide a reference model to compare the n-CRM to
(Table 2). Both the dependent and independent variables were log trans-
formed and then to fit a linear function. Several authors have suggested
that a log-linear specification reduces residual error in total tree biomass
predictions (Sileshi, 2014; Radtke et al., 2017).

Model fitting
We adopted a Bayesian inferential framework for model fitting. Bayesian
inference integrates prior information with likelihood functions drawn

from models fitted to the data, allowing for generation of posterior pre-
dictive distributions for independent observations (i.e. validation data;
Gelman et al., 2003). In this way, Bayesian models naturally account for
uncertainty resulting from the model as well as data-level variance, and
are an ideal system for assessing the precision of different elements of
the biomass models.

Fitting of both the n-CRM and the allometric model was accom-
plished using Stan (Stan Development Team, 2015), based on 1000
Markov chain Monte Carlo iterations following a ‘warm up’ period of
1000 iterations from four Markov chains (i.e. a total of 2000 iterations).
To develop posterior predictive biomass estimates for the n-CRM
approach, we generated 2000 posterior simulations of the following
attributes for each observation in the validation datasets: (1) bole vol-
ume; (2) bark ratio; (3) wood specific gravity; (4) bark specific gravity; (5)
bole biomass; (6) branch biomass; and (7) foliage biomass. In addition,
we generated posterior simulations of total aboveground biomass using
the standard allometric model described above and in Table 2. This
approach resulted in tree-scale posterior predictive distributions (i.e.
2000 posterior simulations per tree) for the validation datasets of each
study species, generated using both n-CRM and allometric modeling
approaches. We summarized these distributions into mean estimates
and posterior uncertainty interval ranges (i.e. 95% uncertainty interval of
each posterior predictive distribution), which were used both to compare
overall performance of the two approaches for each species by root mean
squared percentage error and percent mean bias. We use these relative
measures to allow for better comparisons across species, where the data-
sets differed in tree size distribution. Additionally, model residuals and rela-
tive uncertainties for each prediction were saved for the traits-based
analysis aimed at assessing sources of uncertainty in each method.

Model validation and accuracy assessment
The summary output from the fitted n-CRM and allometric models was
used to obtain tree-scale estimates of accuracy (residuals between pos-
terior predicted means and observed values in the validation data) and
precision (relative uncertainty, defined as the ratio of the posterior 95%
uncertainty interval and the posterior predicted mean) for all six species.

We assessed the role of five traits available from the validation data
in accounting for the accuracy and precision of the n-CRM and allometric
approaches: crown ratio (CR); ratio of foliage biomass to total above-
ground biomass (FR); ratio of leaf biomass to stem area at dbh (FSR);
total height (ht; m); and diameter at breast height (dbh; cm). We
included the crown characteristics, in addition to height and diameter,
because the n-CRM separately estimates crown components (i.e.
branches, foliage) and because we expected large uncertainties asso-
ciated with predicting these pools (Wirth et al., 2004; Wutzler et al.,

Table 2 Equations, and relevant references, related to the tree attributes that were simulated based on legacy data for each approach.

CRM Attribute Equation References
Bole volume α β ε( ) = + ( ) +ln Vol ln dbh ht2 Woodall et al. (2011)

Stump volume
π α β β α β β α

β
= ( )

( )
( − ) + ( − ) ( + ) −

+
S

dbh
ln ht

h4 144
11 1

30.25
1

vol

2
2 2 2

⎡
⎣⎢

⎤
⎦⎥ Raile (1982)

Wood specific gravity μ τ~ ( )WSG Weibull , n/a
Bark specific gravity μ τ~ ( )BSG Weibull ,
Bark ratio μ τ~ ( )BR Weibull ,

Biomass components (stem, branch,
foliage)

α β β ε( ) = + ( ) + ( ) +ln BM ln dbh htln1 2 Clough et al. (2016a, b)

Allometric model Total aboveground biomass α β β ε( ) = + ( ) + ( ) +ln BM ln dbh htln1 2 Jenkins et al. (2003)

For details on the conversion of n-CRM attributes to aboveground biomass estimates, see Woodall et al. (2011) and Appendix A.
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2008; Clough et al., 2016a, b) to have a relatively large effect on overall
performance of the n-CRM, particularly in the case of small trees
(<10 cm diameter at breast height (dbh)).

We used a random forests (RF) analysis to assess the impact of indi-
vidual tree measurements and traits on the performance of n-CRM and
the standard allometric model. We simulated 1000 trees from the RF
algorithm implemented in the ‘randomForest’ package for R (Liaw and
Wiener, 2002), and evaluated the influence of each trait on the percent
increase in mean squared error associated with each variable left out of
the selected model. This approach provided a quantitative assessment
of the relative impacts of different explanatory variables (i.e. tree size
(dbh and ht)) vs traits such as wood density or crown characteristics) on
the accuracy and precision of the n-CRM. This approach has been previ-
ously used to assess the influence of both plant functional traits and cli-
mate variables on forest productivity in the eastern US (Weiskittel et al.,
2011; Russel et al., 2014).

