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A B S T R A C T

The gain-loss approach for greenhouse gas inventories requires estimates of areas of human activity and esti-
mates of emissions per unit area for each activity. Stratified sampling and estimation have emerged as a popular
and useful statistical approach for estimation of activity areas. With this approach, a map depicting classes of
activity is used to stratify the area of interest. For each map class used as a stratum, map units are randomly
selected and assessed with respect to an attribute such as forest/non-forest or forest land cover change. Ground
observations are generally accepted as the most accurate source of information for these assessments but may be
cost-prohibitive to acquire for remote and inaccessible forest regions. In lieu of ground observations, visual
interpretations of remotely sensed data such as aerial imagery or satellite imagery are often used with the caveat
that the interpretations must be of greater quality than the map data. An unresolved issue pertains to the effects
of interpreter error on the bias and precision of the stratified estimators of activity areas.

For a 7500-km2 study area in north central Minnesota in the United States of America, combinations of forest
inventory plot observations, visual interpretations of aerial imagery, and two forest/non-forest maps were used
to assess the effects of interpreter error on stratified estimators of proportion forest and corresponding standard
errors. The primary objectives related to estimating the bias and precision of the stratified estimators in the
presence of interpreter errors, identifying factors and the levels of those factors that affect bias and precision, and
facilitating planning to circumvent and/or mitigate the effects of bias. The primary results were that interpreter
error induces bias into the stratified estimators of both land cover class proportion and its standard error. Bias
increased with greater inequality in stratum weights, smaller map and interpreter accuracies, fewer interpreters
and greater correlations among interpreters. Failure to account for interpreter error produced stratified standard
errors that under-estimated actual standard errors by factors as great as 2.3. Greater number of interpreters
mitigated the effects of interpreter error on proportion forest estimates, and a hybrid variance estimator ac-
counted for the effects on standard errors.

1. Introduction

Two approaches to greenhouse gas emissions accounting are
common, the stock-change approach and the gain-loss approach (IPCC,
2006, Volume 4, Chapter 2, p. 2.10; GFOI, 2016, p. 22). With the stock-
change approach, mean annual emissions are estimated as the mean
annual difference in carbon stocks between two points in time (IPCC,
2006, Volume 4, Chapter 4, Section 4.2.1.1; GFOI, 2016, Chapter 3).
For countries with established forest ground sampling programs such as
national forest inventories, the stock-change approach is fairly easy to

implement. However, for countries with remote and inaccessible for-
ests, the stock-change approach may be prohibitively expensive. For
these countries, the gain-loss approach may be a more feasible alter-
native. With this approach, emissions are defined to be the net balance
of additions to and removals from a carbon pool and are estimated as
the product of the areas of “human activity causing emissions”, char-
acterized as activity data, and the responses of carbon stocks for those
activities, characterized as emission factors (IPCC, 2006, Volume 1,
Chapter 1, Section 1.2; GFOI, 2016, pp. xvii, 22)

Estimation of areas of activities often relies on remote sensing-based
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land cover or land cover change maps (Olofsson et al., 2013, 2014; Ban
et al., 2015). Of importance, however, estimating areas of these activ-
ities by simply adding the areas of map units assigned to activity
classes, a practice characterized as pixel counting, is a biased procedure
because it does not account for map classification errors. Stratified
sampling and estimation is a statistically rigorous alternative. With
stratified sampling, map classes are used as strata, and within-stratum
samples are selected using simple random or systematic sampling de-
signs. Sample unit observations of land cover or land cover change are
then used as reference data, and the stratified estimators are used to
estimate the areas of activity classes of interest (Olofsson et al., 2013,
2014). In the absence of reference data error, the stratified estimators
are unbiased and more precise than simple random sampling estimators
(Chen and Wei, 2009).

Reference data in the form of ground observations are often con-
sidered optimal, although Foody (2009, 2010) notes that even ground
reference data are subject to error. However, regardless of error, ac-
quisition of ground reference data for remote and inaccessible regions
may be prohibitively expensive, if not logistically infeasible. For these
situations, reference data in the form of visual interpretations of re-
motely sensed data are often used, albeit with the stipulation that such
reference data are of greater quality than the map data with respect to
factors such as resolution and accuracy (Mannel et al., 2006; Stehman,
2009; Olofsson et al., 2013; Pengra et al., 2015; Tsendbazar et al. 2015;
Boschetti et al., 2016; GFOI, 2016, pp. 125, 139). However, even if
visual image interpretations are of greater quality than the map data,
they cannot be assumed to be without error. For five trained inter-
preters of stereo aerial photography, Næsset (1991) reported that in-
terpretations of crown coverage for structurally homogenous Norwe-
gian boreal forests differed substantially among interpreters and among
different times of year for the same interpreter. For the same forest
conditions, Næsset (1992) reported that interpretations of broad tree
species groups by 12 professional, trained interpreters using stereo
aerial photography produced only 31–79% agreement with field re-
ference data. For five trained interpreters of videography, Powell et al.
(2004) reported interpreter disagreement of almost 30% for five land
cover classes in the Brazilian Amazon, two of which were forest-related
classes. Thompson et al. (2007) reported errors of 30% when aerial
imagery was used to classify boreal forest stands into coniferous, de-
ciduous, and mixed classes in Ontario, Canada. For three trained in-
terpreters, Sun et al. (2017) reported that despite among-interpreter
consistency, manual interpretations of Google Earth and other fine re-
solution imagery were not as reliable as ground measurements for seven
land cover classes in Central Asia. In summary, reference data in the
form of visual interpretations of remotely sensed data, even by well-
trained professional interpreters, are subject to substantial interpreter
disagreement and error.

