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A B S T R A C T

US municipalities are increasingly introducing bicycle lanes to promote bicycle use, increase roadway safety and
improve public health. The aim of this study was to identify specific locations where bicycle lanes, if created,
could most effectively reduce crash rates. Previous research has found that bike lanes reduce crash incidence, but
a lack of comprehensive bicycle traffic flow data has limited researchers’ ability to assess relationships at high
spatial resolution. We used Bayesian conditional autoregressive logit models to relate the odds that a bicycle
injury crash occurred on a street segment in Philadelphia, PA (n=37,673) between 2011 and 2014 to char-
acteristics of the street and adjacent intersections. Statistical models included interaction terms to address the
problem of unknown bicycle traffic flows, and found bicycle lanes were associated with reduced crash odds of
48% in streets segments adjacent to 4-exit intersections, of 40% in streets with one- or two-way stop intersec-
tions, and of 43% in high traffic volume streets. Presence of bicycle lanes was not associated with change in crash
odds at intersections with less or more than 4 exits, at 4-way stop and signalized intersections, on one-way streets
and streets with trolley tracks, and on streets with low-moderate traffic volume. The effectiveness of bicycle
lanes appears to depend most on the configuration of the adjacent intersections and on the volume of vehicular
traffic. Our approach can be used to predict specific street segments on which the greatest absolute reduction in
bicycle crash odds could occur by installing new bicycle lanes.

1. Introduction

Over the last several years, bicycle traffic has increased dramatically
in the US, and calls to improve bicycle safety and bicycle infrastructure
have followed. Bicycle lanes are the main form of infrastructure im-
plemented in the US to support bicycle use. First introduced in the US in
the late 1960 s, there are now an estimated 9931 miles of unprotected
bicycle lanes (a designated space on the right side of motor vehicle
traffic, demarcated by painted striping) and an additional 674 miles of
protected bicycle lanes (with a physical barrier in-between cyclists and
motor-vehicle traffic) in 69 of the most populous US cities (Alliance for
Biking and Walking, 2016). A growing body of evidence suggests that
installing bicycle lanes is an effective and low-cost approach to reduce
the crash risk for cyclists in a given city (Gu et al., 2016; Harris et al.,

2013; Pedroso et al., 2016; Poulos et al., 2015; Pucher and Buehler,
2016; Reynolds et al., 2009; Teschke et al., 2012; Thomas and
DeRobertis, 2013).

It is increasingly recognized that perceived roadway safety is one of
the strongest predictors of bicycle traffic volume (Pucher et al., 2010;
Thomas and DeRobertis, 2013; Winters et al., 2011), and that cycling
has demonstrated benefits for cyclists, for example due to improved
cardiovascular and metabolic function (Götschi et al., 2016; Oja et al.,
2011), and for the general public, for example due to reduced air pol-
lution. Municipalities are therefore increasingly introducing bicycle
lanes into their roadway infrastructure as part of a suite of approaches
to promote bicycle use, increase roadway safety, and improve public
health. In areas without bicycle lanes, cyclists most commonly ride on
roadways that are thought or known to be safest (Pucher et al., 2010;
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Thomas and DeRobertis, 2013; Winters et al., 2011). That scenario is
suboptimal, given that riders face an elevated risk of crashing in areas
without designated bicycle lanes. A research approach that empirically
identifies the specific locations where bicycle lanes could most sub-
stantially reduce crash incidence could provide a timely and valuable
resource to officials that seek to introduce or improve bicycle infra-
structure.