We withheld independent datasets from the available aboveground
biomass data in the legacy data repository for model validation. In gen-
eral, we selected datasets that were totally independent (i.e. collected by
different authors at different locations) from the fitting data. Since the n-
CRM uses different attributes than those used for fitting allometric models
and validating predictive performance (i.e. volume, specific gravity and
component biomass datasets vs total aboveground biomass), this ‘hold-
out’ predictive approach was necessary. Since all of the relevant variables
are not available for every tree used in our analysis, testing on separate
datasets rather than doing ‘pseudo out-of-sample’ assessments via cross
validation procedures is necessary (Vehtari and Ojanen, 2012). Using fully
independent validation data represents a strong test of predictive per-
formance (Vehtari and Ojanen, 2012), although in this case it also
required that inferences were made on a small number of datasets.

Results
Performance of n-CRM and allometric models for
predicting total tree biomass
Overall, our results suggest that the n-CRM tended to provide
more accurate predictions of total tree biomass, as evaluated
with root mean squared error (RMSE, see Table 3), in comparison
with species-specific allometric models. The n-CRM was more
accurate for four species (longleaf pine, slash pine, sweetgum
and white oak), with fairly large differences in accuracy for the
two pines (i.e. 20–30 per cent relative improvement) and much
narrower gains for the hardwood species (i.e. ~3 per cent). The
allometric model performed better for loblolly pine and red
maple, although for red maple the result was heavily influenced
by greater under-prediction of one large (~6 000 kg) tree in the

validation dataset (Figure 1). In general, prediction performance
of both methods was poor for large (>1000 kg) red maples,
although only three such individuals were available for fitting mod-
els. In the case of loblolly pine, the difference in RMSE between the
two methods was narrower, mainly arising from a tendency of the
n-CRM to over-predict the biomass of small trees (Table 4). Most
species showed opposing signs in bias estimates for the n-CRM
and allometric models, though these trends were not consistent
across species. For example, the n-CRM showed a negative bias
and the allometric model a positive bias for slash pine, but the
opposite was true of loblolly pine. In the case of longleaf pine both
methods under-predicted observed values (Table 4), though the
bias was less severe for the allometric model. White oak showed
similar bias between the two methods for smaller trees, but a
greater tendency of the n-CRM to underestimate large individuals.
White oak and sweetgum exhibited poorer accuracy by either
method when compared to the remaining four species.

Examining RMSE and bias for the component models used in
the n-CRM showed a negative bias for branch biomass and posi-
tive bias for foliage, with some exceptions (i.e. foliage biomass
for loblolly pine; Table 4). Bias of stem components was negative
for the three pine species and positive for the three hardwoods.
Comparing RMSEs to mean observed component biomass for the
validation data showed much poorer prediction accuracy for the
branch and foliage biomass models when compared to the stem
biomass model. However, accuracy of the branch models for the
three hardwood species was generally poorer than those fitted to
the pines. The same was true of the foliage biomass models for
loblolly and longleaf pine, though the foliage biomass model for
slash pine had higher error.

Influence of individual traits on accuracy and precision of
n-CRM and allometric models

For the most part, the traits we considered explained little or no
variance for the residuals of both the n-CRM and allometric
model (Table 5). The exception was loblolly pine, where a mod-
erate degree of variation was explained for both n-CRM and allo-
metric model residuals (47 and 29 per cent, respectively). For
this species, CR had the highest importance score for n-CRM
residuals while DBH had the highest for allometric residuals.
Additionally, while the remaining residuals models explained lit-
tle or no variance, the highest ranking variables were either
related to foliage biomass (FR, FSR) or overall tree size (DBH, HT).

Precision of the n-CRM predictions (i.e. relative uncertainties,
Table 5) was well explained by the traits, with these models
accounting for 54–92 per cent of the variance across all species. In
all cases, the most important variables were some combination of
CR, DBH and HT. The size variables were the most important for
longleaf pine and the three hardwood species, while DBH and CR
were most important for loblolly and slash pine. Allometric model
relative uncertainty was generally not explained by the traits we
considered, though a little more than half of the variance for red
maple was accounted for by size (DBH, HT).

To better understand the nature of the relative uncertainties
they were plotted against dbh for each species (Figure 2). In all
cases, the n-CRM displayed poor precision relative to the allo-
metric model for small individuals (<10 cm dbh), but these dif-
ferences disappeared for larger trees where the precision of

Table 3 Root mean squared percentage error and percent mean bias for
n-CRM and allometric models applied to each of the study species.

