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A B S T R A C T

Modeling and simulating tree spatial distribution in complex forests is important to ecologists and applied
scientists who seek to both understand pattern-creating biological processes and create realistic model forests
that can be used for hypothesis testing and sampling experiments. Several patterns of tree spatial distribution can
co-occur in a forest. Clustering can occur due to localized patterns of growth and mortality of larger trees and
corresponding regeneration of smaller trees, while trees of medium size can exhibit more uniform patterns. Inter-
tree interaction may be characterized by asymmetry of competitive strength, with larger individuals having a
disproportionate influence on smaller individuals.

Many point process modeling approaches exist, but few have incorporated hierarchical principles that de-
scribe inter-tree competition. Those that do sometimes assume symmetric interaction among trees, which can be
unrealistic. None of the existing models allow for the use of different model types at each level of the hierarchy,
something that could provide a more realistic representation of the patterns displayed by trees of different size.
In this study, we model and simulate a forest using a novel, modular, hierarchical approach that allows for the
use of different model types at each hierarchy level, and incorporates asymmetrical interactions as well as the
effects of environmental covariates. The forest is a mid-successional 8-ha stem-mapped oak-hickory watershed in
Pennsylvania, USA. Results suggest that asymmetrical interactions based on tree size do exist, and these are
mediated by the effects of topography. The hierarchical models reproduce the spatial patterns found in the
original data better than non-hierarchical versions of the same models. The flexibility afforded by the modularity
of our modeling framework will allow simulation of forests with varying levels of complexity as well as the
testing of ecological hypotheses about drivers of spatial pattern creation.

1. Introduction

Ecologists and forest managers model spatial patterns of forest trees
for two main reasons: to understand the processes that lead to forest
community development, and to understand the effects of stand spatial
structure on growth of individual trees. Spatial patterns can be gov-
erned by a mixture of chance events and plant-plant interactions
mediated by environmental gradients (Bormann & Likens, 1994). As
competition theory suggests, patterns of soil resource availability and
propagules influence initial stand composition, and as plants’ zones of
influence begin to overlap, competitive or facilitative hierarchies de-
velop, with interaction strength related to life history strategy, plant
size, and interplant distances (Bella, 1971; Brooker et al., 2008;
Schwinning & Weiner, 1998; Wu et al., 1985). In mixed deciduous
northern hardwood forests, these processes are thought to be mediated
by the effects of topography and its effects on light and soil conditions

(Frey et al., 2007). Spatial pattern dynamics reflect these processes,
with younger stands exhibiting a more clustered pattern, followed by
stand homogenization as competition intensifies, followed by a dif-
ferent type of clustered pattern as mortality and gap dynamics become
important (Larson et al., 2015; Raventos et al., 2010). Analysis of the
relationship between tree size, location, and environmental gradients
can thus advance the science of plant community ecology by supporting
existing hypotheses or suggesting new ones in cases where observed
patterns and relationships do not align with current theory.

Point process models are useful tools for studies of spatial patterns.
They are particularly appealing because they can be used to describe
the spatial or temporal structure of a phenomenon and to create si-
mulated point patterns based on the spatial distribution of observed
points. In point process modeling, the set of locations of events (e.g.,
tree locations) is seen as one realization of a stochastic event-generating
process. The intensities or density functions of these processes can be
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modeled using various families of statistical models that incorporate
randomness, environmental covariates, and inter-point interaction
functions.

The selection of an adequate point process model depends on the
system under study. For example, a homogeneous Poisson process
(HPP) model is typically used as a type of null model of spatial pattern;
descriptors for observed patterns are compared against those generated
from an HPP model in order to diagnose a non-random spatial dis-
tribution of points (Baddeley et al., 2015; Wiegand & Moloney, 2014).
In systems where environmental trends like topographic gradients af-
fect patterns, inhomogeneous Poisson process (IPP) models will better
describe the observed patterns (e.g. Getzin et al., 2008). For applica-
tions like forest ecology where clustered patterns are common
(Grabarnik & Särkkä, 2009; Stoyan & Penttinen, 2000), the family of
cluster models might be more appropriate. Finally, a type of Markovian
model commonly referred to as a Gibbs model relies on a pair potential
function that specifies a set of symmetrical inter-point interaction
strengths, and is often used for patterns where individuals are dis-
persed.

