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A B S T R A C T

There is growing interest in estimating and mapping biomass and carbon content of forests across large land-
scapes. LiDAR-based inventory methods are increasingly common and have been successfully implemented in
multiple forest types. Asner et al. (2011) developed a simple universal forest carbon estimation method for
tropical forests that reduces the amount of required field measurements. We tested this approach, along with
standard regression and Random Forest modeling techniques, in a northern hardwood-dominated watershed in
the White Mountains of New Hampshire. Additional objectives included assessing the effects of different in-
ventory plot designs and GPS accuracy. The universal model performed poorly in this forested landscape due to
the lack of a clear relationship between canopy height and stand basal area. Simple regression modeling also
produced poor model fits; the Random Forest models produced somewhat better biomass predictions than either
the universal or regression models, and had low predictive power as measured by R2 but root mean squared
errors were comparable to those from other studies in complex forests. Effects of positional accuracy from survey
vs. resource grade GPS units were slight, as were the effects of varying plot designs, although errors generally
increased when larger basal area factors were used.

1. Introduction

Inventory and monitoring is an essential, but expensive, component
of forest management. Inventory data are important for meeting mul-
tiple management objectives including timber production, wildlife ha-
bitat, forest health, and carbon sequestration (Kershaw et al., 2016). At
regional to national scales, National Forest Inventory data meet some
needs. For example, while the USDA Forest Service’s Forest Inventory
and Analysis Program (FIA) is a source of detailed forest inventory data
(USDA Forest Service, 2017), the inventory is designed to be used at the
state, regional, or national level, with one plot every 2428 ha (Bechtold
and Patterson, 2005). As such, these data are generally not appropriate
for landowners or managers due to the resolution of the sampling de-
sign. Because extensive field work is needed to collect inventory data at
the level of stands or small landscapes, conducting routine forest in-
ventories that meet an acceptable accuracy threshold is often quite
expensive.

Airborne LiDAR, or light detection and ranging, employs a laser and
high precision GPS to produce a three-dimensional representation of
the ground beneath the aircraft’s path; as the laser’s energy hits a

surface, it is reflected back to the instrument and recorded. Multiple
returns are possible from each laser pulse. Airborne LiDAR has been in
use for some time for terrain mapping; this product typically has a low
return density (1–2 pulses per square meter, or ppsm) and is acquired
when the forested portions of the landscape are in a leaf-off condition.
Higher-density LiDAR data from full waveform and discrete return in-
struments have been used by researchers to assess various forest char-
acteristics such as tree density, diameter, basal area (BA), and biomass
(e.g. Lefsky et al., 1999, Beets et al., 2011, Hudak et al., 2006).

LiDAR studies of forest structure have occurred across a variety of
biomes from tropical to boreal forests with variable model results; often
with better results in conifer types or managed landscapes, where tree
and forest structure is less complex and more regular. Zolkos et al.
(2013) performed a meta-analysis on 70 studies reporting carbon or
biomass across a variety of biomes to assess remote sensing approaches
for measuring forest biomass. Biomass modeled from discrete return
LiDAR data had an overall mean R2 of 0.76, and a mean RMSE of
39.4 Mg/ha. In addition, they found that model error (in both absolute
and relative terms) varied by forest type. Anderson and Bolstad (2013)
estimated biomass in a Wisconsin forest by fitting LiDAR models by
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vegetation type, and report an R2 of 0.74 and RMSE of 37.6 Mg/ha for
coniferous stands, values of 0.71 and 42.8Mg/ha for hardwood stands,
while the mixed stands model had an R2 of 0.44 with an RMSE of
48Mg/ha. When all plots were included in the model, the R2 was 0.55
with an RMSE of 43.5 Mg/ha.

While the cost of LiDAR data acquisition is dropping, use of these
data for operational purposes requires that the field measurement
component needed to model forest attributes be conducted efficiently.
Because of the effort and cost associated with collecting information
from a sufficient number of plots in each forest stratum, there have
been efforts to generalize the modeling process to reduce the number of
variables and/or plots measured. Lefsky et al. (2002) conducted an
early test of a generalized model using waveform LiDAR at three sites in
the US: temperate deciduous, temperate coniferous, and boreal con-
iferous (note that throughout this manuscript, deciduous refers to
broadleaved species only). For both temperate coniferous and tempe-
rate deciduous sites, the R2 values for the site specific and general (all
sites combined) models were the same (0.87 and 0.65, respectively),
while for the boreal conifer site the individual model outperformed the
general (0.76 and 0.56, respectively). Use of a generalized model, if
validated for a sufficient number of forests, would be one approach to
reducing the field data collection burden. For tropical forests, Asner
et al. (2011) developed a general approach to estimating aboveground
biomass using mean canopy height from LiDAR data, and plot-level
measurements of basal area and wood density weighted by basal area.
Comparing the predicted and measured aboveground carbon for all 482
plots across four tropical study locations resulted in an R2 of 0.95 with
an RMSE of 15 MgC/ha. Substituting a regional wood density value
produced an R2 of 0.92. Asner and Mascaro (2014) tested a similar
approach using hundreds of plots across 14 tropical ecoregions, and
found that while LiDAR-derived canopy height accounted for 56% of
the variation in aboveground carbon stock, a model that added basal
area and wood density increased that value to 92%.

The intent of this study is to test if this type of generalized approach
is feasible in the New England forested landscape, where deciduous,
coniferous, and mixed stands are present. Use of a more generalized
model with moderate resolution LiDAR data could provide an oper-
ationally feasible approach to LiDAR-based estimation of forest char-
acteristics that would be practical for use by managers. We have four
major objectives:

1. Test the Asner et al. (2011) approach for estimating aboveground
biomass in a Northern hardwood forest.

2. Compare results from the Asner approach to those from conven-
tional estimation methods.

3. Evaluate the suitability of moderate resolution LiDAR data for es-
timating common structural variables such as trees per hectare,
basal area, and height.

4. Evaluate the impacts of changing plot design (including variable
radius plot or prism sampling) and positional accuracy on the
modeled outputs.