CRM (%) Allometric (%)

RMSE Mean bias RMSE Mean bias

Loblolly pine 29.82 8.42 23.67 −2.41
Slash pine 18.31 −7.95 23.31 −13.29
Longleaf pine 19.74 −4.88 29.51 7.94
Red maple 19.74 −4.88 29.51 7.94
Sweetgum 72.71 −17.23 47.10 −8.71
White oak 27.91 −5.88 28.70 3.52
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Figure 1 Predicted vs observed biomass for the CRM and allometric models.
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both approaches is generally comparable. This trend is particu-
larly apparent for red maple, where relative uncertainties were
very high (up to 700 per cent) for small trees, which agreed with
the finding that dbh and ht influenced prediction precision for
red maple even if size did not have a large impact for other
hardwoods. In slash pine and red maple, the n-CRM maintains a
small but notable higher uncertainty even for larger individuals,
while the remaining species show comparable performance
between the two methods. Note however that the validation
dataset contains only four red maples >1000 kg in biomass. In
all cases, the relative uncertainties for the n-CRM method
exceed that of the allometric models, indicating greater preci-
sion with the allometric approach. However, the relative uncer-
tainties were generally large (greater than 75 per cent, and in
most cases greater than 100 per cent) across all species, indic-
ating very poor precision in these data-fitted models regardless
of whether a n-CRM or allometric equation is used.

Since the n-CRM also gives component biomasses, in addition
to total biomass, we were also able to examine how the parts
contributed to prediction of the whole for this method
Examining the same relationships (i.e. posterior relative uncer-
tainty plotted against dbh) for aboveground biomass compo-
nents provides further context for the patterns in overall
biomass uncertainty (Figure 3). In components the uncertainty/
size relationship was less severe, with the exception of branch
and foliage biomass for red maple, which showed a relationship
between relative uncertainty and dbh. Hardwoods showed gen-
erally higher relative uncertainty in branch and foliage predic-
tions when compared with the three pine species. In particular,
red maple and sweetgum show relative uncertainties >200 per
cent for foliage biomass, and uncertainties between 150–200
per cent for branch biomass. By contrast relative uncertainties
for foliage were lower for softwoods, although both branch and
foliage relative uncertainty were comparable to that of white
oak. Relative uncertainty of the stem model was fairly compar-
able across all six species, although in loblolly pine the relative
uncertainty of all three components was similar and higher
than stem relative uncertainty in the other species.

Discussion
Our analyses revealed several important trends related to tree
biomass estimation via n-CRM relative to a standard allometric

approach which only uses dbh and height. First, our results
show that n-CRM can at least provide comparable predictive
performance to standard allometric approaches for predicting
total tree biomass, and for some species may offer improve-
ments in prediction accuracy. However, it also needs to be
recognized that the n-CRM uses considerably more information
to do so (Table 2). Both the n-CRM and the allometric models
here used height and dbh as baseline predictors, but the n-CRM
also used wood density, which has been shown to improve both
component and total tree mass estimation (MacFarlane, 2015).
Though less accurate in four of six cases, the allometric models
had lower uncertainty overall and a generally constant invari-
ance over the size range. This suggests that standard allometric
models are more precise than the n-CRM-type approaches, par-
ticularly for small trees, but may have greater bias. This bias
likely comes with the assumption of constant scaling across
size, which is a hallmark of allometric scaling theory (Enquist
and Niklas, 2001), although our results indicate that these
trends may be less consistent for crown components.

Second, the crown component (branches, foliage) models
used in the n-CRM showed poor prediction accuracy and preci-
sion (relative uncertainty) when compared to stem biomass,
particularly for hardwood species. Previous work by Clough et al.
(2016a, b) highlighted substantial uncertainties that arise when
predicting component biomass pools such as foliage with hier-
archical models fitted to biomass data, and application of simi-
lar component biomass models within the CRM in this analysis
fits with this pattern. Crown components occupy a much larger
proportion of total biomass at smaller size classes, so uncer-
tainty in foliage and branch biomass accounts for the much
poorer precision of the CRM when applied to smaller diameter
trees. This effect is particularly apparent for red maple, which
was also the only species to show substantial size dependence
(i.e. poorer precision for small trees) in the relative uncertainty
of its biomass components as well.

Third, results of posterior predictive assessment show size
dependence in precision of CRM predictions across all species,
which is linked to both dimensional and crown attributes by the RF
analysis. The pattern of exponentially decreasing relative uncer-
tainty across size from the CRM, with constant relative uncertainty
from the allometric model, is particularly striking. These results
agree with a stand-level comparison of BEFs and allometric mod-
els conducted by Jalkanen et al. (2005), who found that BEFs pro-
duced higher relative standard errors than allometric models
across all age classes, with generally poorer precision of both
methods among younger trees. However, unlike Jalkanen et al.
(2005), we found that the relative precision of the two approaches
were strongly size dependent (i.e. Figure 2). This disagreement is
probably explained by methodological differences: their study used
a BEF to convert stem volume to total aboveground biomass, while
our approach followed Woodall et al. (2011) in using a BEF to cal-
culate bole biomass and separate allometric equations for crown
components. Thus, while our results generally confirm the CRM as
a comparable method for biomass estimation of major North
American tree species, they also reveal important gaps in the CRM,
such as the very poor precision of predictions for small diameter
trees relative to standard allometric models. Such issues influence
the overall precision of biomass stock assessments calculated
from NFIs, but also highlight the role of predictive model assess-
ment for improving forest biomass estimation procedures.

Table 4 Root mean squared percentage error and percent mean bias
for biomass components (stem, branch, foliage) according to the
component models used in n-CRM approach.