In order to incorporate in point process models the potential for
asymmetric, hierarchical relationships that commonly exist in forests,
Högmander and Särkkä (1999) proposed a modeling system in which
the intensity of the points in the highest level of the hierarchy is
modeled first using a Gibbs point process model, then the lower levels
of the hierarchy are modeled as subsequent Gibbs processes, condi-
tional on the intensity of the higher levels. Illian et al. (2009), Genet
et al. (2014), and Grabarnik and Särkkä (2009) used a similar Gibbsian
approach, defining hierarchies by reproductive strategy (the former),
and tree size (the two latter). Although Gibbs models have many ad-
vantages, they are not suitable for the variety of clustered patterns that
occur in forests (Baddeley et al., 2015; Illian et al., 2008; Stoyan &
Penttinen, 2000). In addition, multi-type Gibbs models are para-
meterized with information about the relative strengths of interaction
between individuals of different types, something that might not be
known to the researcher a priori (Baddeley et al., 2015; Illian et al.,
2009; Prokešová et al., 2006; Wiegand & Moloney, 2014). These diffi-
culties suggest that Gibbs models are not always suitable for modeling
forest stands where a combination of different pattern types, hier-
archical relationships, and environmental trends coexist. We argue that
a more flexible approach is needed.

To address the needs for modeling and simulating complex forests
where hierarchy and different spatial patterns may co-occur, we pro-
pose a modular, hierarchical point process modeling framework
(MHPPF). In this approach, it is assumed that trees of different size
classes may display different spatial patterns and thus that different
families of point processes and environmental variables should be used
to describe them. This is achieved by the modularity of our approach: at
each level of the tree size-based hierarchy a different model type and
covariate can be used. More specifically, a multivariate inhomogeneous
Poisson or cluster process is constructed by the superposition of in-
dependent point processes that are conditioned on the cumulative point
intensities of the higher levels of the hierarchy and/or environmental
covariates. Although the form of the hierarchy can be constructed fol-
lowing different theories or hypotheses, the approach we present here
assumes that trees of different size classes interact asymmetrically in
the direction of decreasing size. Asymmetric competition is in-
corporated by adding the intensity of the higher levels in the hierarchy
as covariates in the modeling of lower hierarchy levels. That is, the
locations of trees lower in the hierarchy are dependent on the locations
of trees at higher levels, but not vice-versa. A generalized joint prob-
ability density associated with such a framework can be expressed as
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where x is the combined pattern of all levels, α is a normalizing

constant, i is the hierarchy level (1 is the lowest and the smallest tree
size class), j is the number of levels, Si is the intensity of the level i
pattern, and θi is the vector of parameters associated with the en-
vironmental covariates associated with the intensity of the level i pat-
tern. Simulation is achieved by performing the modeling and simulation
sequentially based on the hierarchy of point types, incorporating the
simulated intensity surfaces from higher levels as inputs in the form of
covariates to the simulation process at lower levels.

In the current study, we lay out the methods for implementing this
approach, demonstrate its application by modeling a mapped stand of
trees in central Pennsylvania, USA, and compare results of this new
approach to a method that does not incorporate hierarchical principles.
We hypothesized that trees of different size classes would exhibit dif-
ferent types of spatial patterns, and that these patterns would be related
to not only the presence of larger trees, but also to environmental
covariates. Specifically, we hypothesized that in this mid-successional
forest, smaller trees would be clustered, and larger trees would show a
more hyper-dispersed pattern and that the MHPPF would allow us to
simulate realistic tree spatial patterns in this complex forest.

2. Methods

2.1. Study site and data

Mapped tree data for this study were obtained from the
Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) (Kaye
et al., 2015), an approximately 8-ha watershed found in the Ridge and
Valley physiographic region of central Pennsylvania, USA (Fig. 1). The
watershed is oriented east-west, with predominantly north- and south-
facing aspects and an elevation range of 240–300m above sea level.
Tree information for 2050 trees was collected in 2012 and included
geographic location obtained using a survey-grade GPS and data logger,
species, and diameter at breast height (DBH) to the nearest 0.254 cm
(0.1 in) for trees greater than 20.32 cm (8 in) (Kaye et al., 2015;
Naithani et al., 2013; Wubbles, 2010).

