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Chapter 6
Machine Learning for Macroscale 
Ecological Niche Modeling - a Multi-Model, 
Multi- Response Ensemble Technique 
for Tree Species Management Under 
Climate Change

Anantha M. Prasad

6.1  Introduction

Machine learning has come a long way in recent decades due to huge increases in 
computing power and the availability of robust public platforms for statistical analy-
sis (e.g., R Core Team 2016). Machine learning techniques have benefited from 
advances in statistical learning and vice versa (Hastie et al. 2009; Slavakis et al. 
2014), resulting in impressive applications of big data in imaging, astronomy, medi-
cine, finance and to a lesser extent in ecology (Van Horn and Toga 2014; Zhang and 
Zhao 2015; Belle et al. 2015; Hussain and Prieto 2016; Hampton et al. 2013). A 
healthy relationship with computer science and engineering has invigorated the 
field even more, resulting in a variety of techniques suitable for diverse applications. 
One successful and frequently used method is ensemble learning, where learning 
algorithms independently construct a set of classifiers or regression-estimates and 
classify or regress newer data points by either taking a weighted vote (classifiers) or 
an average (regression) of their predictions (Zhou 2012).

A majority of the ensemble learning problems deal with classification due to the 
binary, or in some cases multinomial, response that is of interest. However, in the 
field of ecology, and especially in tree species abundance modeling, we have access 
to continuous data thanks to the Forest Inventory Analysis (FIA) in the United States 
(Woudenberg et al. 2010) that lends itself to a regression approach. Valuable infor-
mation can be lost if the continuous data are classified a priori into classes. 
Therefore, it is best to solve the problem in a regression context, and classify the 
results later to retain most of the information in the response. I will choose the 
regression approach for this reason and also to highlight this less used aspect of 
statistical learning.
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Modeling the abundance response of trees under current and future climates is an 
exercise fraught with assumptions and uncertainties due to the dynamic nature of 
the species’ range boundaries. We are essentially capturing a slice in the eco- 
evolutionary history of the species and trying to project it into future climatic space 
as forecast by the general circulation models (GCMs; McGuffie and Henderson- 
Sellers 2014). Of the many uncertainties, the non-equilibrium nature of the tree 
species (they could still be expanding their ranges and not yet have achieved cli-
matic equilibria) (Garcia-Valdes et al. 2013), and inability to capture biotic interac-
tions (Belmaker et al. 2015) are cited most often. These limitations, however, are 
often due to the scale of analysis; a macroscale analysis will typically include biotic 
interactions as an emergent phenomenon. Only finer scale analysis can deal with 
biotic interactions in a more fundamental way. However, the question of species 
non-equilibrium also affects macroscale studies because of the historical nature of 
eco-evolutionary processes and can be addressed to some extent by comparing vari-
ous studies as slices in time (Prasad 2015).

Of the many techniques that have emerged in recent years (Iverson et al. 2016), 
ensemble techniques based on decision trees have become the most popular among 
ecologists modeling niche related phenomena (Galelli and Castelletti 2013; Hill 
et al. 2017; Vincenzia et al. 2011). The transition from more parametric analysis like 
generalized linear and additive models (glm, gam and shrinkage based regression) 
to decision tree based techniques has to do mainly with the nature of ecological 
systems. They tend to be high dimensional and nonlinear with many embedded 
interactions; all of which are handled well by decision tree based techniques (Guisan 
et  al. 2002; Guisan and Thuiller 2005). Hence a multitude of techniques have 
evolved, each appropriate for a subset of problems and dealing mostly with various 
shortcomings arising from more conventional decision-tree based techniques like 
bagging, randomized trees and boosting (Elith et al. 2010).

As datasets have become larger and easier to acquire (large scale inventories, digi-
tal elevation models, satellite imagery, demographic financial data, to name a few) 
with a corresponding increase in computing power, there has been a movement away 
from more parametric forms of analysis towards computationally intensive machine 
learning, such as non-parametric methods that are flexible and data-driven. While 
older constraints based on limited data and computing power have relaxed, newer 
ones have emerged because the analysis has moved more into the “prediction” space 
(e.g., models that overfit because of non-optimal variance-bias ratio). These newer 
challenges are being addressed via increasingly sophisticated algorithms that com-
bine flexible models with resampling, permuting, shrinkage and regularization tech-
niques (Tibshirani 1996; Zou and Hastie 2005; Hastie et al. 2009).