Stem (%) Branch (%) Foliage (%)

RMSE Mean bias RMSE Mean bias RMSE Mean bias

Loblolly pine 25.1 −2.3 66.0 4.2 50.6 −3.0
Longleaf pine 21.3 −13.8 59.5 −11.0 46.0 −16.0
Slash pine 17.2 −1.0 92.1 −21.4 185.8 72.6
Red Maple 58.8 0.1 289.1 −52.2 127.7 27.7
Sweetgum 19.8 5.0 107.3 −35.1 75.5 16.0
White oak 20.9 5.5 105.5 −42.0 262.7 161.4
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Table 5 Variable importance scores (%IncMSE) and fit statistics (R2; MSE) for the residuals for the full model and two variable models fit with the RF
algorithm.

Variable importance (% increase in MSE)

n-CRM residuals n-CRM relative
uncertainty

Allometric residuals Allometric relative
uncertainty

Loblolly pine
CR 22.3* 34.5** 16.7 16.7*
FR 18.7 19.8 22.2** 15.6
FSR 17.78 23.2 18.2 5.8
HT 19.57** 29.4 16.1 15.7**
DBH 14.22 39.1* 31.4* 11.9
R2 0.47 0.92 0.29 −13.71
MSE 562.8 0.002 1166.2 9.00E-04

Longleaf pine
CR 3.4 14.3 3.9 9.3
FR 13.4** 11.6 10.4 12.1**
FSR 19.8* 9.5 12.1** 8.7
HT 10.3 28.3* 12.7* 8.1
DBH 7.9 28.1** 8 13*
R2 8.57 85.86 4.66 1.92
MSE 7020.1 2.00E-03 9068.2 1.00E-04

Slash pine
CR 6.4 25.8** 5 9.6
FR 9.1** 14.4 11.6** 9.9
FSR 10.2* 13.4 9.1 2.8
HT 1.7 25.1 12.3* 10**
DBH −3.9 29.6* 9.4 13.6*
R2 −5.61 93.85 −5.3 −16.03
MSE 2611.8 2.00E-03 3925.9 2.00E-04

Red maple
CR 9.5* 11.5 5.5 9.5
FR 3.2 14.2 2.4 13.4
FSR 8** 10.7 8.8* 8.8
HT 1.7 14.6** 6.5** 15.7**
DBH 1.3 17.2* −1.7 17.4*
R2 −19.74 54.22 −14.27 54.9
MSE 5122.3 5.00E-04 16 284.9 5.00E-04

Sweetgum
CR 6.8 28.5 2.2 10.5
FR 11.1** 15 12.2* 7.8
FSR 12.6* 13.9 10.8** 2.9
HT 2.9 29.7** −4.7 11.2*
DBH 10.2 30.8* 0.7 12.5*
R2 −0.17 94.55 −27.43 −25.06
MSE 10 541 2.00E-03 14 841.9 3.00E-04

White oak
CR 2.52 15.5 −2.5 1.2
FR −1 12.3 −2.9 8.9
FSR −1.6 5.7 −3.8 10.2**
HT 9.7** 20.7** 14.1* 5.7
DBH 17.6* 21.5* 13.6** 12.7*
R2 −5.94 87.9 −10.63 2.66
MSE 51 795 0.01 140 989 2.00E-04

Separate models are presented for n-CRM and allometric model, as well as the relative uncertainties, for each of the study species. * Indicates the
most important variable of the two variable model and ** indicates the second variable.
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Species-related influences on results

The species-level traits that influenced performance of both the
CRM and allometric models highlight possible ways to improve
the overall accuracy of biomass stock assessments.

The differences in accuracy and precision of component bio-
mass models between pine and hardwood species may be
related to general differences in whole-tree architecture and
growth between the two taxa. Conifers tend to have an

Figure 2 Relative uncertainty of biomass predictions (posterior 95% uncertainty interval/posterior mean) vs diameter at breast height (dbh) for the
component ratio model (CRM) and allometric model (Allometric).
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excurrent, vertical crown structure (i.e. low width and but rela-
tively high depth in the canopy) and strong vertical growth,
which distributes branch and foliage biomass along a similar
vertical axis to stem biomass. By contrast hardwood tree spe-
cies typically exhibit decurrent crowns where most or all of the
crown biomass arises from a single plane at the top of the stem

and large branches may account for a significant proportion of
the overall tree biomass (MacFarlane, 2010). These differences
have been previously noted as reasons why incorporating crown
dimensions into models of bole volume might be less effective
for conifers than for hardwoods (Thomas and Parresol, 1991;
Valentine and Gregoire, 2001). In conifers, crown dimensions

Figure 3 Relative uncertainty of component biomass predictions (95% posterior uncertainty interval/posterior mean) vs dbh.
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are generally proportional to overall tree size, so they add little
new information to a bole model (MacFarlane, 2010). However,
a more uniform crown structure should mean that allometric
functions for predicting crown components based on tree size
should perform better for conifers than for hardwoods. Our
results provide some indication of this, at least when comparing
the pine and hardwood species considered by our study. The
better prediction accuracy of the component models for the
pine species suggests that separately modeling biomass com-
ponents as in the CRM might be a better approach for conifers
than for hardwoods. It should also be noted that all three hard-
woods we analyzed are at least relatively shade tolerant spe-
cies, which may have denser wood and shorter boles that can
support large crowns, even in sub-canopy positions (Ninements
and Valladares, 2006). However, the legacy data we employed
are a compilation of studies collected from multiple locations,
so disentangling the effects of management (i.e. plantation vs
natural stands), competition and other site-specific factors
which many influence biomass allocation to crowns is challen-
ging and beyond the scope of our study. So, while our results
point to some general patterns, fully evaluating whether these
results generalize to other sites and/or species requires a more
diverse sample of crown biomass data.