To define each hierarchy level, trees were grouped into diameter
classes, with the assumption that DBH is related to competitive strength
and thus different sized trees may display different spatial patterns. To
create tree size groupings, the Jenks optimization procedure found in
the classInt package for version 3.3.3 of the R statistical software
(Bivand, 2015; Jenks & Caspall, 1971; R Core Team, 2015) was used.
We chose the Jenks method because it provides a site-specific way to
classify DBH into natural groups that are internally homogeneous re-
lative to other potential groupings, making it a generic approach for
conducting this type of analysis in new forest ecosystems with different
DBH distributions. The four DBH class boundaries identified by this
method were as follows: 20.3–29.1 (n=744), 29.2–37.6 (n= 682),
37.7–48.5 (n=442), and ≥48.6 cm (n= 182). The convention we use
here is that large diameter classes represent higher levels in the com-
petitive hierarchy, i.e. level 4 is the highest level of the hierarchy and
level 1 is the lowest.

To evaluate the potential effect of topographic gradients on the
spatial patterns of the different size-class trees, we evaluated elevation
(USGS, 2010), percent slope, and transformed aspect (Beers et al.,
1966), all of which were based on a 3-m pixel digital elevation model
(DEM) and generated using the Spatial Analyst extension of ArcGIS
Desktop software (ESRI, 2014). In addition, two topographic indices
were generated using the terrain function of the raster package of R
(Hijmans, 2015): topographic position index (TPI) and topographic
ruggedness index (TRI) (Wilson et al., 2007). TPI represents an index of
relative slope position, and TRI is an index of local topographic com-
plexity. All DEM-based variables were smoothed using the focal mean
function applied in a 5× 5 pixel window in R’s raster package
(Hijmans, 2015).

To incorporate potential tree-size-mediated competition effects,
fixed-bandwidth kernel estimates of the intensity surfaces of levels 1–4
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individually, 1+ 2, 1+ 2+3, 2+ 3, 2+3+4, and 3+ 4 were cre-
ated. The kernel estimation method is a neighborhood-based spatial
interpolation that weights neighbors using an isotropic Gaussian
smoothing kernel with standard deviation of 15m. The size of the
smoothing kernel was chosen using a cross validation approach de-
scribed by Berman and Diggle (1989). These intensity surfaces were
then evaluated as covariates in the respective hierarchy-level model.

2.2. Baseline analysis to characterize patterns

In order to choose the best point process family at each level of the
hierarchy (DBH class), we conducted assessments using the spatstat
package for R statistical software (Baddeley et al., 2015; R Core Team,
2015). We first determined if the observed patterns for each DBH class
exhibited evidence for complete spatial randomness (CSR), hyper-dis-
persion or clustering by comparing the observed values of three second
order pattern descriptors, the pair correlation statistic g (Wiegand &
Moloney, 2014), Besag’s L (Besag, 1977), and the nearest neighbor
statistic G (Wiegand & Moloney, 2014), to simulation envelopes created
from 99 realizations of a CSR pattern with the same number of points. If
the observed functions fell within the simulation envelopes, this sug-
gested CSR. If the functions fell above them, this suggested clustering. If
they fell below, this suggested a hyper-dispersed or inhibited pattern
(Baddeley et al., 2015). We used two-sided maximum absolute devia-
tion tests (Baddeley et al., 2014) to assess the significance of any de-
parture of the true value of the function from the simulation envelope
within a 15-m analysis window.

Next, we assessed the relationships between the point intensity of
each hierarchy level and the topographic covariates described above.
We used two approaches for this assessment: relative distribution esti-
mates (Baddeley, 2010; Baddeley & Turner, 2005) and Kolmogorov-
Smirnov (KS) tests (Berman, 1986). The former describes the relation-
ship between the point pattern and the covariates, and the latter tests if
there is a non-random association between the point pattern and the
covariate.

2.3. Model development and selection

Based on results of the baseline analyses, we implemented the
MHPPF. We first modeled the highest level of the hierarchy (level 4) by
evaluating the families of point process models suggested by the base-
line analysis and considering only the topographic variables as cov-
ariates. Models for the next lower levels (3, 2, and 1, respectively) were
built by choosing the best combination of point process model family,
topographic covariates, and estimated intensity surfaces from points of
the higher levels of the hierarchy. Model parameters were estimated
using the spatstat implementation of Berman-Turner Maximum
Likelihood (for Poisson processes) and the minimum contrast method
(for cluster processes) (Baddeley et al., 2015).