Previous studies used two main approaches to identify geographic
correlates of bicycle crashes. First, individual studies in Belgium (de
Geus et al., 2012), Australia (Beck et al., 2016; Poulos et al., 2015),
Portland, Oregon (Hoffman et al., 2010), and Canada (Harris et al.,
2013; Teschke et al., 2014; Teschke et al., 2012) provided important
information on the types of cyclists at greatest risk of crashing, the
locations where these individuals are most likely to ride, and the lo-
cations they are most likely to crash. Because bicycle crashes are sta-
tistically rare events, this approach requires access to registries de-
scribing a census of crashes within a study region, very large survey
samples, or carefully selected samples for case-control or case-crossover
analyses, for example recruited from emergency rooms or hospitals (de
Geus et al., 2012; Hoffman et al., 2010; Poulos et al., 2015). Such
studies found that relative risks for injury crashes are higher at inter-
sections (especially at intersections of more than two streets) (Harris
et al., 2013), in traffic circles (Harris et al., 2013), on downhill grades
(Harris et al., 2013; Teschke et al., 2012), in streets with parked cars
(Teschke et al., 2014; Teschke et al., 2012), streets with train or
streetcar tracks (Teschke et al., 2014; Teschke et al., 2012), for women,
and less-experienced riders and commuters (Poulos et al., 2015).
However, these studies have not identified locations for infrastructure
interventions that could reduce risk of bicycle crashes.

Second, spatial analyses have related crash incidence to aggregate
measures of social and environmental characteristics within geographic
areas to identify general factors (sometimes relating to the built en-
vironment) that explain bicycle crash frequencies. Such studies have
been conducted at numerous spatial scales, such as cities, Traffic
Analysis Zones, Census areas, street intersections, or street networks
(Chen, 2015; Loidl et al., 2016; Siddiqui et al., 2012; Strauss et al.,
2013; Vandenbulcke et al., 2014; Wang and Nihan, 2004). This ap-
proach has the advantage that the requisite data are often publicly
available, and that researchers can estimate crash risks for all locations
within a study region. Spatial analyses have identified that bicycle
crashes (or specifically severe-injury crashes in the case of Kim et al.
(2007)) occur more commonly at intersections (or in areas with more
intersections) (Loidl et al., 2016; Reynolds et al., 2009; Siddiqui et al.,
2012; Strauss et al., 2013; Vandenbulcke et al., 2014; Wang and Nihan,
2004), and are associated with vehicular traffic conditions (Anderson,
2009; Kim et al., 2007; Wang and Nihan, 2004) including speed limits
(Siddiqui et al., 2012) and count of automobile trips (Chen, 2015),
bicycle traffic volume (Loidl et al., 2016; Strauss et al., 2013), physical
street characteristics such as presence of trolley tracks, parked cars,
street signs and driveways (Chen, 2015; Vandenbulcke et al., 2014),
presence of bicycle facilities (Chen, 2015; Thomas and DeRobertis,
2013; Vandenbulcke et al., 2014), population density (Siddiqui et al.,
2012) factors such as weather and lighting (Kim et al., 2007) and
characteristics of the cyclist (Kim et al., 2007). However, with some
notable exceptions (Strauss et al., 2013; Vandenbulcke et al., 2014),
these studies primarily identified environmental correlates of bicycle
crashes, rather than specific locations of highest relative risk.

A problem common to both individual analyses and spatial analyses
of vehicular crashes is that the volume of traffic through a given loca-
tion is often unknown. This problem is non-trivial for studies of bicycle
crashes, because analyses that do not adequately account for traffic
flow may erroneously find positive relationships between crash risks
and roadway features that attract greater volumes of cyclists (e.g. bi-
cycle lanes). The optimal solution would be to collect detailed diurnal
inventories of bicycle traffic flow through each location (Vanparijs
et al., 2015), however such information becomes increasingly expensive

and impractical to collect as sample sizes increase. Bicycle traffic vo-
lumes are therefore often estimated from household travel surveys
(Blaizot et al., 2013), census data (Siddiqui et al., 2012), or travel
diaries (de Geus et al., 2012; Poulos et al., 2015), but these rates cannot
be interpreted at a fine scale. Importantly, this denominator problem is
inversely related to the problem of aggregation bias. That is, as the size
of the spatial units decreases, the likelihood that results are affected by
underlying crash risks due to local variation in the traffic flows in-
creases (i.e. the denominator problem), but the certainty that crashes
co-occur in physical space with roadway features to which they are
statistically related decreases (i.e. aggregation bias).