2. Materials and methods

2.1. Study area

The study was conducted in a small forested watershed on the
Pemigewasset Ranger District of the White Mountain National Forest,
located in Grafton County, New Hampshire, USA (Fig. 1). The study
watershed is centered approximately at 44.0657○N, 71.8183○W and is
6885 ha in size. Elevation ranges from 328 to 1463m, with slopes
ranging from 0 to 85%. Annual precipitation averages about 1400mm.
The soils range from drainage classes of excessively drained to very
poorly drained and have soil temperature regimes of frigid at the lower
elevations to cryic at the higher elevations. The study area is pre-
dominantly of the soil order Spodosol and as soil parent materials of

Lodgement and Ablation glacial tills, along with areas of Alluvium,
Glaciofluvial and bedrock controlled outcrops. The vegetation is largely
second growth and is a typical northern hardwood forest, consisting of
sugar maple (Acer saccharum), American beech (Fagus grandifolia),
yellow birch (Betula alleghaniensis), paper birch (Betula papyrifera),
white ash (Fraxinus Americana), red oak (Quercus rubra), and red maple
(Acer rubrum), with a conifer component of Eastern hemlock (Tsuga
canadensis), balsam fir (Abies balsamea), white pine (Pinus strobus), and
red spruce (Picea rubens).

2.2. Field data collection and processing

Plot locations were selected by stratified random sampling, with
strata based on overlaying a conjectured soil group map (based on
landform) with management zones defined by U.S. Forest Service reg-
ulations. A total of 176 plot locations were selected across the wa-
tershed. Field crews navigated to the specified coordinates for each plot
using a recreational-grade GPS. Once the plot center was monumented
and established, the plot was georeferenced using both a survey-grade
(Trimble GeoXH, CE with Zephyr antenna) and resource-grade (Trimble
GPS Pathfinder ProXH with Hurricane L1 antenna) GPS. Field data were
collected in the summers of 2013 and 2014, after the final LiDAR ac-
quisition was completed (the LiDAR data were used to inform plot se-
lection).

All trees above 2.5 cm diameter at breast height (DBH) were mea-
sured using a mapped, nested-plot design. Trees from 2.5 to 12.6 cm
DBH were measured on a 4.23m radius fixed-radius plot, while trees
from 12.7 cm to 30.0 cm DBH were measured on a 10m radius fixed-
radius plot. Trees 30.1 cm DBH and over were measured out to the
limiting distance for a 2.25m2/ha basal area factor (BAF) variable ra-
dius plot. In addition to species, status as live or dead, and DBH (to the
nearest 0.1 cm with a tape), the distance and bearing from the plot
center to the pith of each tallied tree was recorded for all trees, allowing
later simulation of sampling from a 10m fixed-radius plot (with nested
subplot for small trees), and variable radius plots with a range of BAF
spanning and exceeding conventional inventory recommendations for
the region (typically ranging from 3.5 to 4.6 m2/ha, but with some
practitioners using 2.3m2/ha; Wiant et al., 1984, Ducey, 2001), as well
as the full original plot design. On all trees close enough to the plot
center to be tallied using a 4m2/ha BAF variable radius plot, total
height was measured using a Vertex hypsometer (Haglof, Inc.). The
trees measured for height represent a size-weighted probability-based
subsample of the full sample of those measured for DBH (Marshall et al.,
2004; Kershaw et al., 2016, ch. 11).

To predict the heights of trees for which heights were not measured,
we evaluated a series of regression equations using a mixed-effects
modeling framework (Pinheiro and Bates, 2000), relying primarily on
information-theoretic model selection using the Akaike Information
Criterion (AIC) (Akaike, 1974, Burnham and Anderson, 2002) but with
additional consideration of other regression diagnostics, including
correlations between parameter estimates, error distribution and cor-
relation, and Schwarz’s Bayesian Information Criterion (BIC). The
overall philosophy in model selection for this study was holistic, aiming
at reliable predictions constructed from a model built on distributional
assumptions that are satisfied by the data, rather than relying on au-
tomatic selection of a model by a single criterion (Claeskens and Hjort,
2008). We did not consider, and do not report here, p-values associated
with regression coefficients: tree height is known to be correlated with
tree diameter, and height-diameter relationships are known to depend
on species and vary with site, both in general and in this region (e.g.
Ducey, 2012), and since the null hypothesis of no relationship is not
credible, such an approach would be a misuse of the null hypothesis
testing paradigm (Anderson et al., 2000). We evaluated two primary
model forms. The first followed Schumacher and Hall (1933) in log-
transforming tree height H, and taking the reciprocal of DBH:
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= + + + + + + ∊H β γ ϕ β γ ϕ DBHln( ) ( ) ( )/i s p s p i i0 0, 0, 1 1, 1, (1)

where β0 and β1 are fixed effects, γ s0, and γ s1, are random effects of
species, ϕ p0, and ϕ p1, are random effects of plot location, and ∊i is the
true (i.e., tree-level) residual. We also tested a log-log model, i.e.,

= + + + + + + ∊H β γ ϕ β γ ϕ DBHln( ) ( ) ( )ln( )i s p s p i i0 0, 0, 1 1, 1, (2)

All regressions were fit in package lme4 (Bates et al., 2015) in the R
statistical package (R Core Team, 2016). Models involving simplified
random effects models (i.e. omitting γ s1, , ϕ p1, , or both) were also fit;
model fits were assessed using a combination of the Akaike Information
Criterion (AIC), residual and quantile plots for the random effects and
true residual (i.e. the residual at the individual observation level, not
including random effects), and correlations within and between the
fixed and random effects. Once a final equation form and error model
was selected, heights were imputed for all trees without height mea-
surements. Imputation included prediction of Hln( )i using the fixed
effects, as well as the modeled species effect and plot effect associated
with the individual tree. For the very small number of trees of species
that had no modeled species effect (because no trees of that species
were measured for height), a random number from the distribution of
the species effects was drawn. Finally, a normal deviate from the dis-
tribution of the true residuals was added, and then Hi was computed by
taking the antilogarithm. Because error terms are assigned from their
modeled distribution for the transformed variable (i.e. Hln( )i ), then
back-transformed, the need for bias-correction in logarithmic regres-
sion (e.g. Baskerville, 1972) is eliminated.