To select the best model within each hierarchy level, we used the
mimetic approach of Goreaud et al. (2004). In this approach, metrics
for sets of simulated patterns created from each of the candidate models
were compared to those from the original data using simulation en-
velope tests as guides rather than hard and fast rules (Baddeley et al.,
2015; Wiegand & Moloney, 2014). Best models were chosen using three
criteria. First, we preferred models where observed values were mostly
contained within the simulation envelopes. Second, if two candidate
models were similar in this respect, we chose the model where higher-
level intensity surfaces were included. Finally, with these criteria met,
we followed the parsimony principle and preferred models that were
simpler. For example, homogeneous models are simpler than in-
homogeneous models, Poisson models are simpler than cluster models,
and using elevation is simpler than using elevation derivatives as cov-
ariates.

Simulations were performed with the Metropolis-Hastings simula-
tion algorithm (Baddeley & Turner, 2006; Geyer & Moller, 1994). For
simulating patterns below level 4, we used the chosen models from the
next higher levels to create simulated patterns, then generated the as-
sociated point intensity surfaces from these simulated patterns, and fi-
nally used these simulated patterns as the covariates. This process is
summarized in Fig. 2.

To assess whether the simulated patterns reflected the relationships
between the observed point patterns and topography, we created re-
lative distribution functions using only elevation as a topographic

Fig. 1. Location of the study area with tree
locations and elevation contours in
Pennsylvania, USA. Locations of trees for each
level of the hierarchy (DBH class) are super-
imposed on kernel density estimates of in-
tensity of the point patterns. a= level 1
(20.3–29.1 cm), b= level 2 (29.2–37.6 cm),
c= level 3 (37.7–48.5 cm), and d= level 4
(> 48.6 cm).

A.J. Lister, L.P. Leites Ecological Modelling 378 (2018) 37–45

39



variable because we considered it a surrogate for the other DEM-based
variables. For comparisons using second order statistics, we used
homogeneous versions of the L, G and g functions.

To assess whether the characteristics of the combined, multi-type
pattern reproduced the observed inter-level spatial relationships, we
conducted bivariate tests using the homogeneous L and g functions
(Baddeley et al., 2015). Every pair combination of hierarchical levels
was evaluated (i.e. 4–3, 4–2, … 2–1). To evaluate whether the in-
corporation of higher-level intensity surfaces used to reflect asymmetric
competitive effects improved upon non-hierarchical models, we re-
peated the bivariate assessment of the final model using another set of
models. These new models used the same point process model type and
topographic covariates previously selected, but did not include the in-
tensity surfaces from the other levels. We then compared the non-
hierarchical versions of the models against those from the MHPPF.

For all tests, 48 realizations of each candidate model were gener-
ated. This number was chosen due to the large number of candidate
models being evaluated, time requirements when performing each si-
mulation of large point patterns, and the fact that the parallel

processing algorithm we used to expedite our analysis used a server
with 16 cores – thus 3 realizations were generated on each core and
results were pooled to arrive at a total of 48 unique simulated patterns
for each candidate model and for each test.

3. Results

3.1. Baseline analysis

The locations of trees from each hierarchy level, as well as these
superimposed on kernel density estimates, can be seen in Fig. 1. Smaller
trees (hierarchy levels 1 and 2) appear in most parts of the watershed,
and seem to exhibit a non-random, clustered pattern. Level 3 shows a
more hyper-dispersed pattern with fewer obvious clusters, and level 4
exhibits a more geographically-restricted pattern, with most trees in the
central portion of the study area, corresponding with lower elevations.

Two-sided maximum absolute deviation tests using the homo-
geneous second order function (g, G and L) simulation envelopes in-
dicated that the summary function for the observed pattern of levels 1

Fig. 2. Schematic diagram of the hierarchical modeling pro-
cess. Processes for each level of the hierarchy, a–d (proceeding
left to right), illustrate the sequential steps in generating si-
mulated realizations of a hierarchical point process. Level 4 is
the highest level, and represents the large diameter trees.
DENS4, etc. represent the intensity surfaces generated from
the point patterns. To generate the final, multi-level point
pattern, simulated patterns of all of the levels are super-
imposed.