The aim of the study was to identify the locations where bicycle
lanes most effectively reduce crash rates. To overcome the challenges
inherent in this field, we applied a Bayesian conditional autoregressive
(CAR) spatial analytic approach (Besag, 1974) to cross sectional data
describing bicycle crash locations and roadway characteristics for
2011–2014 in Philadelphia, Pennsylvania. Philadelphia has invested in
substantial new infrastructure, has an increasing volume of cyclists, a
variety of road types, and a relatively high number of collision across a
variety of types of road conditions. Our novel approach minimized
aggregation bias by using street segments as the units of analysis, and
addressed the denominator problem using interaction terms between
bicycle lanes and other roadway features.

2. Methods

2.1. Study setting and spatial structure

The oldest parts of Philadelphia, those areas in the central or
downtown area, were developed in the 1600s prior to automobiles,
while more modern areas grew around trolley lines in the first half of
the 20th century. Most parts of the city are characterized by a grid of
narrow collector streets (typically 35 feet wide with parking on both
sides and a single one way traffic lane with a speed limit 25 miles per
hour) with intermittent arterial streets (typically 65 feet wide, speed
limit 30 miles per hour). The terrain throughout the city is generally flat
with mild slopes and few hills. Traffic flow is mediated by stop signs
and signalized intersections, rather than roundabouts and traffic circles.
Since the first bicycle lanes opened in 1995, the city has added over 250
miles of bike lanes and regularly features on lists of the best biking
cities in the US. At the time of this study, according to the American
Community Survey 5-Year study for 2011–2015, 2.1 percent of com-
mute trips to work were by bicycle, relative to 59 percent of commute
trips by personal vehicle. Also at this time, there were 285 miles of
bicycle lanes in various forms within the city of Philadelphia. These
consisted primarily of conventional bicycle lanes, a 3-foot lane for bi-
cycles indicated by white painted striping and bicycle symbol (227
miles), in some cases painted green (17 miles), and “sharrows” re-
minding vehicle drivers to share the lane with cyclists 34 miles)
(see Fig. 1). As shown in Fig. 1, bicycle lane striping does not run
continuously through intersections.

Street segments in the city of Philadelphia served as the unit of
analysis. We built the unit of analysis dataset from a street centerline
spatial dataset (Philadelphia Streets Department, 2016) that re-
presented the location and length of every street in the city of Phila-
delphia present in 2011. We removed all freeways from the dataset used
for analysis because bicycles are prohibited from using these sections of
the roadway network. This procedure yielded a sample of 37,673 street
segments. All spatial processes were conducted in ArcGIS v10.3.1
(ESRI, Inc.; Redlands, CA).

2.2. Dependent variable

The dependent variable was a dichotomous measure for the pre-
sence or absence of a bicycle injury crash for a given street segment
during the study period. We defined bicycle injury crashes as all road
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crashes between 2011 and 2014 in which a cyclist was injured requiring
medical attention (excluding 9 reported bicycle crashes in which no
cyclists were injured). These event-level data were provided to us
geocoded to the internal centroid of each street centerline, and there-
fore we were not able to model intersection crashes separately. We
omitted the 25 (1.2%) crashes that were geocoded to locations more
than 45 feet from the street segments identified as the units of analysis.
We judged based on visual inspection of the crash and street segments
maps that a buffer of 45 feet would maximize the number of crashes
spatially joined to intersections, while minimizing misclassification of
crashes that were geocoded to locations away from the roadway net-
work or to streets that were omitted from the analysis (e.g. freeways).

2.3. Street characteristics

Multiple street characteristics served as independent variables. The
City of Philadelphia’s street centerline file identified whether the seg-
ments formed major arterials, minor arterials, collector streets, local
streets, or whether they were designated pedestrian or off-street paths
from which motor vehicles were prohibited. There were very few pe-
destrian or off-street paths, so we combined these street segments with
local streets for analysis. We also assigned dichotomous variables to
each street segment based on the presence or absence of trolley tracks,
bicycle lanes and one-way traffic flows. We obtained vehicular traffic
volume indicators from the State of Pennsylvania Department of
Transportation’s estimates of annual average daily traffic volume
(AADT) for major roadways. AADT estimates were available for 8680
(31.4%) of the street segments. We calculated tertiles of the estimated
volume in these segments and produced dummy variables indicating
low volume, moderate volume, or high volume. We also produced an
indicator for the 28,993 segments where no AADT estimate was avail-
able. Finally, we calculated the length of each segment in meters.