We calculated the biomass of individual trees using the allometric
equations of Chojnacky et al. (2014), which represent a refinement of
the generalized equations developed by Jenkins et al. (2003), and in-
dividual trees were assigned a wood specific gravity value based on
Miles and Smith (2009). To allow comparison of the effects of sample
design on LiDAR-based retrieval of stand-level parameters, we per-
formed identical computations for the full sample (all trees tallied based
on the field design described above, hereafter “full”), a fixed-radius plot
sample (all trees above 12.6 cm DBH, including those 30.1 cm and
above, restricted to those within 10m of the plot center and horizontal
point sampling with a basal area factor (BAF) of 2.25m2/ha and all
integer values from 3 to 9m2/ha (including only those trees whose
actual distance from the plot center was less than or equal to the cor-
responding limiting distance for a tree of that DBH under that BAF;
Kershaw et al., 2016, ch. 11). Each of these sampling designs can be
viewed as describing a function r DBH( )d that relates the limiting dis-
tance (the maximum distance a sample point may fall from the tree, and
still include the tree in the sample) to the DBH for a given sample design
d. For example, in the fixed-radius design, rd is a step function; in
horizontal point sampling, rd is a simple linear function with the slope
determined by the BAF. For each tree under each sampling design, we
computed the tree factor as

=TF
π r DBH

10,000
[ ( )]i

d i
2

The tree factor determines the scaling for any and all contents of an

Fig. 1. Map showing location and topography of the
study site on the White Mountain National Forest in
New Hampshire, USA.
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individual tree, from the sample point to a per-hectare value (Kershaw
et al., 2016, ch. 9). Using these tree factors, we computed for each
sample point and for each sample design, a series of common de-
scriptors of stand structure. These included number of trees/ha, basal
area (m2/ha), stand quadratic mean diameter (cm), Lorey’s height (the
basal area-weighted mean height of trees in the stand, m), top height
(the height of the tallest 100 trees/ha in the stand), and live tree bio-
mass (Mg/ha). We also computed relative density using the mixed-
species density measure of Ducey and Knapp (2010); relative density is
an index of tree crowding that equals 0 for an unstocked stand, and 1
for a stand at “normal” or “A-line” stocking. The measure is a better
measure of overall ecological packing than basal area, because it ac-
counts for tree size as well as species functional traits. Finally, we
computed the proportion of relative density in the stand contributed by
conifer species, and the basal area-weighted mean wood specific
gravity.

2.3. LiDAR data collection and processing

Discrete-return, small-footprint LiDAR data were acquired from a
commercial vendor (Photo Science Geospatial Solutions, Lexington, KY)
during November 2010 and April 2012 under snow-free leaf-off con-
dition, since data were primarily acquired for a terrain-related project.
The second flight was necessary to fill coverage holes that were found
during the vendor’s quality assessment process. These data are typical
of data currently being collected over large areas in the region by public
agencies for terrain mapping; much of that data is available free of
charge to the public, and hence would be attractive if it could be used
for forest inventory purposes as well. A Leica ALS70 instrument was
used, with flying heights between 1524 and 1676m. A scan rate of
41.5–45.6 Hz was used, field of view was 32 degrees, and sidelap was
20%, with a targeted point density of 3 points/m2. Vendor supplied LAS
files were processed using FUSION v. 3.42, which is available free of
charge (McGaughey, 2014). The FUSION QA/QC process was run and
indicated an average return density of 3.4/m2, meeting the project
specifications and providing an average of over 1000 returns within the
footprint of a fixed-radius field plot. FUSION computes a large number
of metrics based on the elevation distribution of LiDAR returns. We
selected 42 of these, including all 6 of the metrics described as cover
metrics by McGaughey (2014). Our selected metrics included the ele-
vation minimum, maximum, mean, and mode; several statistics de-
scribing the distribution shape including the standard deviation, var-
iance, coefficient of variation, interquartile range, skewness, kurtosis,
average absolute deviation, mean absolute deviation from the median,
and mean absolute deviation from the mode; the L2, L3, and L4 norms of
elevation (note the L1 norm is identical to the mean); 15 quantiles of the
elevation distribution ranging from 0.01 to 0.99; the canopy relief ratio;
and root mean square elevation. In addition, the 6 cover metrics in-
cluded the percentages of first returns and of all returns above 2m,
above the mean, and above the mode. For more details on these metrics,
see McGaughey (2014). All metrics were computed using a cell size of
20 m (corresponding to the fixed-radius plot size and shape) and returns
over a 2m height cutoff. For each of the 176 field plots, the corre-
sponding area was clipped from the LiDAR point cloud using the survey
grade GPS coordinates and a variety of height, density, and other me-
trics were computed, for use in the modeling process. In addition, in-
dividual files for each metric were created for the entire project area.

2.4. Statistical analysis and modeling

To evaluate the Asner et al. (2011) approach in our study site, we fit
a series of regression equations to the plot-level data. Because they
corresponded most closely in spatial extent to the extraction of the
LiDAR metrics, we used the fixed-radius plot design data for this ana-
lysis. All regressions were fit using the lm function in the base R
package (R Core Team, 2016), and all regressions in which the

dependent variable had been log-transformed were bias-corrected fol-
lowing Baskerville (1972).

Asner et al. (2011) begin by assuming a stand-level carbon or bio-
mass allometry of the form

= × × ×AGB a BA H SGb c d

where AGB is aboveground biomass (Mg/ha), BA is basal area/ha (m2/
ha), H is mean canopy height (m), and SG is basal area-weighted mean
specific gravity. This motivates an initial regression of the form

= + + +AGB β β BA β elev β SGln ln ln ln0 1 2 3

where elev is mean elevation of the LiDAR returns, and SG is the basal
area-weighted mean wood specific gravity of the stand. Next, Asner
et al. (2011) use a ratio equation between H and BA to estimate stand-
specific basal area. Following examination of a scatter plot to identify
whether heteroscedasticity was present, we fit this relationship as a
regression without an intercept using ordinary least squares:

=BA β elev4

Last, Asner et al. (2011) substitute a regional mean wood specific
gravity for the plot-specific mean to derive predictions. We evaluated
these predictions, with and without the substitution of LiDAR-derived
variables for individual field-measured variables, using additional re-
gression analysis and equivalence testing (Robinson et al., 2005) to
describe whether the predictions were close to the 1:1 line either in-
dividually or as an ensemble.