Fig. 3. Plots of the boundaries of the simulation envelopes (grey,
polygonal region) for theL, G and g functions from 99 simulated
HPPs, the mean of the simulated values (red, dashed line) and the
functions computed from the observed data (bold, black line).
Figure labels indicate the function type (L, G or g) and hierarchy
level (1–4); e.g., L4 is the L function for hierarchy level 4 (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).
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Fig. 4. Plots of estimated intensity (rho) vs. candidate covariates. a. Elevation above sea level (meters). Plots representing different levels of the hierarchy are labeled
Levels 1–4. b. Point intensity (points/square meter) derived from the cumulative point intensity (density) surfaces of the higher levels of the diameter class hierarchy
(DENS4= intensity of level 4, DENS4+3=cumulative intensity of level 4 and 3, DENS4+3+2=cumulative intensity of level 4, 3, and 2). Grey polygonal areas
represent the region bounded by the high and low values of the 95% pointwise confidence interval of the estimate of rho. Hash marks along X axis represent the
frequency of observations along the range of X values.
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and 4 does not follow a CSR pattern for at least one of the summary
functions (p < 0.05). The values for the function for the observed
patterns fall above the average of the CSR-derived summary functions
for the majority of the radii assessed, suggesting an aggregated pattern
at multiple scales of observation (Fig. 3). For levels 2 and 3, however,
results provide evidence of a pattern more closely resembling an HPP
(Fig. 3).

An example of plots of the relative distribution functions developed
to assess the relationships between the intensities of the patterns for
each DBH class and the candidate covariates is shown in Fig. 4. The
observed point patterns for all hierarchy levels were related to at least

one of the topographic variables, with elevation playing a strong role
(Fig. 4a). Fig. 4b shows relative distribution functions that reveal the
relationship between intensity of points at higher levels of the hierarchy
and the lower level patterns. The intensity of points at level 4 displays a
positive correlation with that of level 3. However, the intensity of the
combination of levels 4 and 3 do not display a strong relationship with
that of level 2. Finally, the cumulative intensity of levels 4, 3 and 2 has
a strong negative relationship with that of level 1.

Results of the KS tests can be seen in Table 1. Significant results
indicate that there is evidence of a non-random relationship between
patterns of points at a given level of the hierarchy with those of the
candidate covariates. For the candidate topographic variables, Levels 1
and 4 show non-random relationships, whereas for levels 2 and 3, there
are fewer and weaker significant results.

3.2. Model development and selection

Based on results of our baseline analysis, we evaluated for each
hierarchy level the set of models presented in Table 2.

An example of the different second order statistical and relative
distribution functions for two competing models for level 4 can be seen
in Fig. 5. Fig. 5a–d are an example of the mimetic tests of the L, g, G and
relative distribution functions, respectively, for the chosen model for
hierarchy level 4, and e–h are those for an HPP model, which does not
track the observed data as well. In many cases, however, the different
models that included covariates performed similarly, or there was a
lack of agreement among the summary functions as to which model was
better. The models ultimately chosen for each hierarchy level are pre-
sented in Table 3.

Results of all of the bivariate L function tests that included level 1
can be seen in Fig. 6. Summary functions from the MHPPF (a–c) were
closer to those of the observed data than were those from the non-
hierarchical, no-competition models (d–f). This effect is particularly
prominent with bivariate L functions for the level 1–4 pairs (c vs. f).

Table 1
Kolmogorov-Smirnov (KS) test p-values to assess the relationship between patterns of points from different levels of the hierarchy and candidate covariates.
*:< 0.05, **:< 0.01, ***:< 0.001, ns:> =0.05. Dash mark indicates combinations for which the hierarchy level being evaluated is a component of the candidate
covariate, and thus tests were not performed.

Level DEM SLOPE ASPECT TPI TRI DENS4 DENS4+3 DENS4+3+2 DENS3 DENS3+2 DENS2 DENS1

1 *** *** *** *** *** *** *** *** *** ns ** –
2 ns * ns ** * ns ns – ns – – ***
3 ** ns ns ** ns ** – – – – ** ***
4 *** ** *** *** ** – – – *** ns ns ***

Table 2
List of the combinations of model family and covariate inclusion scenarios
evaluated at each level of the hierarchy.