2.4. Intersection characteristics

We used two groups of independent measures to characterize the
intersections that formed the endpoints of the street segments: the
number of exits and the stop type. We identified the number of exits
(though in the case of one-way streets, exits may actually only be en-
trances) by taking a count of the street centerlines that overlapped each
intersection. We identified the stop type as all-way stop signs, one- or
two- way stops signs, signalized, or other (including pedestrian cross-
ings, unmarked crossings, and stops of unknown type).

Fig. 2 demonstrates our method of assigning intersection char-
acteristics to the street segments. We constructed dummy variables for
each of the exit count and stop type categories, then assigned street
segments a value of 1 where either of the intersections to which they
were connected had that attribute, and 0 otherwise. For example, seg-
ment 1 is connected to two signalized intersections that both have 4

exits. Segment 6 is connected to a pedestrian intersection with 2 exits,
and an intersection with a one or two-way stop sign and 3 exits.

2.5. Bicycle traffic index

We addressed the denominator problem analytically using the
method described in the Statistical Analysis section below, however we
also wished to assess whether bicycle lanes would be most effective
where bicycle traffic volume was greatest. To address this specific
question, we constructed a bicycle traffic index using a novel approach
(see Kondo et al., (submitted)). Briefly, our four-step approach assumed
bicycle traffic would occur between origins and destinations along a
roadway network. First, the origins were the Census blocks within the
Philadelphia city limits (n= 18,872). We estimated the number of cy-
clists in these polygons by combining the Census demographic char-
acteristics (sex, age, racial/ethnic composition) with the results of a
logistic regression model from the 2009 National Household Travel
Survey for the odds of cycling to work. Second, the destinations were all
tax parcels in the city categorized as industrial, commercial or civic use.
Third, the roadway network was the street centerline file excluding
freeways, with a network hierarchy reflecting the street segments used
most frequently by cyclists. We calculated the hierarchy using quintiles
of street segments based on maps of bicycle journeys for a convenience

Fig. 1. Bicycle lane typologies in Philadelphia, including (A) traditional bicycle lane, (B) traditional bicycle lane with green shading, and (C) a sharrow lane. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Segment Exits Stop Type
1 2 3 4  5

1 0 0 0 1 0 0 0 1 0
2 0 0 1 1 0 0 1 1 0
3 0 0 1 1 0 1 1 0 0
4 0 1 1 0 0 0 1 0 1
5 0 0 1 1 0 1 1 0 0
6 0 1 1 0 0 0 1 0 1
7 0 0 1 1 0 1 1 0 0
8 0 0 1 1 0 0 1 1 0
9 0 0 1 1 0 1 1 0 0

Fig. 2. Intersection exit counts and stop types.
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sample of cyclists in the city (CyclePhilly, 2016). Finally, from each of
the 18,872 origins in the city we modeled journeys to 100 destinations
randomly selected in the city, weighted by a 2010 estimate of daytime
population (Delaware Valley Regional Planning Commission, 2016).
We further weighted each journey by the estimated number of cyclists
at the origin as well as a distance decay function for bicycle journeys
calibrated using the 2009 National Household Travel Survey data. The
sum of the weighted journeys that passed through each line segment
was used as an estimate of bicycle traffic volume. We standardized
these values to make model estimates more easily interpretable.

2.6. Statistical analysis

We estimated the odds of a bicycle crash occurring on a street
segment using Bayesian conditional autoregressive logit models. To
identify the characteristics of segments on which crashes were most
likely to occur, we first specified a model including all independent
variables (Model 1). Although the bicycle traffic index partially ac-
counts for local variation in bicycle traffic volume, this approach does
not fully address the denominator problem, and thus the parameter
estimates for the independent variables will reflect both the volume of
bicycle traffic through each segment and the risks associated with these
variables. To address the denominator problem we added interaction
terms between bicycle lanes and the independent variables (Model 2).
Because the independent variables account for the underlying risk of
bicycle crashes (i.e. due to the presence or absence of bicycle lanes and
the other street segment and intersection attributes), a negative para-
meter estimate for an interaction term can be interpreted as the relative
benefit of placing a bicycle lane on a street segment with a given
characteristic. Finally, we estimated the absolute benefit for installing
new bicycle lanes. We calculated the model, predicted odds of obser-
ving a crash for all street segments from Model 1, then for street seg-
ments that did not already have bicycle lanes, we multiplied these odds
by the parameter estimates for the interaction terms from Model 2 and
the binary indicators for the relevant attribute.