To evaluate the potential of multiple LiDAR metrics for predicting
aboveground biomass and other structural characteristics in our study
watershed, we employed the Random Forest algorithm (Breiman,
2001). Random Forest is a machine learning technique that has seen
extensive application in remote sensing, including classification (re-
viewed by Belgiu and Drăguţ, 2016) as well as regression and im-
putation using LiDAR data (e.g. Hudak et al., 2008, Yu et al., 2011,
Hayashi et al., 2014). In comparison with linear regression methods,
Random Forest regression has several advantages: built-in safeguards
against overfitting, no need for a priori variable selection, internal as-
sessment of model performance on so-called “out of bag” samples
(eliminating the need for separate training and validation data), and
avoidance of distributional assumptions (Breiman, 2001). We fit sepa-
rate Random Forest regression models for each of the stand structural
variables, and for each simulated sampling design, using the 42 can-
didate LiDAR metrics described above, using package randomForest
(Liaw and Wiener, 2002) in R (R Core Team, 2016). Each model was
built with 500 decision trees, using 1/3 of the available variables for
each tree. Models were evaluated using the R2, root mean square error
(RMSE), and relative root mean square error (RRMSE; × y100 RMSE/ )
as computed on the out-of-bag samples.

Finally, to assess the influence of geopositioning accuracy, we re-
extracted all of the LiDAR metrics for the plots using the coordinates as
measured using the resource grade GPS. We then refit all of the Random
Forest regressions for every stand structural variable and sample design,
using the new LiDAR metrics. Because the resource grade GPS did not
obtain a fix for a small number of the field plots, we also refit the
models using the metrics based on the survey-grade locations, but using
only the subset of plots with a resource-grade fix. The influence of
geopositioning accuracy was evaluated using the difference in RRMSE
between the models based on resource-grade and survey-grade models.

3. Results

The study watershed is dominated by closed canopy forest that is
largely mature; summary data from the field plots is presented in
Table 1. Only 6 plots (less than 4% of the total) had live tree above-
ground biomass less than 50Mg/ha; only 10 plots (less than 6% of the
total) had relative density values less than 0.5, indicating insufficient
live tree stocking to support a closed canopy. Mean and median values
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were similar for basal area (BA), relative density, height (Lorey’s and
top), wood specific gravity, and live tree aboveground biomass. The
regression model selected for individual tree heights was

= ± + + + ±H γ ϕ DBHln( ) (0.951( 0.046) ) 0.563( 0.011)ln( )i s p i0, 0,

where standard errors for the parameters are given in parentheses, with
a marginal R2 (ignoring species- and plot-level variation) of 0.65, and a
conditional R2 (including species- and plot-level effects) of 0.80, as
calculated following Nakagawa and Schielzeth (2013). The variance
associated with the species effect γ s0, was 0.022; that for the plot effect
ϕ s0, was 0.013, while the true residual ∊i had variance 0.044. This latter
term translates into a standard error of prediction for individual tree
heights of approximately 23%. Only 3 tree species of the 22 en-
countered in the full sample lacked height measurement trees, and
hence an individual species effect (Prunus pensylvanica, Ostrya vir-
giniana, and Ulmus americana); collectively, these 3 species represented
0.23% of trees in the full sample. The LiDAR-derived canopy height
map (Fig. 2) shows the variability of canopy height across the wa-
tershed using a 10m pixel and indicates a range of 0–39m for top of
canopy height, which is broadly consistent but slightly higher than the
range for either Lorey’s height or top height from the field plots.

3.1. Implementation of Asner et al. (2011) generalized approach

Asner et al. (2011) approach involves substituting mean wood
density and a regional relationship between LiDAR mean canopy height
and basal area for field measured basal area values to estimate above-
ground biomass with minimal field work, as outlined above. Following
Asner et al. (2011), we first fit the predictive relationship for above-
ground live biomass (AGB) using LiDAR mean canopy height and plot-
specific, field-measured values of basal area and wood density, yielding
the relationship

= ± + ± + ±

+ ±

AGB BA elev

SG

ln 0.926( 0.112) 1.062( 0.020)ln 0.424( 0.035)ln

0.701( 0.072)ln

All of the parameter values are significantly different from 0
(p < .0001), and R2=0.96 (for log-transformed biomass). Following
bias-correction (after Baskerville, 1972), the resulting predictive model
is (Fig. 3a)

=AGB BA elev SG2.544 1.062 0.424 0.701

The next step in the Asner et al. (2011) approach is to substitute a
LiDAR-predicted basal area:

= ±BA elev2.688( 0.092)

Although the slope in this relationship is well-constrained, the result
is an immediate and dramatic deterioration in the predictive

relationship for biomass (Fig. 3b). By contrast, using the average SG for
the plots ( ±0.539 0.006) but retaining field-measured basal area does
not result in such deterioration (Fig. 3c). The combined effect of using
LiDAR-predicted basal area and average SG can be seen in Fig. 3d;
incorporating both substitutions leads to the predictive relationship

=AGB elev4.714 1.486

The variance of the prediction errors for this relationship (and that
in Fig. 3b) is greater than the original variance of field-estimated bio-
mass, leading to a negative pseudo-r2: prediction errors would be lower
using a constant prediction (the mean field-estimated biomass) instead
of the Asner et al. (2011) method. The lack of predictive capacity is
clearly associated with the inadequate relationship between BA and elev
(Fig. 4). Although a conventional r2 is difficult to interpret for regres-
sion-through-the-origin models (Eisenhauer 2003), the poor RMSE
(exceeding the original standard deviation of BA) clearly indicates a
poor fit.

By contrast, direct log-log regression of biomass on mean elevation
gives potentially useful, if weak, prediction. The original regression
gives

= ± + ±AGB elevln 2.902( 0.284) 0.940( 0.116)ln

Following bias-correction, the resulting predictive relationship is

=AGB elev20.884 0.940

which is a considerably more linear relationship than that implied by
the Asner et al. (2011) approach. The original regression and back-
transformed predictions are shown in Fig. 5. Unlike the Asner et al.
(2011) result, the RMSE is less than the original standard deviation of
biomass; however, the percentage of variance explained is low (16%).