In addition to accounting for general differences in tree
architecture, directly modeling biomass components may
account for other methodological gaps as well. Allometric scal-
ing theory assumes that branching networks such as tree
crowns are volume filling, but the pine species we studied can
exhibit substantial variation in relationships between crown vol-
ume and tree size (Chmura et al., 2007). Additionally, branch
senescence, which is common in pines, is poorly accounted for
by allometric models, unless they incorporate an auxiliary vari-
able such as CR (Mäkelä and Valentine, 2006). In these cases,
directly predicting component biomass with their own allomet-
ric relationships (i.e. dbh-branch; dbh-foliage), rather than inte-
grating these into a whole-tree biomass estimate, may
represent a more accurate approach. This notion is partly valid-
ated by our comparison of total aboveground biomass predic-
tions for the CRM and allometric model, where the former
tended to perform better for the pine species. The exception is
loblolly pine where the allometric model showed a modest rela-
tive improvement in accuracy that seems to be related to lower
bias in predicting small diameter trees. However, given the
broad morphological and biological similarities between these
three pine species, this difference likely arises from broad differ-
ences in site level factors such as management regime.

Future application of n-CRM in the US’ NFI

The CRM is the current approach for quantifying forest biomass
in the US National Greenhouse Gas Inventory (EPA, 2016), and
our results highlight a need for model improvements to increase
the precision of overall biomass stock assessments. Most
importantly, our results provide both an overall assessment of
the uncertainty in biomass CRMs, as well as some indication of
the most important contributors to overall error. Taken together,
these results present a case for both data-driven approaches to
biomass estimation, as well as the ‘hybrid’ estimation approach
relative to allometric models. However, they also indicate

specific methodological improvements to the current CRM that
may improve the accuracy of biomass predictions.

The scale of prediction uncertainty from n-CRM, as well as
the distribution of precision estimates among species and size
classes, is perhaps the most important finding of our work in
that it presents a strong case for utilizing data-driven approaches
to estimate biomass within NFIs. The current CRM method
assumes that both BEFs as well as allometric scaling coefficients
are fixed (Woodall et al., 2011), which does not allow for prediction
uncertainty to be directly assessed at the tree scale. By contrast,
n-CRM uses the Legacy Tree Database to fit models via Bayesian
estimation techniques, which naturally allow for posterior uncer-
tainty assessments that capture both model and residual error to
be derived. This is advantageous over CRM because accurate quan-
tification of error in biomass stock assessments is part of the
United States’ reporting commitments under the United Nations’
Framework Convention on Climate Change (EPA, 2016), and the
current CRM approach ignores tree-scale model error (Clough
et al., 2016a, b). Of course other the n-CRM approach could be
adopted to other statistical frameworks, particularly when point
estimation is the main goal and uncertainty assessments are not
necessary. However even in these cases the Bayesian framework is
useful for continuous updating of models, where previous predic-
tions and parameter estimates act as priors for updates to n-CRM.
This feature provides a convenient workflow for continuously
expanding models (Gelman et al., 2003), which is useful since the
Legacy data and other data resources will grow as additional sam-
pling efforts are undertaken.

From the perspective of obtaining accurate biomass estimates,
our results provide some evidence to prefer component ratio
approaches over allometric models. Overall, we demonstrate that
the n-CRM is capable of producing better or comparable accuracy
to allometric models, but exhibits poor precision when predicting
biomass of smaller trees across a range of softwood and hard-
wood species. The trait analysis we conducted, along with the pos-
terior uncertainties of branch and foliage biomass, indicates that
this pattern is driven by large posterior prediction uncertainties in
crown components, particularly foliage biomass, which make up a
large proportion of overall biomass in smaller trees. The models in
our CRM implementation use dbh and height as predictors, but
our trait analysis supports the inclusion of auxiliary variables
such as crown diameter (MacFarlane, 2015) or metrics (poten-
tially drawn from remote sensing datasets; e.g. Jucker et al.,
2017) to increase both precision and accuracy. However, while
precision of CRM predictions was explained by some of the
traits we considered, model residuals were generally not well
accounted for, suggesting additional factors which influence
the accuracy of the CRM approach. In general, our results sug-
gest that standard allometric modeling approaches may be
suboptimal for addressing the overall architecture and vari-
ation in crown biomass in conifers, particularly pines, and that
therefore n-CRM is likely to produce better component biomass
estimates. Given that n-CRM also provides the advantage of
consistent biomass and volume assessments, and that accur-
acy was better or comparable to allometric models for the six
species we assessed, our results provide support for the appli-
cation of component ratio approaches within NFIs.