LEVEL MODEL TYPE COVARIATE COMBINATION USED

level 4 HPP
IPP DEM
Inhomogeneous Matern DEM
Inhomogeneous
Thomas

DEM

level 3 HPP
IPP DEM, DENS4, DEM+DENS4

level 2 HPP
IPP DEM, TRI, DENS4, DENS3, DENS(3+ 4): all

combinations
Inhomogeneous Matern DEM, TRI, DENS4, DENS3, DENS(3+ 4): all

combinations

level 1 HPP
IPP DEM, SLOPE, DENS2, DENS3, DENS4,

DENS234, DENS23, DENS24: all
combinations

Inhomogeneous Matern DEM, SLOPE, DENS2, DENS3, DENS4,
DENS234, DENS23, DENS24: all
combinations

Fig. 5. Example of the second order statistical and relative distribution functions for the chosen level 4 model, and for an HPP model. a–d (the top row of figures)
represent, respectively, theL, g, G and relative distribution functions for the level 4 model, and e–h (bottom row of figures) represent the corresponding functions for
an HPP model. Black lines are the values for the observed data, and sets of grey lines are values for the functions derived from 48 simulations using the level 4 (top
row) or HPP (bottom row) models.
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4. Discussion

In the study area, we assumed a traditional model of secondary
forest development, and built our MHPPF accordingly. Implicit in Eq.
(1) and Fig. 2 is the well-supported assumption that there is an un-
derlying competitive hierarchy, mediated by environmental patterns,
that leads to the spatial structure of many forest communities (Bormann
& Likens, 1994). Important processes in forest succession commonly
include competition, niche differentiation along environmental gra-
dients, and some combination of continuous or episodic growth and

mortality due to life history strategies and chance events. A useful
feature of MHPPF is that it allows for the modeling of these and other
types of interactions, like facilitation. In an arid environment, for ex-
ample, we might hypothesize a mixture of competition for scarce
moisture among dominant individuals, and a facilitative relationship
between these and smaller individuals or other species that exploit
shading or understory detritus accumulation proffered by the larger
plants. Similarly, impacts of random events can be included using either
the HPP or the IPP at any level in the process. Finally, variation in
interaction strength among individuals based on any categorical

Table 3
Selected models for each hierarchy level with model type and intensity function equations.

LEVEL MODEL TYPE MODEL FORM

level 4 IPP λ=e7.454–0.048*DEM

level 3 IPP λ=e−0.026–0.019*DEM

level 2 IPP λ=e−4.593–0.624*TRI–61.387*DENS4+66.176*DENS3

level 1 Inhomogeneous Matern λ=e−3.557+30.989*DENS2–86.543*DENS3–130.965*DENS4–0.044*SLOPE*

∑
=

∞
x1 ( )

i
yi

1
( , 10.2)

a

a where yi is generated from the parent process, the intensity of which was estimated as 0.011.

Fig. 6. Graphs of bivariate L functions for all
bivariate combinations that included points of
level 1 of the hierarchy. Level pairs for hier-
archical models: a. Level 1-Level 2; b. Level 1-
Level 3; c. Level 1-Level 4. Level pairs for non-
hierarchical models: d. Level 1-Level 2; e. Level
1-Level 3; f. Level 1-Level 4. Black lines in-
dicate the function associated with the ob-
served data, grey lines represent functions as-
sociated with simulations using the
hierarchical (a–c) or non-hierarchical (e-f)
models.

Fig. 7. Simulated locations of trees for each level of the hierarchy (DBH class) are superimposed on kernel density estimates of intensity of the point pattern created
by the hierarchical modeling method. a= level 1 (20.3–29.1 cm), b= level 2 (29.2–37.6 cm), c= level 3 (37.7–48.5 cm), and d= level 4 (> 48.6 cm).
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attribute, such as a combination of age and size, can be incorporated.
Allowing for different model types at each hierarchy level, effects of
random events, and incorporation of either positive or negative effects
of other hierarchy levels as covariates thus allows researchers to de-
termine whether observed patterns align with various types of hy-
potheses and assumptions about plant community development.