3.2. Random Forest models

The fit of the Random Forest regression models, for each forest
structural attribute and each sampling design, is described in terms of
R2 in Table 2, and in terms of RMSE and RRMSE in Table 3. Of im-
mediate interest is the performance of the model for live tree above-
ground biomass, under the fixed-radius plot design, as this is the same
variable and design used to evaluate the Asner et al. (2011) approach.
The out-of-bag R2 and RMSE for the Random Forest model are better
than the comparable statistics for direct modeling using elev, but not
dramatically so. A plot of observed vs. predicted values is shown in
Fig. 6. This suggests that the LiDAR metrics as an ensemble contain
limited information for estimating biomass at this scale in this forested
landscape. The FUSION cover variables scored high in variable im-
portance for this model (taking 5 of the top 6 positions as judged using
percent increase in MSE); the importance of individual elevation dis-
tribution metrics appeared to have been diluted by the presence of a
large number of highly correlated variables.

Examining the impact of sampling design on biomass prediction,
performance was best (as judged by R2) for the fixed-radius design, but
best (as judged by RMSE) for the full design, which incorporated
slightly larger inclusion zones for trees over 30 cm DBH. Broadly
speaking, performance was similar for the full, fixed-radius, and vari-
able radius designs with BAFs of 3m2/ha and less, with performance
gradually declining as BAF exceeded 4m2/ha. This same general pat-
tern can be observed for the other structural variables, with the ex-
ception of trees/ha and quadratic mean diameter (QMD), which one
would expect would have a high sampling variance under the variable
radius designs with their small inclusion zones for small-diameter trees.
There were also clear differences among structural variables in their
predictability from LiDAR. Lorey’s height was consistently the easiest
variable to predict, and remained predictable even with relatively large
BAFs; top height, which is sensitive only to the tallest 3 trees on each
plot in the fixed-radius plot design, was less predictable but similarly
insensitive to sampling design. The fraction of relative density

Table 1
Summary of plot-level variables for the Wild Upper Ammonoosuc study area, based on
data from the fixed design.

Minimum Median Mean Maximum Std. Deviation

Trees/ha 223 1805 2452 17880 2328
Basal Area (m2/ha) 1.0 34.4 34.5 68.6 11.7
QMDa (cm) 4.3 14.9 15.8 33.2 5.8
Relative Density 0.03 0.93 0.94 1.90 0.30
Lorey’s Height (m) 5.9 18.0 17.4 27.4 5.5
Top Height (m) 7.0 20.9 20.4 30.3 5.3
Live Tree AGb Biomass

(Mg/ha)
3.0 200.5 200.4 418.8 78.2

Conifer Fraction 0.00 0.08 0.23 1.00 0.28
Basal Area-weighted

Wood SGc
0.35 0.56 0.54 0.64 0.08

a Quadratic mean diameter at breast height.
b Aboveground.
c Specific gravity.
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contributed by conifers, a simple metric of composition, was also re-
latively amenable to prediction across a range of sampling designs.
These patterns are illustrated for the full, fixed-radius, and BAF 3m2/ha
designs, for selected variables, in Fig. 7.

Differences between survey-grade and resource-grade positioning
were substantial relative to the fixed-radius design plot. The root mean
squared difference in position between the two GPS units was 2.59m.
However, this difference was heavily influenced by a small number of
outliers: the median difference was 1.19m, but the maximum was
15.88m. Nonetheless, for the 165 plots for which both survey and re-
source-grade positions were obtained, the effects on Random Forest
regression performance were relatively slight. In terms of RRMSE, the
maximum increases were found with trees/ha, and the greatest of these
for any design was 1.3% (compared to RRMSE typically over 100% for
this variable; see Table 3). The fractional contribution of conifers to
relative density, with a maximum increase of 0.9%, and QMD, with a

maximum increase of 0.6%, were the only other variables to show in-
creases over 0.5% for any design; the maximum increase for live tree
biomass, for any design, was only 0.1%. In practical terms, these dif-
ferences are negligible. This result can perhaps be better understood by
considering the displacement between the survey-grade and resource-
grade points in terms of area of overlap of circles corresponding to the
10m radius of the fixed plot design. Using the formula for the area of
overlap of two circles of radius r, with centers displaced by distance d
(e.g. Gove et al., 1999),

= ⎛
⎝

⎞
⎠

− −−a r d
r

d r d2 cos
2 2

42 1 2 2

we find that the median overlap between survey-grade and resource-
grade circles is 92.4%, while the minimum is 10.9%. The average
overlap, over the 165 plots for which both coordinates are available, is
89.6%, and 95% of plots have an overlap of 72.7% or higher.

Canopy Height (m)
High : 39

Low : 0

Fig. 2. Canopy height map of study area, 10m pixel.
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Considering further that in this landscape, few plots are located near
hard edges (such as abrupt transitions between unharvested stands and
large gaps), the effects of displacement on LiDAR-derived metrics are
relatively minor.

4. Discussion

The relatively mature condition of most forests in our study wa-
tershed likely influences the performance of LiDAR for biomass

estimation, especially when that performance is assessed using metrics
such as R2 that are sensitive to the variance of the observed biomass
values. The mean biomass of our sample plots (200Mg/ha, Table 1) is
substantially greater than regional means for New England (120Mg/ha,
Zheng et al., 2008), and corresponds closely to the mean for “mature”
forests given by Keeton et al. (2011). For comparison, mean live-tree
biomass of old-growth forests in the region has been reported to range
from 220 to 270Mg/ha (Keeton et al., 2011, Hoover et al., 2012, Gunn
et al., 2014). Although portions of our study watershed are zoned for
management by the U.S. Forest Service, much of the watershed is un-
managed and has seen no timber harvesting since the earliest decades
of the 20 th century, with correspondingly greater recovery of biomass
and other structural attributes than is typical of the region (Ducey et al.,
2013). The spatial distribution of biomass over this portion of the wa-
tershed is likely controlled much more by environmental conditions
than stand age, and does not reflect the distributional pattern that
would be apparent in a landscape composed of a balanced age dis-
tribution of large, uniform harvest blocks (the idealized “regulated
forest” of timber management; Bettinger et al., 2017).