If the reference data are imperfect in the sense of being subject to
error, then the stratified estimators may be biased, sometimes sub-
stantially biased despite only small errors (Foody, 2009, 2010, 2013).
Although the effects of imperfect reference data on estimators of class
proportions and areas have been at least partially addressed, little has
been reported on the effects of imperfect reference data on variance
estimators. Compliance with the IPCC good practice guidance for
greenhouse gas inventories requires not only avoiding over- and/or
under-estimates but also reduction of uncertainties (IPCC, 2006, Vo-
lume 1, Chapter 1, Section 1.2; GFOI 2016, p. 15) with the obvious
caveat that uncertainties cannot be reduced unless they are first cor-
rectly estimated. In particular, correct estimation of uncertainty re-
quires incorporation of the effects of imperfect reference data into
variance estimators (Olofsson et al., 2014).

The objectives of the study were fivefold: (1) to assess the effects of
imperfect reference data on the bias and precision of stratified esti-
mators of land cover class proportions; (2) to characterize conditions
that affect the magnitudes of bias and precision; (3) to develop a var-
iance estimator that incorporates the effects of interpreter error; (4) to

illustrate the effects of interpreter error on bias and precision with in-
ventory ground data and visual interpretations of aerial imagery using
two forest/non-forest maps; and (5) to facilitate planning for estimation
of activity data. Because the ultimate objective is an estimate of the area
of a land cover class, and area can be expressed as the product of the
class proportion and the total population area which is usually known,
the focus of the study was estimation of the class proportion.

2. Data

2.1. Study area

The study area was the 7583 km2 of Itasca County in north central
Minnesota in the United States of America (USA) (Fig. 1). Land cover
includes water, wetlands and approximately 80% forest consisting of
mixtures of pines (Pinus spp.), spruce (Picea spp.), and balsam fir (Abies
balsamea (L.) Mill.) on upland sites and spruce (Picea spp.), tamarack
(Larix laricina (Du Roi) K. Koch), white cedar (Thuja occidentalis (L.)),
and black ash (Fraxinus nigra Marsh.) on lowland sites. Forest stands in
the study area are typically naturally regenerated, uneven-aged, and
mixed species.

2.2. Forest inventory data

Data were obtained for 310 ground plots established by the Forest
Inventory and Analysis (FIA) program of the U.S. Forest Service which
conducts the NFI of the USA. The plots were established in permanent
field locations using a quasi-systematic sampling design that is regarded
as producing an equal probability sample (McRoberts et al., 2010;
Mountrakis and Xi, 2013) and were measured between 2014 and 2016.
Field crews visually estimate the proportion of each plot that satisfies
the FIA definition of forest land: (i) minimum area 0.4 ha (1.0 ac), (ii)
minimum tree cover of 10%, (iii) minimum width of 36.58m (120 ft),
and (iv) forest land use. All field crews are well-trained, tested on their
ability to assess plot variables, and hence well-qualified to distinguish
forest from non-forest based on the FIA definition. A small number of
plots in three categories were deleted and considered to be missing at
random (Rubin, 1987): (i) plots with mixtures of forest and non-forest
cover, (ii) plots with forest use but with no tree cover due to conditions
such as recent harvest, and (iii) to the degree possible, plots with non-
forest use but with tree cover of which parks and rural residential areas
are examples. Plot centers were estimated using global positioning
system receivers with sub-meter accuracy. The field crew, plot-level,
forest/non-forest observations were used as reference data to produce
estimates of proportion forest that served as the standard for compar-
ison for estimates based on visual interpretations of aerial imagery.
They also served as the basis for assessing map and interpreter ac-
curacies.

2.3. Percent tree canopy cover datasets

The Global Forest Change (GFC) dataset is based on cloud-free,
composite, annual growing season Landsat 7 Enhanced Thematic
Mapper Plus data (Hansen et al., 2013). For 30-m×30-m pixels, the
dataset includes predictions of maximum percent tree canopy cover in
the range of 0–100% for vegetation taller than 5m for the year 2010.
The 2011 National Land Cover Database (NLCD) includes percent tree
canopy cover values in the range of 0–100% for 30-m×30-m pixels
(Homer et al, 2015). Each of the two datasets was used to construct a
forest/non-forest map (Section 3.2) which then facilitated stratified
sampling and estimation (Section 3.3).

2.4. Aerial imagery

Aerial imagery was obtained from the Farm Service Agency of the
U.S. Department of Agriculture through the National Agriculture
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Imagery Program which acquires imagery across the contiguous USA on
a 3-year cycle during summer growing seasons. The imagery for this
study was acquired in 2010 at 1.0-m resolution in four bands: natural
red, natural blue, natural green, and near infrared. Visual interpreta-
tions of the imagery were used to produce reference data, albeit pos-
sibly imperfect reference data, for estimation of proportion forest area.

3. Methods

3.1. Overview

The GFC and NLCD tree canopy cover datasets were used to con-
struct forest/non-forest maps whose classes served as strata for forest/
non-forest stratifications (Section 3.2). Stratified sampling and strati-
fied estimators were used to estimate proportion forest using both in-
ventory plot observations and interpreted aerial imagery as reference
data (Section 3.3). Hybrid estimators that incorporated the effects of
both sampling variability and interpreter error were used to estimate
the standard errors of proportion forest estimates (Section 3.4). Using
these basic statistical methods, the effects of interpreter error on the
bias and precision of the stratified estimators were assessed using si-
mulated data, the field crew plot-level forest/non-forest observations,
and visual interpretations of aerial imagery (Section 3.5).