However, our work also suggests that improvements are
needed to the CRM method if it is to be applied for developing
national biomass stock assessments. In particular, our posterior
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analysis suggests that substantial improvements to crown com-
ponent models are necessary if the CRM is to be relied upon for
producing accurate, precise biomass predictions within national
forest inventories. In particular improvements to crown compo-
nent models are necessary, and more flexible approaches for
modeling stem biomass may help reduce prediction uncertainty
in hardwoods and small stems. Radtke et al. (2017) also dem-
onstrate significant gains via alternative model formulations
with the CRM, though ultimately conclude that allometric mod-
els still provide more accurate biomass stock assessments. The
methodological changes considered in their study should be
considered for implementation, and our work extends these
results by arguing for additional exploration of key plant traits
which may account for variation in component ratio models.
While the inferences in our study are based on a small number
of validation datasets owing to the hold-out predictive approach
necessitated by the CRM/allometric model comparison, the
trends across hardwood and softwood species in our study sug-
gest that future work should seek to understand how these pat-
terns generalize for larger, more representative biomass
datasets. The ‘out of sample’ prediction we performed is akin to
applying fitted models to independent tree measurements
within NFIs, so our results indicate that the largest expected
influences would be for early successional forests and resource-
limited ecosystems, where trees maintain small stature such as
the ‘pine barrens’ forest types found throughout the Atlantic
coastal plain in the eastern US.

Finally, these analyses would not be possible without large,
independent data resources such as the legacy tree data reposi-
tory used here. These are invaluable for conducting robust pre-
dictive evaluation, and for critiquing the performance of
different models as we do here. As data for more species and
sampling locations are added worldwide (e.g. Jucker et al.,
2017), additional inferences on traits driving variation in bio-
mass stock estimation procedures, as well as more robust com-
parisons of alternative biomass model formulations, will be
possible. Additionally, the overall large relative uncertainties we
observed (i.e. greater than 75 across all species regardless of
the method applied) indicate that, regardless of the approach,
allometric model error requires consideration as a source of
uncertainty when predicting biomass at stand to regional levels.
Resources such as the legacy data are crucial for ensuring that
these uncertainties are accurately captured and accounted for
in biomass stock assessments.

Acknowledgements
Data compilation for the legacy data and the independent validation
datasets, as well as B. Clough’s time, were funded by the USDA Forest
Service Forest Inventory and Analysis Program, Northern Region.
Additional funding and support was available from the Minnesota
Agricultural Experiment Station. Part of D.W. MacFarlane’s time was sup-
ported with funds from Michigan AgBioResearch through the USDA
National Institute of Food and Agriculture.

Conflict of interest statement
None declared.

References
Chmura, D.J., Rahman, M.S. and Tjoelker, M.G. 2007 Crown structure and
biomass allocation patterns modulate aboveground productivity in
young loblolly pine and slash pine. For. Ecol. Manage. 243, 219–230.

Clough, B.J., Russell, M.B., Domke, G.M., Woodall, C.W. and Radtke, P.J.
2016a Comparing tree foliage biomass models fitted to a multispecies,
felled-tree biomass dataset for the United States. Ecol. Modell. 333, 79–91.

Clough, B.J., Russell, M.B., Domke, G.M. and Woodall, C.W. 2016b
Quantifying allometric model uncertainty for plot-level live tree biomass
stocks with a data-driven, hierarchical framework. For. Ecol. Manage.
372, 175–188.

Domke, G.M., Woodall, C.W., Smith, J.E., Westfall, J.A. and Mcroberts, R.E.
2012 Forest Ecology and Management Consequences of alternative
tree-level biomass estimation procedures on U. S. forest carbon stock
estimates. For. Ecol. Manage. 270, 108–116.

Enquist, B.J. and Niklas, K.J. 2001 Invariant scaling relations across tree-
dominated communities. Nature 410, 655–660.

Gelman, A.E., Carlin, J.B., Stern, H.S. and Rubin, D.B. 2003 Bayesian Data
Analysis. 2nd edn. CRC Press.

Jalkanen, A., Makipaa, R., Stahl, G., Lehtonen, A. and Petersson, H. 2005
Estimation of the biomass stock of trees in Sweden: comparison of bio-
mass equations and age-dependent biomass expansion factors. Ann.
For. Sci. 62, 845–851.

Jenkins, J.C., Chojnacky, D.C., Heath, L.S. and Birdsey, R.A. 2003 National-
scale biomass estimators for United States tree species. For. Sci. 49, 12–35.

Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., et al
2017 Allometric equations for integrating remote sensing imagery into
forest monitoring programs. Glob. Chang. Biol., 23, 177–190.

Lambert, M.-C., Ung, C.-H. and Raulier, F. 2005 Canadian national tree
aboveground biomass equations. Can. J. For. Res. Can. Rech. For. 35,
1996–2018.