The universal approach to estimating tree biomass described in
Asner et al. (2011) was developed for use in tropical forests. Despite the
differences in vegetation structure between tropical forests and our
predominantly northern hardwood study site, the underlying relation-
ship performed quite well when data from field plots were used; Fig. 3a
compares well to the corresponding Fig. 6a in Asner et al. (2011).
Fig. 3c, using field-measured BA but mean wood density, also compares
well to the corresponding Fig. 6c in the Asner study. However, the
approach fails to generate good predictions of biomass due to the lack
of a relationship between LiDAR canopy height and BA; in Asner’s
study, R2 values for the canopy height: BA relationship varied between
0.55 and 0.84 among the four ecoregions in the study (Fig. 3 in Asner
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Fig. 3. Observed aboveground live biomass versus
aboveground live biomass predicted using different
elements of the Asner et al. (2011) approach: (a) model
fit with LiDAR mean canopy height and plot-level field
measured values of basal area and specific gravity; (b)
model with LiDAR mean canopy height, LiDAR-pre-
dicted basal area, and plot level specific gravity; (c)
model with LiDAR mean canopy height, field measured
basal area, and average specific gravity; and (d) full
implementation of Asner et al., universal model with
LiDAR mean canopy height, LiDAR-predicted basal
area and average specific gravity.
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et al., 2011). However, Fig. 4 reveals the lack of a strong relationship
between the two variables at our study site, resulting in a near total loss
of predictive performance, compared to Asner et al.’s (2011) result of
R2= 0.80 with an RMSE of 27.6Mg/ha.

Much of the research on relationships between LiDAR variables and
forest structural attributes in the United States has been conducted in
western conifer-dominated forests, where relationships between LiDAR
variables and structural attributes are generally quite strong (e.g.
Hudak et al., 2006, Lefsky et al., 1999). Less work has been conducted
in the mixed and deciduous forests of the Lake States and Northeast,
and the outcomes have been variable. Lim et al. (2003) report strong
relationships between LiDAR mean canopy height and basal area
(R2=0.88, residual SE=0.39 for ln(BA)) in a forest dominated by
sugar maple and yellow birch near Sault Ste. Marie, Ontario. Biomass
predictions using mean canopy height were similarly strong, with an R2

of 0.78 and residual SE=0.55 for log-transformed biomass. However,
those residual standard errors for log-transformed variables would
correspond to relative prediction errors of approximately 54% and
73%, respectively. Applying those relative errors to the plot-level
means for their study would yield prediction errors of 9.9m2/ha for
basal area, and 104Mg/ha for biomass. Anderson and Bolstad (2013)
modeled biomass using LiDAR variables in several forest types in
northern Wisconsin and achieved good fits in conifer and hardwood
types (R2=0.74 and 0.71; RMSE 37.6 and 42.8Mg/ha, respectively),
although model performance declined in mixed stands (R2= 0.46,
RMSE=48.1Mg/ha). Deo et al. (2016) report similar results; using
their best basal area factor and LiDAR extraction radius, they obtained a

RMSE for stem volume of 35.2 m3/ha across 47 plots in 6 stands. The
mean plot volume in their study was 108.8 m3/ha, implying a relative
prediction error of approximately 32%. Given the close correlation
between stem volume and AGB, one might expect similar results for
biomass. Hawbaker et al. (2010) report results from a mixed hardwood
forest in southern Wisconsin; a univariate model using height only
explained 35% of the variability in basal area (RMSE=6.02m2/ha as
recalculated from their Table 2), while adding additional variables in-
creased this value to 46%. Hawbaker et al. (2010) also found that
height explained 43% of the variation in mean diameter
(RMSE=3.3 cm) but just 9% of variation in stem density (RMSE 112
stems/ha), while we report values of 31 and 46%, respectively (note
that Hawbaker et al. (2010) predict mean diameter while we report
quadratic mean diameter; LiDAR return density reported by Hawbaker
et al. (2010) was also lower than that used in this study). Hayashi et al.
(2014) studied the utility of LiDAR variables for predicting forest at-
tributes in a Maine forest consisting of conifer-dominated and mixed
hardwood-conifer stands; every model developed contained at least one
height variable. The resulting QMD model had an R2 of 0.489 and an
RMSE of 3.68 cm; values for the BA model were 0.344 and 13.01m2/ha.
Skowronski et al. (2007) used LiDAR data to predict forest structure in
the pinelands of New Jersey and found that while biomass could be
predicted reasonably well using LiDAR 80 th percentile height in pine-
oak stands (R2=0.63), model results for oak-pine and pine-scrub oak
stands were less satisfactory (R2= 0.282 and 0.355, respectively).
Skowronski et al. (2007) use a regression-through-the-origin model but
do not report which of the (potentially conflicting) definitions of R2 was
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Fig. 5. Relationship between LiDAR mean canopy height and live aboveground biomass: (a) original regression; (b) observed versus predicted biomass (back transformed).

Table 2
R2 values for RandomForest models of various stand characteristics, as a function of plot design (full or fixed) or basal area factor.

Variable Full Fixed HPS Basal Area Factor(m2/ha)

2.25 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Trees/ha 0.465 0.473 0.115 0.157 0.155 0.070 0.058 0.080 0.046 0.097
Basal Area (m2/ha) 0.415 0.341 0.416 0.359 0.297 0.195 0.175 0.187 0.211 0.177
QMDa (cm) 0.218 0.315 0.125 0.128 0.210 0.159 0.137 0.116 0.128 0.196
Relative Density 0.392 0.272 0.377 0.274 0.212 0.090 0.116 0.099 0.141 0.126
Lorey’s Height (m) 0.729 0.711 0.730 0.712 0.673 0.659 0.624 0.608 0.588 0.596
Top Height (m) 0.472 0.585 0.457 0.509 0.529 0.525 0.499 0.526 0.506 0.530
Live Tree AGb Biomass (Mg/ha) 0.183 0.222 0.200 0.191 0.155 0.113 0.088 0.081 0.077 0.090
Conifer Fraction 0.531 0.518 0.520 0.513 0.563 0.518 0.529 0.506 0.433 0.448
Basal Area-weighted Wood SGc 0.447 0.424 0.314 0.301 0.321 0.270 0.207 0.223 0.359 0.296

a Quadratic mean diameter at breast height.
b Aboveground.
c Specific gravity.
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used (Eisenhauer, 2003), so these values cannot necessarily be com-
pared to those of other studies (especially those with intercepts in the
regression) and RMSE cannot be recovered from the published results.
They concluded that it is difficult to estimate tree biomass accurately
from LiDAR variables when the relationship between height and BA is
weak. They also note that in study areas where thinning had occurred,
the relationship between height and biomass was the weakest, in-
dicating that forest management activities may affect the ability to
model overstory biomass from LiDAR variables.