3.2. Forest/non-forest map construction

Forest/non-forest maps were constructed from the GFC and NLCD
datasets by using an optimal threshold value to convert percent tree
canopy cover to forest/non-forest. Optimal thresholds were selected by
first associating the field crew forest/non-forest observation for each
plot with the percent tree canopy cover for each GFC or NLCD map
pixel containing the plot center. For these analyses, the plot observa-
tions were independent of the data used to construct the maps. For
percent tree canopy cover thresholds ranging from 0.01 to 0.99, each
FIA plot was assigned to the non-forest class if the corresponding per-
cent canopy cover was less than the threshold and to the forest class if

the percent was greater than or equal to the threshold. For each
threshold, accuracy was calculated as the proportion of plots for which
the plot forest/non-forest class assignments based on percent tree ca-
nopy cover were the same as the plot field crew forest/non-forest ob-
servations. The threshold with the greatest accuracy was selected as
optimal and used to convert percent canopy cover to forest/non-forest.
For the GFC data, Sannier et al. (2016, Section 3.1) selected a threshold
of 70% for a study area in Gabon; Næsset et al. (2016, Table 5) selected
a threshold of 40% for a study area in Tanzania; and McRoberts et al.
(2016a, Tables 2) selected a threshold of 95% for a study area in Santa
Catarina, Brazil. For the GFC data, the optimal percent canopy cover
threshold of 52% for this study produced overall forest/non-forest
classification accuracy of 0.88, and for the NLCD data, the optimal
threshold of 27% produced overall classification accuracy of 0.81. Each
pixel in each dataset was classified as non-forest if the percent tree
canopy cover was less than the respective optimal threshold; otherwise,
the pixel was classified as forest. For the GFC map, the forest and non-
forest map class proportions were 0.733 and 0.267, respectively, and
for the NLCD map, the proportions were 0.580 and 0.420, respectively.
These map class proportions served as stratum weights for stratified
estimation (Section 3.3).

3.3. Probability-based stratified estimators

Estimation of the population proportion, μ, for a particular class
among multiple land cover classes can be reduced to a two-class pro-
blem characterized by the class of interest, herein designated class 1,
and the aggregation of all remaining classes, herein designated class 2.
For a sample of reference data, a two-class confusion matrix char-
acterizing the distribution of the sample units with respect to the map
and reference classes is the common basis for estimation of proportions
(Foody, 2009). When the sampling intensities differ by strata, stratified
estimators of the proportion, μ, of the population in class 1 must be used
to accommodate the different intensities. The stratified estimators
provided by Cochran (1977) can be readily used for this purpose,

Fig. 1. Study area in Minnesota, USA.
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where the subscript, h, denotes the map class used as a stratum; wh is
the stratum weight calculated as the proportion of map units in the hth

map class (Section 3.2); nh is the sample size for the hth stratum; and ̂ph
is the proportion of sample units in the hth stratum in reference class 1
(Table 1).

Although interpreter errors are known to induce bias into estimators
of class proportions (Foody 2009, 2010, 2013), the degree of bias re-
lative to factors such as map accuracy and number of interpreters is
mostly unknown. If the conditions were known, then advance planning
to mitigate the biasing factors may be possible. A slight reformulation
of Bross (1954) and Zimmerman and Liknes (2010) shows that for a
single interpreter,

̂ = + − −E(μ) μ·r (1 μ)·(1 r), (2a)

where r is the map accuracy relative to reference data without error for
both classes. Subtracting μ from both sides yields,

̂ ̂= −
= − −

Bias(μ) E(μ) μ
(2·μ 1)·(1 r)

.
(2b)

Although informative, the estimators of Eqs. (2a) and (2b) require
knowledge of both μ and r, neither of which is known in advance.
Further, because ̂μ is a biased estimator of μ, substitution of ̂μ into Eq.
(2b) produces a biased estimator of the bias. Thus, this formulation
provides little that can be used for advance planning purposes, such as
selecting the number of interpreters as a means of minimizing bias.

Alternatively, in the absence of interpreter errors, the expected
value of the stratified estimator of proportion forest can also be ex-
pressed as,

̂ = + −
=

E(μ ) w ·q w ·(1 q )
μ

Str 1 1 2 2
(3)

where wh is the stratum weight and qh is the map accuracy for the hth

stratum. For any particular map, w1 and = −w 1 w2 1 will be known in
advance, and for widely available maps such as the GFC and NLCD
maps, at least rudimentary information on map accuracy will likely be
available. If the effects on bias and variances of w1, w2, q1, and q2 are
augmented with the effects of interpreter numbers and accuracies, then
informed advance planning may be facilitated. Thus the study focused
on estimating the latter effects.

3.4. Hybrid inference

Probability-based (design-based) inference assumes a probability
sampling design and one and only one possible value with at most
negligible uncertainty for each population unit. When only predictions
with uncertainty, rather than observations assumed to be without un-
certainty, are available for the sample units, two sources of uncertainty
must be accommodated when estimating variances, the uncertainty
associated with sampling variability and the uncertainty resulting from
using sample unit predictions rather than observations. The term hybrid
inference is used to characterize methods that combine probability-
based inferential methods to incorporate the effects of sampling
variability and model-based inferential methods to incorporate the ef-
fects of uncertainty associated with the sample unit predictions
(Fattorini, 2012; Corona et al., 2014; McRoberts et al., 2016b).

For this study, hybrid variance estimation entailed use of a Monte
Carlo procedure to incorporate the effects of interpreter error into the
variance estimator. The procedure is initiated with values selected for
five factors: (i) stratum weights, (ii) within-stratum map accuracies
relative to ground classes, (iii) within-stratum interpreter accuracies
relative to ground classes, (iv) numbers of interpreters, and (v) pairwise
between-interpreter correlations. Operationally, interpreters visually
interpret the aerial imagery independently of other interpreters.
However, because the same underlying imagery is very likely used by
all interpreters, errors arising from differences between plot observa-
tion dates and imagery dates are likely to be common to all interpreters.
In addition, sample units for which the imagery is easy or difficult to
classify for one interpreter are also likely to be easy or difficult to
classify for other interpreters. Thus, positive correlations among inter-
pretations by different interpreters should be expected.