LegacyTreeData: A repository of individual tree measurements of vol-
ume, weight, and physical properties (2016). www.legacytreedata.org
(accessed on April 2016).

Liaw, A. and Wiener, M. 2002 Classification and regression by
randomForest. R. News 2, 18–22.

Macfarlane, D.W. 2010 Predicting branch to bole volume scaling relation-
ships from varying centroids of tree bole volume. Can. J. For. Res. 40,
2278–2289.

MacFarlane, D.W. 2015 A generalized tree component biomass model
derived from principles of variable allometry. For. Ecol. Manage. 354,
43–55.

Miles, P.D. and Smith, B.W. 2009 Specific gravity and other properties of
wood and bark for 156 tree species found in North America. US Forest
Service Research Note NRS-38.

Mäkelä, A. and Valentine, H.T. 2006 Crown ratio influences allometric
scaling in trees. Ecology 87, 2967–2972.

Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O.,
et al 2016 Comparison of carbon estimation methods for European for-
ests. For. Ecol. Manage. 361, 397–420.

Ninements, U. and Valladares, F. 2006 Tolerance to shade, drought, and
waterlogging of temperate northern hemisphere trees and shrubs. Ecol.
Monogr. 76, 521–547.

Parresol, B.R. 2001 Additivity of nonlinear biomass equations. Can. J. For.
Res. 31, 865–878.

Radtke, P.J., Walker, D., Frank, J., Weiskittel, A.R., DeYoung, C.,
Macfarlane, D.W., et al 2017 Improved accuracy of aboveground bio-
mass and carbon estimates for live trees in forests of the eastern United
States. For. An Int. J. For. Res. 90, 32–46.

Forestry

586

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article-abstract/91/5/575/5060316 by N

ational Forest Service Library user on 01 July 2019

www.legacytreedata.org


Raile, G.K. 1982 Estimating Stump Volume, USDA Forest Service. St. Paul.

Russell, M.B., Woodall, C.W., D’Amato, A.W. and Domke, G.M. 2014
Beyond mean functional traits: influence of functional trait profiles on
forest structure, production, and mortality across the eastern US. For.
Ecol. Manage. 328, 1–9.

Segura, M. and Kanninen, M. 2005 Models for tree volume and total
aboveground biomass in a tropical humid forest in Costa Rica. Biotropica
37, 2–8.

Sileshi, G.W. 2014 A critical review of forest biomass estimation models,
common mistakes and corrective measures. For. Ecol. Manage. 329,
237–254.

Stan Development Team. 2017. The Stan Core Library, Version 2.17.0.
http://mc-stan.org.

Thomas, C.E. and Parresol, B.R. 1991 Simple, flexible, trigonometric taper
equations. Can. J. For. Res. 21, 1132–1137.

United States Environmental Protection Agency 2016 Inventory of U.S.
Greenhouse Gas Emissions and Sinks: 1990–2014. United States
Environmental Protection Agency.

Valentine, H.T. and Gregoire, T.G. 2001 A switching model of bole taper.
Can. J. For. Res. 31, 1400–1409.

Vehtari, A. and Ojanen, J. 2012 A survey of Bayesian predictive methods
for model assessment, selection and comparison. Stat. Surv. 6, 142–228.

Ver Planck, N.R. and MacFarlane, D.W. 2015 A vertically integrated
whole-tree biomass model. Trees Struct. Funct. 29, 449–460.

Weiskittel, A.R., Crookston, N.L. and Radtke, P.J. 2011 Linking climate,
gross primary productivity, and site index across forests of the western
United States. Can. J. For. Res. 41, 1710–1721.

Weiskittel, A.R., Macfarlane, D.W., Radtke, P.J., Affleck, D.L.R., Temesgen,
H., Westfall, J.A., et al 2015 A call to improve methods for estimating
tree biomass for regional and national assessments. J. For. 113,
414–424.

Westfall, J.A. 2012 A comparison of above-ground dry-biomass estima-
tors for trees in the northeastern United States. North. J. Appl. For. 29,
26–34.

Wirth, C., Schumacher, J. and Schulze, E.-D. 2004 Generic biomass func-
tions for Norway spruce in Central Europe–a meta-analysis approach
toward prediction and uncertainty estimation. Tree Physiol. 24, 121–139.

Woodall, C.W., Heath, L.S., Domke, G.M. and Nichols, M.C. 2011 Methods
and equations for estimating aboveground volume, biomass, and carbon
for trees in the U.S. forest inventory, 2010.

Wutzler, T., Wirth, C. and Schumacher, J. 2008 Generic biomass func-
tions for Common beech (Fagus sylvatica L.) in Central Europe – predic-
tions and components of uncertainty. Can. J. For. Res. 38, 1661–1675.

Appendix A
This appendix extends the description of the n-CRM approach in the
main body of the paper with additional details related to the computa-
tion of total aboveground biomass (AGB). Computing AGB with n-CRM
involves separate estimation of tree-scale attributes using several com-
ponent models, described in Table 2, which are then converted to
whole-tree biomass using expansion factor and additive approaches.
The n-CRM is closely related to the component ratio method described
by Woodall et al. (2011), and computational procedures closely mirror
methods used by those authors. For this reason, our treatment here is
brief and readers should refer to Woodall et al. (2011) for further back-
ground on the component ratio method.