Anderson et al. (2006) explored the ability of waveform LiDAR data
to predict forest structure and biomass in a mixed conifer and deciduous
forest in New Hampshire, similar to the composition of our study forest.
They found that models developed using data from plots that matched
the LiDAR footprint size, and were purposely selected to span a
range of structural conditions, performed fairly well as judged by R2

(R2=0.54 and RMSE=235.65 cm2 for squared QMD, R2=0.61 and
RMSE=58.0Mg/ha for aboveground biomass). When these models
were applied to data from a network of 409 systematically-collected
inventory plots (0.1 ha) the R2 values would suggest that results were
poor (biomass, R2= 0.27, RMSE 56.1Mg/ha; QMD, R2= 0.20, RMSE

3.28 cm), but note the change in dependent variable from QMD2 which
makes direct comparison of R2 and RMSE impossible. Like Skowronski
et al. (2007), they report that management treatments and stand
composition affected model performance, as judged using R2. However,
it is notable that RMSE remains essentially unchanged, and when using
LiDAR for mapping forest attributes, RMSE is a more direct and in-
formative measure of model performance than R2.

To understand why R2 is an incomplete and potentially misleading
indicator of fit (e.g. Barrett, 1974), consider a definition of R2 that is
applicable to most linear and nonlinear models that allow an intercept:
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where ̂yi is the model prediction. Note that the numerator is propor-
tional to RMSE, while the denominator is proportional to the variance
of the original observations. Thus, if a particular remote sensing
method can predict a given forest attribute with a typical level of error
(as described by RMSE), the value of R2 will be sensitive to the un-
derlying variance of the fitting data (or of the validation data if cross-
validation is performed). As an example, the dramatic decline in R2 for
aboveground biomass reported by Anderson et al. (2006) between
study-specific plots, and the systematic inventory plots, can easily be
explained by the decline in the variance of biomass between the two
sets of plots, as driven by plot selection (s2= 7815 for the former and
s2= 4316 for the latter, based on their Table 1), rather than any si-
milarly dramatic change in the relationship between the physical LiDAR
retrieval and the plot design (since RMSE remains nearly constant).
Likewise, the R2 for aboveground biomass from our study is low com-
pared to that reported in several of the studies cited above; but the
RMSE is comparable to those reported for mixed stands. Were we to
have inflated the variance of aboveground biomass in our data, either
by oversampling the small number of patches of young, regenerating
forest or by allocating more samples to krummholz near the altitudinal
limit of woody vegetation in the watershed, our R2 would be higher
even though the accuracy of plot-level predictions (i.e. the RMSE)
would not change appreciably.

With that said, RMSE for biomass and several other key stand de-
scriptors remains disappointingly high in our study. (By comparison,
Zheng et al., 2008 report an R2 of 0.27 and RMSE of 46.5 Mg/ha for
forests in New England using LANDSAT alone; one might have expected
better performance from LiDAR.) It appears that developing satisfactory
estimates of aboveground tree biomass using LiDAR metrics is often

Table 3
RMSE and relative RMSE (%, in parentheses) values for RandomForest models of various stand characteristics, as a function of plot design (full or fixed) or basal area factor.

Full Fixed 2.25 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Trees/ha 1705 1685 2857 2923 3077 3253 3443 3345 3524 3116
(70.3) (68.7) (119.8) (122.0) (128.7) (140.8) (150.8) (147.1) (155.0) (145.4)

Basal Area (m2/ha) 8.6 9.4 9.0 9.7 11.0 12.6 13.6 13.5 14.8 15.9
(28.8) (27.3) (29.9) (29.9) (32.9) (37.2) (39.4) (39.2) (42.4) (45.4)

QMDa (cm) 4.5 4.8 7.4 7.9 8.7 10.8 11.3 12.0 12.4 12.6
(30.8) (30.4) (42.3) (42.9) (43.7) (50.2) (51.3) (53.5) (54.3) (53.2)

Relative Density 0.24 0.25 0.27 0.30 0.34 0.39 0.39 0.41 0.44 0.46
(28.4) (26.6) (31.3) (32.9) (36.5) (42.1) (42.0) (43.3) (46.5) (48.7)

Lorey’s Height (m) 2.5 2.9 2.6 2.8 3.3 3.5 3.9 4.0 4.3 4.4
(15.0) (16.9) (15.5) (16.3) (19.1) (19.8) (22.0) (22.7) (24.4) (25.0)

Top Height (m) 3.3 3.4 3.5 3.6 4.0 4.3 4.7 4.5 5.1 5.3
(17.4) (16.7) (18.2) (18.0) (19.9) (21.0) (23.1) (22.0) (24.7) (25.6)

Live Tree AGb Biomass (Mg/ha) 50.8 68.8 52.3 58.6 70.2 81.9 88.7 87.5 96.6 100.9
(30.6) (34.3) (31.3) (31.8) (36.3) (41.4) (44.0) (43.6) (47.6) (49.2)

Conifer Fraction 0.19 0.19 0.19 0.19 0.19 0.21 0.21 0.22 0.25 0.24
(81.7) (84.2) (84.6) (86.3) (87.3) (91.9) (92.8) (95.5) (104.6) (103.8)

Basal Area-weighted Wood SGc 0.06 0.06 0.08 0.08 0.09 0.09 0.11 0.10 0.10 0.11
(11.2) (11.5) (14.2) (14.3) (16.9) (17.9) (20.1) (19.9) (19.5) (21.4)

a Quadratic mean diameter (at breast height).
b Aboveground.
c Specific gravity.
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Fig. 6. Observed versus predicted live aboveground biomass values from Random Forest
modeling approach.
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difficult in northeastern deciduous or mixed forests, and that a major
reason is the lack of a strong or predictable relationship between LiDAR
canopy height metrics and plot level basal area. Our study, like others
including Hayashi et al. (2014) and Hawbaker et al. (2010), utilized