For a value for each of the five factors, and a stratified random
sample, a Monte Carlo procedure was used to estimate variances that
incorporate both sampling variability and interpreter errors. For these
analyses, all map and interpreter accuracies were relative to ground
classes that are assumed to be without error, whereas reference data
may or may not be without error. The Monte Carlo procedure included
six steps:

(1) Ground class: for each sample unit in each stratum, a random
number was drawn from a uniform [0,1] distribution; if the number
was smaller than or equal to the within-stratum map accuracy, the
ground class was the map stratum from which the sample unit was
drawn; otherwise, the ground class was the complement of the map
stratum; although the term ground truth is not used for this study,
the ground class serves as what is characterized by some other
studies as ground truth;

(2) Forest/non-forest interpretation: for each sample unit within each
stratum and for each interpreter, a random number was drawn from
a multivariate, uniform [0,1] distribution with possibly non-zero,
pairwise, between-interpreter correlations (Demirtas, 2004); if the
number was smaller than or equal to the within-stratum interpreter
accuracy, the interpretation was the same as the ground class;

Table 1
Confusion matrix and estimators for class 1 proportion.
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* w1 = w, w2 = 1−w, where w is defined following Eq. (1b).
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otherwise, the interpretation was the complement of the ground
class;

(3) Reference class: for each sample unit within each stratum, the
majority forest/non-forest interpretation among interpreters was
selected as the reference class with the provision that for cases of
equal numbers of interpretations per class, the reference class was
the map stratum; of importance, because of interpreter error, the
reference class is not necessarily the same as the ground class;

(4) Stratified estimation: following selection of a reference class for
each sample unit, the probability-based, stratified estimators of Eqs.
(1a) and (1b) were used to estimate proportion forest and the
standard error of the estimate;

(5) Replication: steps (1)–(4) were replicated nrep times;
(6) Variance estimation: the hybrid estimates of proportion forest and

their standard errors were calculated as (Rubin, 1987, pp.76–77),
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is the among-replications variance,
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V 1
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Var [ μ (k)]2
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n

Str Str

rep

(4d)

is the mean per replication variance, and ̂ ̂Var [ μ (k)]Str Str is calculated
using Eq. (1b) regardless of whether the reference data were with or
without error.

In Step (5), replication continued until hybrid estimates of both
proportion forest and variance stabilized.

3.5. Analyses

3.5.1. Overview of analyses
Three approaches were used to estimate proportion forest and cor-

responding standard errors. First, the effects of interpreter error on bias
and precision were evaluated using a simulation approach applied to a
broad range of combinations of the five previously noted factors: forest/
non-forest stratum sizes, map accuracy, interpreter accuracy, pairwise
interpreter correlation, and number of interpreters (Section 3.5.2).
Second, for each of the GFC and NLCD maps, a stratified sample was
drawn from the Itasca County study area, and for each sample unit the
field crew forest/non-forest observation was used as the reference class
(Section 3.5.4). Third, for each map, the majority visual interpretations
for the same sample of field plot locations were used as reference data.
For all three approaches, the stratified estimators (Section 3.3) were
used to estimate proportion forest, and both the stratified and hybrid
estimators were used to calculate the standard errors of the proportion
forest estimates (Section 3.4).

3.5.2. Simulations
Simulations were conducted to assess the effects of interpreter error

on stratified estimates of mean proportion forest and the standard er-
rors of the estimates. For each of the forest and non-forest strata, 75
sample units were used. Separate simulations were conducted for each
combination of the following values for the five factors noted in Section
3.2.2: (i) forest stratum weights of 0.25, 0.50, 0.75, and 0.90; (ii)
common within-stratum map accuracies of 0.75 and 0.90; (iii) common
within-stratum interpreter accuracies of 0.75 and 0.90; (iv) 1, 3, 5, and

7 interpreters; and (v) common pairwise between-interpreter correla-
tions of 0.00, 0.50, and 0.90. Although the data reported in Section 2
were used to select ranges of values for the five factors, the simulations
were independent of those data. For the simulation analyses, all map
and interpreter accuracies were relative to ground classes assumed to
be without error.

3.5.3. Forest/non-forest plot observations
For each of the GFC and NLCD forest/non-forest maps, 75 plots

classified by the map as forest and 75 plots classified by the map as non-
forest were randomly and independently selected from among the 303
plots that remained after deletions (Section 2.2). Because the FIA plots
represented an equal probability sample from the population, stratified
random samples drawn from these 303 plots were considered stratified
random samples from the entire population. For the GFC map, the forest
and non-forest stratum weights were 0.733 and 0.267 (Section 3.2), and
the within-stratum forest/non-forest map accuracies were 0.933 and
0.853. For the NLCD map, the forest and non-forest stratum weights
were 0.580 and 0.420 (Section 3.2), and the within-stratum forest/non-
forest map accuracies were 0.920 and 0.680. For each map, the strati-
fied estimators described in Eqs. (1a) and (1b) and Table 1 were used to
estimate proportion forest and the standard error of the estimate using
the FIA plot observations as reference data. Because the reference data
were field crew forest/non-forest observations assumed to be without
error, hybrid estimators were not used for these analyses. All map and
interpreter accuracies were relative to ground classes in the form of
field crew observations assumed to be without error.