Spatial autocorrelation is a potential problem for our analyses. If
crash risks are more alike on nearby street segments than on distant
street segments, the assumptions of unit independence common to
standard regression analyses will be violated and the likelihood of Type
I error will increase. To address this problem, we partitioned the model
residuals into a conditional autoregressive (CAR) random effect and a
non-spatial noise term (Lord et al., 2005; Waller and Gotway, 2004).
We fit the model to the data in WinBUGS v14 using a Bayesian proce-
dure with non-informed priors, discarding the first 150,000 iterations of
a Markov Chain Monte Carlo, before sampling 50,000 iterations to
provide model estimates. We interpreted the exponent of the median
estimated value as the odds ratio, and the exponents of the 2.5th and
97.5th percentile values as a 95% credible interval (CI; which is ana-
logous to a 95% confidence interval in conventional regression ana-
lyses).

3. Results

A total of 2052 bicycle injury crashes observed during 2011 to 2014
occurred on 1744 (4.6%) of the 37,673 street segments in Philadelphia.
The median number of crashes on segments where crashes occurred was
1 (range 1–16), and only 220 (0.6%) segments had≥ 2 crashes. The
median street segment length was 84.9 ms. Crashes were geographically
concentrated in the center city area (Fig. 3).

There were 3851 (10.2%) segments with a bike lane. Approximately
two-thirds of the segments were connected to at least one intersection
with 3 exits (66.8%) or 4 exits (66.8%), and around two-thirds were
connected to at least one intersection with a one or two-way stop sign
(65.9%). Because street segments can have up to two intersections or
stop types, these proportions will not necessarily sum to 100%. Other
characteristics are presented in Table 1.

Cross tabulations between the independent variables identified that
street class code was correlated strongly with street vehicular traffic, or
AADT. Systematically removing class code and AADT from the models
produced inconsistent results for these variables, providing further
evidence of collinearity. Relationships for class code were not sup-
ported in models with AADT omitted, but relationships for AADT were
supported in models with class code omitted. Therefore, we present the
models with AADT only included.

Results of the Bayesian logit models are presented in Table 2.
Findings of Model 1 indicated that bicycle lanes were associated with
increased odds of a crash occurring on a given street segment. Speci-
fically, street segments with bicycle lanes had 43.6% increased odds of
having a bicycle injury crash between 2011 and 2014 compared to
street segments with no bicycle lane. The 95% credible interval (1.239,
1.661) provides a lower bound of 23.9% and an upper bound of 66.1%
for this estimate, and importantly, does not include the null value of
OR=1.00. Other characteristics associated with increased odds of bi-
cycle injury crashes were segments with greater length (OR=1.21;
95% CI: 1.14; 1.28), higher scores on the bicycle traffic index
(OR=1.10; 95% CI: 1.06; 1.14), and those with signalized intersec-
tions (OR=2.28; 95% CI: 1.96; 2.66), 4-exit intersections (OR=1.32;
95% CI: 1.12, 1.54) and ≥5 exit intersections (OR=1.21; 95% CI:
1.04, 1.40) compared to those without these intersection configura-
tions.

The key feature of Model 2 is the interaction terms between bicycle
lanes and the street segment and intersection characteristics. Because
the main independent variables control for the underlying crash risks
associated with these attributes (i.e. the denominator problem), the
interaction term estimates the benefit or hazard of locating bicycle
lanes on street segments with these features. The interactions with bi-
cycle lanes revealed a protective effect for intersections with 4 exits
(OR=0.52; 95% CI: 0.36; 0.76) and those with one- or two-way stop
signs (OR=0.60; 95% CI: 0.44; 0.82), suggesting that, compared to
similar segments with no bike lanes, street segments with these char-
acteristics have 47.6% and 39.9% fewer injury crashes when bike lanes
are present, respectively. In addition, there was a negative association
with high-volume vehicular traffic roadways (OR=0.57; 95% CI: 0.37;
0.89), suggesting that compared to similar segments with low-volume
traffic, high-volume traffic street segments have 42.8% fewer injury
crashes when bike lanes are present.