LiDAR data that were collected for another purpose. While LiDAR data
collection designed for characterizing forest structural attributes would
normally be collected during the leaf-on period, the data used in this
study were collected during leaf-off conditions; this may have been a
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factor in our inability to relate LiDAR canopy height to stand basal area.
However, numerous investigations (including Hawbaker et al., 2010)
have been conducted with leaf-off LiDAR data, and multiple studies
explicitly address the performance of leaf-on and leaf-off LiDAR-derived
variables in forest modeling. Anderson and Bolstad (2013) found small
differences in model performance between leaf-on and leaf-off data,
with leaf-on producing slightly better fits in some forest types, while the
opposite was true in other types. They conclude that leaf-off data may
be used to estimate biomass across a variety of Lake States forest types.
Næsset (2005) examined the effects of using leaf-on and leaf-off data to
estimate a variety of stand properties and reports that first return LiDAR
data are less affected than last return data for most LiDAR metrics, and
maximum canopy height is less sensitive to canopy conditions than
mid-and low-canopy strata. In addition, the differences in LiDAR me-
trics between the two canopy conditions were greater in plots that were
mainly deciduous. However, models predicting BA showed better fits
when using leaf-off data (R2= 0.66 vs 0.62) although the errors were
similar. The volume model also performed better with leaf-off data and
showed a decline in error, with an RMSE of 0.29m3/ha for leaf-off vs.
0.35m3/ha using leaf-on data. Næsset (2005) concluded that in mixed
forests, estimates of structural properties are not affected or are slightly
improved when using leaf-off data. White et al. (2015) and Wasser et al.
(2013) reached the same conclusion: leaf-off data produce acceptable
models of various stand properties, with only small differences in per-
formance from models constructed from leaf-on data. Both studies
found that differences in performance were greater in deciduous forest
types. It seems unlikely, then, that the use of leaf-off data was a major
factor in the failure of either the Asner et al. (2011) or standard mod-
eling approaches to predict stand biomass accurately in our study wa-
tershed.

Anderson et al. (2006, 2011) investigated the impact of various tree
species on model performance in a forest located near, and similar to,
our study site. They found that biomass and diameter model fits im-
proved and error decreased when plots containing yellow birch or
American beech (major species at our site) were excluded from the
analysis; model performance also improved when white pine was pre-
sent or red spruce represented more than 25% of the trees present.
Restricting their analysis to plots dominated by sugar maple improved
prediction of non-biomass attributes. Considering these results, and that
many authors cited above report poorer model performance in areas
dominated by deciduous trees, it is likely that the allometry of these
species, including the frequent absence of a well-defined top, was a key
factor in the lack of a distinct relationship between canopy height and
basal area that resulted in our inability to adequately model above-
ground biomass by either the Asner et al. (2011) or machine learning
approaches.

In our study, plot design (fixed-radius plot, variable radius plot, or
the full plot incorporating elements of both designs) did impact re-
covery of stand structural metrics from LiDAR, but the main influence
appears not to have been so much the design itself as the relative size of
the inclusion zones for dominant trees. It has often been assumed, based
on reasonable geometric intuition, that the extraction area for LiDAR
metrics needed to match the sample plot area as closely as possible, in
terms of its area, shape, and location (e.g. Næsset, 2002). That intuition
has been supported in simulation studies (e.g. Frazer et al., 2011), and
has motivated the use of fixed-radius plot designs in conjunction with
extremely precise georeferencing. However, evidence from the field
suggests greater latitude in design choices. Hayashi et al. (2014, 2015)
and Scrinzi et al. (2015) found that variable radius plots could serve as
well as fixed-radius plots for LiDAR calibration. Hayashi et al. (2015)
found the best agreement when LiDAR extraction radii were slightly
larger than plot radii (for fixed-radius plots) or inclusion zone radii (for
variable radius plots). Deo et al. (2016) report similar performance
between fixed-radius plots and variable-radius plots for LiDAR cali-
bration, with the best results at relatively low basal area factors
(1.14–2.29m2/ha). Similarly, Tomppo et al. (2017) also found broad

agreement between variable-radius plots and LiDAR, though the RMSE
increased as BAF increased. In our study, errors also increased with
increasing BAF, beginning noticeably at approximately the same BAF
typically recommended for purely ground-based operational forest in-
ventory in the region (4–5 m2/ha; Wiant et al., 1984, Ducey 2001).
Whether such a BAF is inherently too large for use with LiDAR data, or
whether a better match between extraction area and inclusion area is
needed, is unclear. The influence of extraction area on LiDAR calibra-
tion and mapping remains an active area of research (e.g. Deo et al.,
2016, Hayashi et al., 2016), and general guidance on matching ex-
traction areas to variable-radius plot designs has not yet emerged
(Kirchhoefer et al., 2017).

5. Conclusions

1. A generalized approach for mapping biomass developed in tropical
forests (Asner et al., 2011) did not perform well in our northern
hardwood-dominated study area, due to a lack of a simple re-
lationship between basal area and LiDAR height metrics. Simple
regression of biomass on mean LiDAR elevation was more suc-
cessful.

2. Using multiple LiDAR metrics within a Random Forest machine
learning framework produced models of many structural variables
that were disappointing in terms of R2, but were not dissimilar to
previously reported studies in terms of RMSE. This discrepancy can
be understood in the context of the forest landscape characteristics
of our study watershed. These models did outperform the Asner
et al. (2011) and simple regression approach for biomass.

3. Moderate imprecision in georeferencing of plot centers had a neg-
ligible impact on model performance.

4. Fixed-radius plot, variable radius plot, and the hybrid full designs
had similar performance across a range of stand structural metrics,
though the performance of variable radius plots was best at basal
area factors somewhat smaller than those usually recommended for
operational inventory. Variable radius plots should not be ruled out
for calibrating LiDAR relationships but additional research on best
practices would be beneficial.

5. LiDAR did show sufficient relationship with biomass to support its
use for stratification or as a covariate in sampling, but did not
provide sufficient accuracy for high-resolution mapping of biomass.
The use of alternative modeling approaches with higher-resolution
LiDAR data, or fusion with other sources of remotely sensed data
(e.g. to predict species composition), might improve the results.
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