3.5.4. Visual interpretations
For each of the GFC and NLCD maps, stratified estimates of pro-

portion forest were calculated using reference data based on the visual
interpretations. For these analyses, the same stratified random samples,
the same stratum weights, and the same within-stratum map accuracies
as reported in Section 3.5.3 were used. For each sample unit, each of
three well-trained and experienced interpreters, independently of each
other and independently of field crew assessments, visually interpreted
the aerial imagery described in Section 2.4 and selected a forest or non-
forest class based on the FIA definition of forest land (Section 2.2). For
each sample unit, the majority interpretation among the three inter-
preters was then used as the reference class, and the stratified estima-
tors described in Eqs. (1a) and (1b) and in Table 1 were used to estimate
proportion forest and the standard error of the estimate. In addition, the
hybrid estimator (Section 3.4) was used to estimate the standard error
of the estimate of proportion forest for each map.

In Step (1) of the Monte Carlo procedure described in Section 3.4,
map and interpreter accuracies were calculated using inventory plot
observations as ground classes. However, such plot data are often not
available; otherwise, they would be used as reference data rather than
visual interpretations. Without such ground data the effects of inter-
preter error cannot be readily assessed or incorporated into the hybrid
variance estimator. To compensate for the lack of such data, the ma-
jority interpretations determined from Step (3) of the Monte Carlo
procedure were used as substitutes for the inventory plot observations
when calculating map and interpreter accuracies, and the hybrid var-
iance estimates were calculated. To facilitate these analyses, within-
stratum map and interpreter accuracies were calculated relative to
majority interpretations rather than inventory plot observations. Of
importance, these are the only analyses for which map and interpreter
accuracies are not relative to ground classes assumed to be without
error.

4. Results and discussion

4.1. Simulations

A primary simulation result was that interpreter error induced bias
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into the stratified estimator of proportion forest. For these simulation
analyses, bias was assessed by comparing the expected forest propor-
tions from Eq. (3) and the simulation means, both as reported in Tables
2a,b,c. For common within-stratum map and interpreter accuracies and
common between-interpreter correlations based on ground classes
without error, the bias increased as map and interpreter accuracies
decreased, as the numbers of interpreters decreased, and as the be-
tween-interpreter correlations increased. In addition, estimator bias
increased as the forest stratum weight deviated more from w=0.5 with
positive bias for w > 0.5, essentially no bias for w≈0.5, and negative
bias for w < 0.5. The explanation for the effects of unequal stratum
weights is that while similarly distributed within-stratum interpreter
errors had similar effects on within-stratum estimates, greater differ-
ences in stratum weights weighted these similarly within-stratum esti-
mates more unequally. Multiple studies reported by Foody (2009, 2010,

2013) support these findings. These simulation results should be in-
terpreted in a general sense, because they do not consider different map
or interpreter accuracies for different strata, different correlations for
different pairs of interpreters or different strata, or correlations between
map and interpreter accuracies. Nevertheless, the crucial result was that
greater numbers of interpreters were necessary to offset the biasing
effects of the other factors.

A second primary result of the simulations was that the stratified
estimator of the standard error is also biased in the presence of inter-
preter error. Ratios of hybrid SEs from Eq. (4b) to means of stratified
SEs from Eq. (1b) indicated that the stratified estimator which did not
incorporate uncertainty due to interpreter error under-estimated hybrid
standard errors by a remarkably consistent factor of approximately 1.4.
Comparisons of hybrid standard errors indicated they were smaller for
greater map and interpreter accuracies, greater numbers of interpreters,

Table 2a
Simulation results for pairwise between-interpreter correlation of 0.00.

Forest
stratum
weight (w1)

Map
accuracy

Expected proportion
forest in the absence of
interpreter error

Interpreter
accuracy

Means of proportion forest estimates and standard errors (number of interpreters)

1 3 5 7

Mean Standard error Mean Standard error Mean Standard error Mean Standard error

Str Hyb Str Hyb Str Hyb Str Hyb

0.25 0.75 0.375 0.75 0.438 0.038 0.054 0.414 0.037 0.053 0.400 0.036 0.051 0.393 0.036 0.050
0.90 0.400 0.036 0.052 0.382 0.035 0.049 0.377 0.034 0.049 0.376 0.034 0.049

0.90 0.300 0.75 0.400 0.036 0.051 0.361 0.033 0.047 0.341 0.030 0.043 0.328 0.029 0.040
0.90 0.339 0.030 0.043 0.311 0.026 0.036 0.303 0.024 0.035 0.301 0.024 0.034

0.50 0.75 0.500 0.75 0.500 0.034 0.048 0.500 0.033 0.047 0.500 0.032 0.046 0.500 0.032 0.045
0.90 0.499 0.032 0.047 0.500 0.031 0.044 0.500 0.031 0.043 0.500 0.031 0.043

0.90 0.500 0.75 0.499 0.032 0.046 0.499 0.030 0.042 0.500 0.027 0.039 0.501 0.026 0.036
0.90 0.500 0.027 0.038 0.500 0.023 0.033 0.500 0.022 0.031 0.500 0.021 0.030

0.75 0.75 0.625 0.75 0.563 0.038 0.054 0.585 0.037 0.053 0.599 0.036 0.051 0.608 0.036 0.050
0.90 0.599 0.036 0.051 0.618 0.035 0.050 0.622 0.034 0.049 0.624 0.034 0.048

0.90 0.700 0.75 0.600 0.036 0.052 0.636 0.033 0.047 0.659 0.030 0.044 0.671 0.029 0.041
0.90 0.660 0.030 0.043 0.689 0.026 0.037 0.697 0.024 0.034 0.700 0.024 0.034

0.90 0.75 0.700 0.75 0.600 0.044 0.062 0.638 0.042 0.060 0.658 0.042 0.059 0.671 0.041 0.058
0.90 0.661 0.041 0.059 0.689 0.040 0.057 0.697 0.039 0.056 0.699 0.039 0.055

0.90 0.820 0.75 0.660 0.041 0.059 0.720 0.038 0.054 0.755 0.035 0.049 0.775 0.033 0.046
0.90 0.755 0.035 0.050 0.803 0.029 0.042 0.815 0.028 0.039 0.819 0.027 0.039

Table 2b
Simulation results for pairwise between-interpreter correlation of 0.75.