Model diagnostics indicate that the data were highly spatially au-
tocorrelated, and that failing to account for this spatial structure would
likely produce biased estimates. The conditional autoregressive (CAR)
random effect explained over 99% of error variance in both models,
suggesting that the independent variables captured very little of the
dependent variable’s spatial structure. Fig. 4a shows the predicted odds
of bicycle injury crashes based only on the main variables for Model 1.
Major arterials and minor arterials form a clear grid pattern across the
city, and much of the spatial clustering evident in the observed crash
locations (Fig. 2) is not replicated here. By contrast, Fig. 4b shows that
the full model predictions, including the conditional autoregressive
random effect, substantially improve the predictive power of the model.
Predicted odds are greatly spatially smoothed in Fig. 4b compared to
Fig. 4a, and the geographic clustering of crashes in the center city re-
gion is clearly evident.

Fig. 5 combines the relative benefit of bicycle lanes identified in the
interaction terms for Model 2 with the predicted absolute odds of bi-
cycle crashes from Model 1. Results suggest that the greatest absolute
reduction in bicycle crash odds could be obtained from bicycle lanes
installed in street segments in and around the center city area. For
example, South Broad Street (Fig. 6) is a major arterial in the city’s
inner south that we estimate would produce the greatest benefit if bi-
cycle lanes were added. The street is characterized by numerous 4-exit
intersections, no bicycle lane, heavy vehicular traffic, and a center city
location.
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4. Discussion

Our study indicates that in Philadelphia, bicycle lanes are most ef-
fective at reducing risk of bicycle crashes at intersections, particularly
4-exit intersections and one- and two-way stop signs. Namely, com-
pared to similar segments with no bike lanes, street segments with these
characteristics have 47.6% and 39.9% fewer injury crashes when bike
lanes are present, respectively. In addition, bicycle lanes are most ef-
fective on high-volume vehicular traffic roadways; high-volume traffic
street segments have 42.8% fewer injury crashes when bike lanes are
present, compared to similar segments with low-volume traffic. By
using interaction terms in Model 2, we have minimized spurious posi-
tive associations between presence of bicycle lanes and increased risk of
crashes. These findings concur with recent studies that show bicycle
infrastructure’s greatest effect at intersections (Strauss et al., 2013;
Thomas and DeRobertis, 2013; Vandenbulcke et al., 2014) and on busy
streets (Thomas and DeRobertis, 2013). Given that intersections are
“black spots” that generate the vast majority of motor vehicle, pedes-
trian, and bicycle crashes (Reynolds et al., 2009; Wang and Nihan,
2004), the protective effect of bicycle lanes at intersections is particu-
larly valuable, even though bicycle lanes necessarily cross vehicular
traffic at these junctions.

There are several possible mechanisms by which bicycle lanes might
reduce relative risk most at 4-exit intersections and at one- and two-way
stop signs. Bicycle lanes may increase driver awareness of the presence
of bicycles in complex traffic situations. A bicycle lane adjacent to

motor vehicle traffic lane allows the bicyclist to stop at intersections or
wait for light signals at the entrance of the intersection, which can
improve cyclists’ visibility by motorists, and cyclists’ view of the tran-
sition of vehicular traffic flow. In addition, presence of a demarcated
bicycle lane might signal to motorists approaching yellow lights that
they do not have adequate space or safety to speed up in order to “make
it” through an intersection before or during a red light.