Statistical computing

Before discussing computation of AGB, few additional notes on the stat-
istical methods underlying n-CRM are warranted. As discussed in the
Methods section, n-CRM is fit as a Bayesian model in Stan, with each
sub-model fit separately and resulting posterior predictions used to gen-
eral posterior estimates of individual tree total biomass. The specifica-
tion of a Bayesian model requires the selection of prior distributions for
model parameters, and we generally chose ‘weakly informative’ prior
distributions that were designed to facilitate efficient Markov chain
Monte Carlo (MCMC) sampling without placing any prior information on
the posterior parameter estimates, and thus allowing these to be fully
informed by the fitting legacy data. For regression coefficients such as
those in the stem volume, total biomass, and component biomass mod-
els these were normal priors with a mean of zero and a scale equivalent
to several standard deviations (i.e. β~ ( )N 0, 25 , although precise specifi-
cations varied depending on the scale and units of the data. Scale para-
meters, including both data-level variances and variance of regression
coefficients were specified with weakly informative half-Cauchy priors
(i.e. τ~ ( )Cauchy 0, 5 ). Once sub-models were specified, the 1 000 poster-
ior simulations were drawn from 4 MCMC chains following a ‘warm up’
period to allow for model convergence (2 000 total iterations). Posterior
predictive draws were taken for each tree in the fitting data simultan-
eously and saved as n x 2 000 matrices of predicted attributes where n
= 1,…,N observations in the validation datasets. In the proceeding sec-
tion the computation of total biomass is described for one point esti-
mate, but it should be understood that in our procedure these
calculations were done using every row of these matrices of posterior
predictions, thus generating 2 000 posterior estimates of AGB.

Computing AGB via the n-CRM

Our algorithm for converting posterior predictions of the sub-models in
Table 2 to posterior estimates of total biomass proceeds as follows:

Step 1: Calculating stem wood, stem bark, and bole biomass

Posterior predictions of stem wood volume (Vol) and bark ratio (BR) are
generated by fitting relevant equations in Table 2 to the fitting data.
From these stem wood volume arises naturally while bark volume is
subsequently estimated as:

= ∗ ( )Vol Vol BR A.1bk

where all three elements are n × 2 000 matrices of posterior pre-
dictions, and these dimensions should be assumed for all subse-
quent calculations. Once wood and bark volumes are obtained
they are expanded into biomass using posterior predictions of
wood specific gravity (WSG) and bark specific gravity (BSG) as:

= ∗ ∗ ( )kBM Vol WSG A.2wood

= ∗ ∗ ( )kBM Vol BSG A.3bark bk

where k is constant that converts biomass estimates to green
weight (kg). Once estimates of wood and bark biomass are
obtained, total bole biomass is calculated as:

= + ( )BM BM BM A.4bole wood bark
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Step 2: Calculating CRM adjustment factors

The approach used by Woodall et al. (2011) applies ‘CRM adjustment fac-
tors’ to estimates of component biomass obtained via the CRM. The pur-
pose of these adjustments is to correct biomass estimates obtained via an
expansion factor approach relative to those obtained using component
allometric equations (Jenkins et al., 2003).While it is unclear that these cor-
rections are necessary when performing a data-fitted hybrid approach
such as n-CRM, we preserved this step to remain consistent with current
USFS procedures. Given the general posterior mean agreement between n-
CRM and the allometric model (e.g. Figure 1) the practical impact of these
adjustments on our work is small. The adjustment factor is calculated as:

= ( )CRM
BM
BM

A.5adj
bole

stem

where BMstem is predictions of stem biomass from the data-
fitted stem allometric model described in Table 2.

Step 3: Estimate component (stump, branch, foliage) biomass

As described in the Methods section, the legacy data do not possess
measurements of stump biomass or volume, so we use an expansion
factor approach that synthesizes our data-estimated posterior distribu-
tions of WSG and BSG with empirically calculated estimates of stump
vole using the equations of Raile (1982; Table 2). In brief, these models
separately estimate stump outside bark volume (Volsosb) and inside bark
volume (Volsisb) and then obtain stump bark volume as:

= − ( )Vol Vol Vol A.6sbk sosb sisb

Stump wood and bark biomass are then calculated using the same
expansions described in (A.2) and (A.3), but substituting stump wood
and bark volume for bole wood and bark volume. Stump biomass is
then calculated as:

= ( + ) ∗ ( )BM BM BM CRM A.7stump stumpwood stumpbark adj

Top biomass is calculated as the sum of predictions from the branch
and foliage allometric models in Table 2, with the CRM adjustment fac-
tor applied:

= ( + ) ∗ ( )BM BM BM CRM A.8top branch foliage adj

Step 4: Calculate total aboveground biomass

In the final step, total aboveground biomass is calculated as the sum of
the bole, stump, and top components:

= + +BM BM BM BMagb bole stump top
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