Forest
stratum
weight (w1)

Map
accuracy

Expected proportion
forest in the absence of
interpreter error

Interpreter
accuracy

Means of proportion forest estimates and standard errors (number of interpreters)

1 3 5 7

Mean Standard error Mean Standard error Mean Standard error Mean Standard error

Str Hyb Str Hyb Str Hyb Str Hyb

0.25 0.75 0.375 0.75 0.437 0.038 0.054 0.433 0.038 0.054 0.432 0.038 0.054 0.432 0.038 0.054
0.90 0.401 0.036 0.051 0.395 0.036 0.050 0.394 0.036 0.051 0.394 0.036 0.050

0.90 0.300 0.75 0.400 0.036 0.051 0.394 0.036 0.050 0.392 0.036 0.051 0.390 0.035 0.050
0.90 0.341 0.030 0.043 0.334 0.029 0.042 0.332 0.029 0.041 0.330 0.029 0.041

0.50 0.75 0.500 0.75 0.500 0.034 0.048 0.501 0.034 0.048 0.501 0.034 0.048 0.500 0.034 0.048
0.90 0.500 0.032 0.046 0.501 0.032 0.045 0.501 0.032 0.045 0.499 0.032 0.045

0.90 0.500 0.75 0.500 0.032 0.046 0.501 0.032 0.045 0.500 0.032 0.045 0.500 0.032 0.045
0.90 0.500 0.027 0.038 0.500 0.026 0.037 0.501 0.026 0.037 0.501 0.026 0.037

0.75 0.75 0.625 0.75 0.563 0.038 0.055 0.567 0.038 0.053 0.567 0.038 0.054 0.569 0.038 0.054
0.90 0.601 0.036 0.051 0.604 0.036 0.051 0.607 0.036 0.050 0.606 0.036 0.051

0.90 0.700 0.75 0.601 0.036 0.051 0.606 0.036 0.051 0.608 0.036 0.050 0.610 0.035 0.050
0.90 0.661 0.030 0.043 0.666 0.029 0.042 0.669 0.029 0.041 0.669 0.029 0.041

0.90 0.75 0.700 0.75 0.601 0.044 0.062 0.607 0.044 0.061 0.609 0.044 0.062 0.610 0.044 0.063
0.90 0.661 0.041 0.058 0.668 0.041 0.058 0.668 0.041 0.059 0.670 0.041 0.058

0.90 0.820 0.75 0.661 0.041 0.059 0.670 0.041 0.058 0.673 0.041 0.058 0.676 0.041 0.057
0.90 0.757 0.035 0.049 0.766 0.034 0.048 0.770 0.033 0.047 0.772 0.033 0.047
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and smaller pairwise between-interpreter correlations. The crucial re-
sult was that unbiased variance estimation requires hybrid inferential
methods that incorporate the effects of uncertainty due to both sam-
pling variability and interpreter error.

4.2. Field and interpreter data

4.2.1. Global forest change map
For the GFC map, the forest and non-forest stratum weights were

0.733 and 0.267, and the within-stratum map accuracies relative to the
inventory plot observations were 0.933 and 0.853 and relative to the
majority interpretations were 0.960 and 0.840. Within-stratum inter-
preter accuracies relative to the inventory plot observations and the
majority interpretations are reported in Table 3. The stratified estimates
were ̂ =μ 0.723Str with ̂ =SE (μ ) 0.024Str str when using the FIA plot forest/
non-forest observations without interpreter error as reference data and

̂ =μ 0.738Str with ̂ =SE (μ ) 0.016Str str when using the majority inter-
pretations with interpreter error as reference data (Table 4). Of im-
portance, the stratified estimator is unbiased when used with reference
data without error but biased when using reference data with inter-
preter error. Although there is no evidence to suggest which of these
two stratified standard errors should be smaller or larger, the stratified
standard error obtained using the majority interpretations with inter-
preter error as reference data should be dismissed in favor of the

standard error obtained using the hybrid variance estimator when the
reference data have error.

As previously (Section 3.5.4), the hybrid standard error from Eq.
(4b) was calculated for two scenarios, one using the FIA plot observa-
tions assumed to be without error as ground classes, and one using the
majority interpretations with possible interpreter error as ground
classes where the latter scenario represents operational practice when
no ground data are available. The hybrid standard error obtained using
the FIA plot observations as the ground classes was ̂ =SE (μ ) 0.037Hyb Hyb
and when using the majority interpretations as substitutes for the
ground classes the hybrid standard error was ̂ =SE (μ ) 0.036Hyb Hyb . Using
majority interpretations as reference data, the ratios of hybrid to stra-
tified SEs were 2.25–2.31, regardless of whether the FIA plot observa-
tion or the majority interpretation was used as ground class. This ratio
represents the factor by which the SE is under-estimated by the strati-
fied estimator which does not account for interpreter error.