Our results suggest street segments with greater estimated bicycle
traffic (i.e. the bicycle traffic index) have greater crash incidence, but
that bicycle lanes do not necessarily reduce crashes in these locations.
Previous research may explain this finding. Crashes are more likely to
occur where there are more cyclists, however prior studies have iden-
tified a non-linear relationship between bicycle traffic volume and in-
jury rates, or a “safety in numbers” effect (Jacobsen, 2003; Nordback
et al., 2014). For example, Elvik (2009) calculated that the frequency of
bicycle accidents increases by 3–6.5% when bicycle flows increase by
10%. On busy streets, it is possible that the protection afforded by bi-
cycle lanes is negligible compared with the protection afforded by the
presence of more cyclists. Alternatively, although our bicycle traffic
index is similar to that employed in other studies (Vandenbulcke et al.,
2014), it is clear that the measure accounts for very little of the variance
in crash risks between street segments; it may also be a poor measure of
actual bicycle traffic volume.

Certain limitations should be considered when interpreting our
findings. First, our study is cross-sectional and therefore does not ac-
count for dynamics associated with installation of new bike lanes,

Fig. 3. Observed injury crashes on Philadelphia street segments, 2011–2014.

M.C. Kondo et al. Safety Science 103 (2018) 225–233

229



including spatial or temporal patterns and shifts in bicycle traffic that
might occur during the study period. Therefore, adding a bicycle lane to
South Broad Street would have the predicted effect based on observed
data between 2011 and 2014, and would change bicycle traffic in ways
that our models do not account for. Second, some important data were
unavailable for our study, including dates of bicycle lane installation,
street characteristics such as width, number of lanes, and speed limits.
Bicycle lanes have been installed on streets wide enough to accom-
modate them, or in some cases parking has been eliminated to make
space. As such bicycle lanes could also indicate a greater distance be-
tween street curb and centerline. However, street width information
was not available at the time of the study.

Lack of bicycle traffic flows or counts by street segment, whether
commuter or recreational, was a major limitation to calculating pre-
dictors of rate of bicycle crash. While an increasing supply of data about
cycling behaviors exists due to mobile-phone technology, these data
sets are incomplete because not all cyclists use mobile phones, and not
all cyclists with mobile phones use sports-behavior apps. Monitoring of
bicycle traffic, and cycling purpose, is expensive and technically diffi-
cult, and therefore these data sets largely do not yet exist. However, our
index provides the best available estimation of bicycle traffic volume
given available data sources.

Another limitation is that geocoding crashes to street segment
centroids could be problematic, especially on longer street segments.
Bicycle crashes are underreported (Juhra et al., 2012; Watson et al.,
2015); crashes are often reported only in the case of damage to prop-
erty, hospital admission, or fatality. If missing crashes are spatially
structured, our results could be biased in either direction.

Finally, AADT estimates were available for only 8680 out of 37,673
study streets. These 28,993 segments received the indicator for “No
estimate available,” and the remaining 8680 segments were separated

into tertiles according to the AADT value. The Pennsylvania
Department of Transportation deliberately makes its assessments of
AADT for streets that it estimates will have the greatest traffic volume,
and typically omits residential and local roads. This may or may not be
the case, but it is important to note that the consequences of any mis-
classification would be to shift credible intervals closer to 1.

5. Conclusions

Our findings indicate that indeed bicycle lanes in a city such as
Philadelphia are associated with reduced bicycle crash risk. Though our
model identified relative risk to be reduced at segments with 4-exit and
at one- and two-way stop intersections with bicycle lanes, and on high-
volume traffic roadways, our calculations indicate specific locations,
shown in Fig. 4, at which bicycle lanes could most reduce absolute risk
(Rose, 1992). Our approach, if not our specific findings, would transfer
readily to other municipalities. As our cities continue to expand use of
bicycle infrastructure, we have the opportunity to study its impact in a
rigorous, prospective way. Researchers can collaborate with municipal

Table 1
Characteristics of Philadelphia street segments, stratified by bicycle injury crashes
2011–2014.