The types and forms of the models that, according to our selection
criteria, best described the tree spatial pattern at each hierarchy level
align with our hypotheses of pattern formation in this system. For ex-
ample, for larger trees (levels 4 and 3), the best-performing model was a
simple IPP driven by elevation (Table 3). In both cases, higher elevation
corresponded with decreased point intensity, indicating that larger
trees occur more commonly in the valley than at the ridge tops. Ac-
cording to parameter estimates of the chosen models (Table 3), the
elevation effect is larger for the trees in level 4 than for the trees in level
3, suggesting that effects of topography-related biological processes
differ by tree size. This is also clearly seen in Figs. 1 and 7. The selected
levels 4 and 3 models also align with evidence that soil quality and light
differences along topographic gradients strongly influence patterns of
tree growth and establishment in the SSHCZO (Frey et al., 2007;
Naithani et al., 2013; Smith et al., 2017; Wubbles, 2010).

Our chosen level 2 model is consistent with our initial hypothesis of
pattern formation from competition effects mediated by topography,
and with the findings of Smith et al. (2017), who found higher mean per
tree biomass increment in swales due to their higher level of soil or-
ganic matter. The level 2 model indicates that as local topographic
complexity (TRI) increases, as would tend to occur around swales,
density of the patterns of level 2 trees decreases. At the same time, KS
tests (Table 1) and relative distribution functions indicated that there is
a significant, positive relationship between TRI and the pattern of large
trees. It is thus not completely clear from our analysis if competition
from larger individuals or topography most affects the pattern of
smaller trees. However, we performed a likelihood ratio test to de-
termine if a more complex model that contained both the impacts of the
intensity of larger trees and of TRI was superior to one with just TRI;
results indicated that the complex model that included impacts from the
point intensities of levels 3 and 4 was superior (p < 0.005), further
supporting the hypothesis of multiple drivers of pattern.

Bormann and Likens (1994) and Canham et al. (2004) point out that
in mature forests, canopy gaps and associated higher light and soil re-
source availability lead to clustered patterns of smaller trees competing
to reach the canopy. Our chosen level 1 model agrees with this hy-
pothesis; cluster locations (parent points) were created by an HPP, with
locations of trees within clusters having a negative relationship with the
presence of the largest tree size classes. There was a negative re-
lationship between the points within clusters and slope, as well, sug-
gesting that topography could play an impact, perhaps indirectly, since
KS tests (Table 1) and relative distribution functions indicate a sig-
nificant, positive relationship between slope percentage and larger
trees.

Analytically distinguishing a true cluster process from an IPP driven
by environmental gradients is difficult because second order statistical
functions, like the L, g and G functions, from both types of patterns can
have similar forms (Wiegand & Moloney, 2014). Similarly, it is difficult
to distinguish the effects of hierarchical competitive interactions from
those of environmental trends because there is often collinearity be-
tween different levels of the hierarchy and environmental covariates.
However, we found that including the effects of the patterns of larger
trees as covariates improved the performance of the overall model with
respect to the maintenance of bivariate spatial relationships when
compared to models with only topography (Fig. 6). This, as well as the
aforementioned results from the models of the individual levels, further
illustrates how the MHPPF can be used to incorporate effects of mul-
tiple processes in models of stand spatial pattern.

The advantage of the MHPPF over existing methods is that it allows
for a certain plasticity and modularity that does not exist in other

techniques that rely on only one family of point process models. Relying
solely on Gibbsian models to construct a hierarchical framework, as did
Grabarnik and Särkkä (2009), Högmander and Särkkä (1999), and
Illian et al. (2009), would not have allowed us to superimpose processes
of very different types in a straightforward manner. The modularity of
the MHPPF allows the practitioner to model any combination of CSR,
clustering, or hyper dispersion for patterns of different types, with any
combination of hierarchical relationships, depending upon the unique
requirements of the ecosystem under study.

5. Conclusions

We analyzed multiple, co-occurring tree-size related spatial patterns
in a mature, second growth forest by developing a novel, hierarchical
modeling framework that allows for each of the spatial patterns to be
described by a different point process model family based on the
dominant biological processes at each level of the hierarchy. The spatial
pattern of large trees was related to elevation, while the pattern of mid-
sized trees was related to topographic complexity and competition ef-
fects. The spatial pattern of the smallest-sized trees was clustered and
affected by competition from larger-size trees and slope. The MHPPF
can be used to examine hypotheses about ecological processes affecting
stand structure and create realistic, simulated tree patterns to use in
other applications like sampling experiments or distance-dependent
tree growth models.
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