4.2.2. National land cover database map
For the NLCD map, the forest and non-forest stratum weights were

0.580 and 0.420, and the within-stratum map accuracies relative to the
inventory plot observations were 0.920 and 0.680 and relative to the
majority interpretations were 0.960 and 0.680. Within-stratum inter-
preter accuracies relative to the inventory plot observations and the
majority interpretations are reported in Table 3. The stratified estimates
were ̂ =μ 0.668Str with ̂ =SE (μ ) 0.029Str Str using the FIA plot forest/non-
forest observations as reference data and ̂ =μ 0.658Str with

̂ =SE (μ ) 0.025Str Str using the majority interpretations as reference data
(Table 4). The same comments from Section 4.2.1 regarding the relative
sizes of these two standard errors, the biasedness of the stratified esti-
mator when using reference data, and the two scenarios for calculating
hybrid standard errors pertain to the NLCD analyses. The hybrid stan-
dard error obtained using the FIA plot observations as the ground
classes was ̂ =SE ( μ ) 0.044Hyb Hyb and using the majority interpretations
as ground classes was ̂ =SE (μ ) 0.042Hyb Hyb . Using majority interpreta-
tions as reference data, the ratios of the hybrid to the stratified SEs were
1.68–1.76, regardless of whether the FIA plot observations or the ma-
jority interpretations were used as ground classes. This ratio represents
the factor by which the SE is under-estimated by the stratified estimator
which does not account for interpreter error.

Table 2c
Simulation results for pairwise between-interpreter correlation of 0.90.

Forest
stratum
weight (w1)

Map
accuracy

Expected proportion
forest in the absence of
interpreter error

Interpreter
accuracy

Means of proportion forest estimates and standard errors (number of interpreters)

1 3 5 7

Mean Standard error Mean Standard error Mean Standard error Mean Standard error

Str Hyb Str Hyb Str Hyb Str Hyb

0.25 0.75 0.375 0.75 0.436 0.038 0.054 0.433 0.038 0.053 0.432 0.038 0.054 0.430 0.038 0.055
0.90 0.402 0.036 0.051 0.395 0.036 0.050 0.395 0.026 0.051 0.394 0.036 0.051

0.90 0.300 0.75 0.400 0.036 0.051 0.393 0.036 0.050 0.392 0.036 0.051 0.391 0.036 0.050
0.90 0.340 0.030 0.043 0.334 0.029 0.041 0.332 0.029 0.041 0.330 0.029 0.041

0.50 0.75 0.500 0.75 0.501 0.034 0.048 0.500 0.034 0.049 0.501 0.034 0.049 0.500 0.034 0.048
0.90 0.501 0.032 0.045 0.501 0.032 0.046 0.500 0.032 0.045 0.500 0.032 0.045

0.90 0.500 0.75 0.500 0.032 0.046 0.500 0.032 0.046 0.501 0.032 0.046 0.500 0.032 0.045
0.90 0.500 0.027 0.038 0.500 0.026 0.037 0.500 0.026 0.037 0.500 0.026 0.037

0.75 0.75 0.625 0.75 0.563 0.038 0.054 0.565 0.038 0.054 0.568 0.038 0.054 0.569 0.028 0.054
0.90 0.601 0.036 0.052 0.603 0.036 0.050 0.606 0.036 0.050 0.606 0.036 0.050

0.90 0.700 0.75 0.601 0.036 0.051 0.606 0.036 0.051 0.608 0.036 0.051 0.610 0.035 0.050
0.90 0.660 0.030 0.043 0.666 0.029 0.042 0.669 0.029 0.041 0.669 0.029 0.041

0.90 0.75 0.700 0.75 0.601 0.044 0.062 0.607 0.044 0.061 0.610 0.044 0.061 0.610 0.043 0.062
0.90 0.660 0.041 0.059 0.668 0.041 0.059 0.669 0.041 0.059 0.670 0.041 0.058

0.90 0.820 0.75 0.661 0.041 0.059 0.671 0.041 0.058 0.674 0.041 0.057 0.675 0.041 0.058
0.90 0.756 0.035 0.049 0.768 0.034 0.048 0.770 0.033 0.048 0.772 0.033 0.047

Table 3
Interpreter accuracies.

Interpreter GFC* NLCD*

Forest
stratum

Non-forest
stratum

Forest
stratum

Non-forest
stratum

Relative to inventory observations
1 0.975 0.928 0.895 0.968
2 0.870 0.963 0.842 0.978
3 0.913 0.889 0.877 0.892

Relative to majority interpretations
1 0.960 0.840 0.680 0.960
2 0.787 0.947 0.627 0.960
3 0.880 0.920 0.733 0.933

* NLCD: National Land Cover Database; GFC: Global Forest Change dataset.
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4.3. Summary and discussion

The primary results of the simulation analyses were that for unequal
stratum weights, the effects of interpreter error were twofold. First,
interpreter errors induced bias into the stratified estimator of propor-
tion forest. The bias is less for greater equality in the stratum weights,
greater map and interpreter accuracies, larger numbers of interpreters,
and smaller between-interpreter correlations. Of importance for ad-
vance planning purposes, under the assumption that all interpreters are
well-trained, the only one of these factors that can be controlled is the
number of interpreters. In particular, the stratum weights and the map
accuracies are a function of the map, and between-interpreter correla-
tions for experienced interpreters using the same aerial imagery should
be expected to be large; indeed, small correlations should be a cause for
operational concern. Second, interpreter errors induced bias into the
stratified estimator of the standard error with the result that stratified
standard errors were substantially under-estimated. Ratios of hybrid to
stratified SEs were approximately 1.4, were non-negligible, and argue
strongly in favor of using the hybrid estimators.

Multiple results obtained from analyses of the inventory plot ob-
servations and the visual interpretations merit consideration. First,
differences in the stratified proportion forest estimates obtained using
the inventory plot observations as reference data and the majority in-
terpretations as reference data were small, 0.015 for the GFC map and
0.010 for the NLCD map. For the GFC map, the small difference can be
at least partially attributed to large interpreter accuracies, ranging from
0.870 to 0.975 (Table 3), and relatively small interpreter correlations
(Table 5). For the NLCD map, the small difference can be attributed to
nearly equal stratum weights and relatively large interpreter ac-
curacies.