Injury crash (n= 1774) No injury crash (n= 35,929)

n % n %

Intersections – number of exits
2 73 4.2 2191 6.1
3 819 47.0 21,955 61.1
4 1363 78.2 23,810 66.3
≥5 396 22.7 5565 15.5

Intersections – stop type
All way stop signs 480 27.5 11,886 33.1
One or two way stop
signs

878 50.3 23,935 66.6

Signalized 1053 60.4 9233 25.7
Other (incl. pedestrian
crossing)

456 26.1 13,142 36.6

Street – class code
2 (Major arterial) 366 21.0 2387 6.6
3 (Minor arterial) 511 29.3 4855 13.5
4 (Collector) 638 36.6 14,183 39.5
5 (Local) 229 13.1 14,482 40.3

Street – vehicular traffic
No estimate available 850 48.7 28,143 78.3
Low volume 235 13.5 2666 7.4
Moderate volume 317 18.2 2573 7.2
High volume 342 19.6 2547 7.1

Street – characteristics
Length (meters)
[mean, SD]

[1.159 1.053] [1.073 0.886]

One way 890 51.0 16,149 44.9
Bicycle traffic index
[mean, SD]

[0.608 1.746] [−0.029 0.939]

Trolley 208 11.9 1829 5.1
Any bicycle lane 442 25.3 3409 9.5

Table 2
Bayesian conditional autoregressive logit models, Odds Ratios (OR) with Credible
Intervals (CI) for the odds of an injury crash occurring on a street segment from 2011 to
2014, Philadelphia (n=37,673). A CI that includes the null value of 1.00 provides evi-
dence against an association.

Model 1 Model 2

IRR (95% CI) IRR (95% CI)

Intersections – EXITS
2 0.930 0.694 1.231 0.811 0.560 1.148
3 1.003 0.878 1.145 1.022 0.878 1.187
4 1.315 1.124 1.539 1.531 1.279 1.829
≥5 1.206 1.038 1.400 1.147 0.967 1.355

Intersections – stop type
All way stop signs 1.166 0.999 1.365 1.190 1.006 1.408
One or two way stop signs 0.769 0.669 0.884 0.878 0.749 1.033
Signalized 2.281 1.957 2.657 2.326 1.965 2.757
Other (incl. pedestrian
crossing)

0.679 0.579 0.795 0.721 0.602 0.864

Street – vehicular traffic
No estimate available
[reference]

Low volume 1.447 1.213 1.720 1.509 1.230 1.844
Moderate volume 2.062 1.725 2.466 2.122 1.711 2.618
High volume 2.389 1.996 2.855 2.768 2.239 3.404

Street - Characteristics
Length (100m) 1.208 1.144 1.278 1.206 1.142 1.275
One way 1.079 0.944 1.232 1.119 0.972 1.291
Bicycle traffic index 1.100 1.061 1.141 1.100 1.053 1.147
Trolley 0.969 0.806 1.158 0.962 0.754 1.213
Bicycle lane 1.436 1.239 1.661 4.568 2.425 8.593

Interactions
Bike lane * 2 exits 1.537 0.822 2.855
Bike lane * 3 exits 0.902 0.654 1.243
Bike lane * 4 exits 0.524 0.363 0.756
Bike lane *≥5 exits 1.217 0.855 1.728
Bike lane * All way stop
signs

1.043 0.651 1.658

Bike lane * One or two way stop signs 0.601 0.439 0.824
Bike lane * Signalized 0.981 0.658 1.496
Bike lane * Other (incl. pedestrian crossing) 0.812 0.563 1.170
Bike lane * Class code 2
Bike lane * Class code 3
Bike lane * One Way 0.769 0.572 1.028
Bike lane * Bicycle traffic
index

1.000 0.925 1.081

Bike lane * Trolley 1.008 0.699 1.452
Bike lane * Low volume 0.735 0.477 1.146
Bike lane *Moderate volume 0.788 0.518 1.210
Bike lane * High volume 0.572 0.373 0.885
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agencies to plan staged, and even randomized, introduction of bicycle
lanes or other infrastructure, and can collect pre- and post- intervention
crash data. This would allow us not only to demonstrate the value of
bicycle lanes, but also to examine differential impact of bicycle

infrastructure design innovation (Hutchinson, 2007).

Fig. 4. (a and b). Predicted odds of an injury crash on Philadelphia street segments, Model 1.

Fig. 5. Estimated decrease in absolute odds of observing a crash if new bicycle lanes were installed.
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