Second, the hybrid standard errors based on inventory plot ob-
servations as the ground classes were larger than the stratified standard
errors by factors of 1.76–2.31. These factors are larger than the factor of
1.40 obtained from the simulations. However, the important con-
sequence is that failure to use the hybrid variance estimator to in-
corporate interpreter error produced substantial under-estimates of
standard errors and, thereby, would lead to non-compliance with the
IPCC good practice guidance.

Third, the hybrid standard errors obtained using majority inter-
pretations as substitutes for ground classes were larger than the stra-
tified estimates by factors of 1.68 to 2.25. These factors are similar to
the factors obtained using the plot observations as ground classes and
suggest that when ground observations are not available, use of the

majority interpretations as substitutes is a reasonable alternative.
Several issues merit additional comments. Firstly, the simulations

showed that greater between-interpreter correlations, which would be
natural for well-trained interpreters, actually produced greater bias in
both estimates of proportions and their standard errors. The explana-
tion is that with greater correlations, an error for a particular sample
unit by one interpreter is more likely to be associated with similar er-
rors by other interpreters for the same sample unit, whereas with
smaller correlations, an error for a particular sample unit is more likely
to be offset by correct interpretations by the other interpreters.
Secondly, more equal stratum weights tended to produce less bias in
estimators of both proportions and standard errors. However, small,
fragmented, and interspersed forest and non-forest patches are known
to be difficult to classify correctly using remotely sensed data.
Therefore, if the total forest and non-forest areas of fragmented and
interspersed forest patches are approximately equal, as would be the
case for approximately equal stratum weights, then these strata of ap-
proximately equal size may be associated with greater interpreter er-
rors.

Finally, alternatives to the simple majority of independent inter-
pretations as reference classes may be considered. For example, prior to
operational interpretation, interpreters can calibrate their interpreta-
tions with respect to known field conditions and/or to each other
(Guyana Forestry Commission, 2012, Appendix 10, Section 5.2). Also,
in the absence of unanimous interpretations, interpreters may discuss
the specific sample units and agree on a consensus interpretation. In
addition, instead of using majority interpretations leading to binary
reference observations (0 for non-forest, 1 for forest), continuous re-
ference observations in the form of the proportions of forest inter-
pretations among interpreters for the same sample unit are possible.
Confusion matrices can still be used, although variances would be
calculated differently.

5. Conclusions

Compliance with the IPCC good practice guidance for greenhouse
gas inventories requires the use of unbiased estimators and reduction of
uncertainties with the latter guideline pre-supposing rigorous estima-
tion of those uncertainties (IPCC, 2006, Volume 1, Chapter 1, Section
1.2; GFOI 2016, p. 15). Thus, the study focused on issues of bias and
rigorous estimation of variances and standard errors. Three conclusions
were drawn from the study. First, interpreter error induces bias into the
stratified estimator of proportion forest. The bias is greater for greater

Table 4
Estimates based on field and interpreter data.

Map No interpreter error With interpreter error

̂μStr SE ̂(μ )str ̂μStr SE ̂(μ )str ̂SE (μ )Hyb Hyb (Ground class data)

Plot observations Majority Interpretations

GFC 0.723 0.024 0.738 0.016 0.036 0.037
NLCD 0.668 0.029 0.658 0.025 0.044 0.042

Table 5
Interpreter correlations.

Global Forest Change data National Land Cover Database

Forest stratum (Interpreter) Non-forest stratum (Interpreter) Forest stratum (Interpreter) Non-forest stratum (Interpreter)

1 2 3 1 2 3 1 2 3 1 2 3

Interpreter 1 1.000 0.557 0.692 1.000 0.838 0.622 1.000 0.653 0.491 1.000 0.889 0.750
2 0.557 1.000 0.367 0.838 1.000 0.509 0.653 1.000 0.764 0.889 1.000 0,657
3 0.692 0.367 1.000 0.622 0.509 1.000 0;491 0.764 1.000 0.750 0.657 1.000
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inequality in stratum weights, smaller map and interpreter accuracies,
fewer interpreters, and greater correlations among interpreters. Of
these factors, only the number of interpreters can be readily controlled.
Second, interpreter error induces bias into the stratified estimator of the
variance and standard error. Failure to incorporate the effects of in-
terpreter error via the hybrid estimator led to under-estimates of
standard errors by factors ranging from 1.4 for the simulation analyses
to as great as 2.3 for the inventory data and visual interpretations.
Thirdly, in the absence of ground class data without error such as in-
ventory plot observations, use of the majority interpretations as sub-
stitutes produced hybrid standard errors that were similar to estimates
obtained using the inventory observations. However, the latter con-
clusion should be the subject of additional research for a greater variety
of conditions, particularly greater inequality in stratum weights.

For planning purposes, the expected land class proportion in the
absence of interpreter error as expressed by Eq. (3) and the results in
the Tables 2a,b,c can be used to guide decisions regarding number of
interpreters, the only factor influencing bias that can be readily con-
trolled. In this context, two general recommendations merit con-
sideration. First, at least three experienced interpreters should be used.
Use of a single interpreter does not permit substitution of majority in-
terpretations for ground class observations, and use of two interpreters
may lead to a large number of interpretation ties when assessing ma-
jority interpretations. For extremely unequal stratum weights, the si-
mulation analyses suggest that five or perhaps even seven interpreters
may be necessary to mitigate the effects of bias in the stratified esti-
mator of proportion forest. Secondly, hybrid variance estimators are
necessary to circumvent the biasing effects of interpreter error on the
stratified estimator of the standard error.
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