The focus of this chapter is to show how to tackle these issues when modeling the 
abundance of tree species at a macroscale (20 km resolution) in the eastern United 
States (where we have sufficiently large predictor and response data), and also, how 
to address the problems of model reliability and prediction confidence while inter-
preting the results. Towards this goal, I develop a multi-response,  multi- model 
ensemble technique that addresses problems of bias, variance and output noise – 
resulting in more reliable prediction.
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6.2  Controlling Bias and Variance

Some ecological projects are fortunate to have large amounts of data at their dis-
posal while other studies fall into the category of designed experiments where data 
collection can be cumbersome and costly. Large Data projects are typically those 
that use datasets that are large and complex, of fairly coarse resolution, and are 
already available (e.g., remotely sensed topography and land-use, climate, soils, 
national forest inventory plots and bird surveys). Niche based analyses of these data 
lend themselves well to statistical machine learning techniques, unlike studies that 
require formal experimental design, which may be more appropriate for parametric 
statistical analyses. The existence of Large Data begs for a data-driven approach 
with complex and flexible models that capture nonlinearities and interactions well 
and can screen out less important predictors. However, this flexibility can result in 
overfitting and attendant variance; the models may fit the training data well, but not 
generalize well to newer prediction space (Domingos 2012; Merow et al. 2014). In 
statistical terms, these models have low bias (good) but high variance (not good). If 
bias is too high, the models are less likely to fit the underlying data (think straight 
line fitting curvilinear data), but if we lower bias too much, we risk overfitting and 
increased variance, making the models poor predictors of newer data (Dietterich 
and Kong 1995). To understand this a little better, imagine that we are training a 
flexible model with a data set that yields low training mean square error (MSE). If 
we use this same model with data set aside for testing, the test MSE will be much 
higher because it is picking up too many patterns associated with random noise 
(Hastie et al. 2009). A less flexible model (say a linear model) would have showed 
lower MSE with the test data even though the training MSE would be higher than 
the flexible model because it approximates nonlinearity with a linear fit. The quest 
in statistical learning is to optimize models to achieve a favorable bias-variance 
ratio, i.e., to simultaneously achieve low bias and low variance (Hastie et al. 2009).

6.3  Ensemble Learning Via Decision Trees

The basic idea of ensemble learning is to construct a mapping function y = F(x), 
based on the training data {(x1,y1), ……, (xn,yn)}, where

 
F x a a f xo m m( ) = + ( )

=
∑
m

M

1  

Where M is the size of the ensemble and {fm(x)} is an ensemble of functions called 
base learners (Friedman and Popescu 2008). The base learners are chosen from a 
function class of predictor variables and can vary with the ensemble methods used. 
An algorithmic procedure is specified to pick functions and also to obtain linear 
combination of the parameters {am}0 M based on the minimization of some cost 
function. This procedure generalizes the framework of ensemble learning to include 
algorithms like bagging, Random Forests, boosting, RuleFit etc.
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The fundamental component of all ensemble learning algorithms that use 
“ensemble of decision trees” algorithms is the individual decision tree (Breiman 
et al. 1984). Decision tree is a recursive partitioning algorithm that partitions the 
response into subsets (left and right child nodes) based on splitting rules of the form 
xj < k, where xj is the splitting variable (predictor) and k is the splitting value. The 
left node gets all the observations (response) that satisfy the splitting rule and the 
right node gets the rest. The algorithm evaluates all possible splitting rules (for all 
the predictors) based on the response and selects the one that minimizes a statistical 
criterion (usually lowest MSE for regression). The observations in the resulting left 
and right nodes are again subject to the same partitioning scheme, and this goes on 
recursively until a stopping rule is satisfied (usually, minimum number of observa-
tions in the node, or the maximum depth of the tree or some other cost parameter). 
The end result of the recursive partitioning procedure is a decision tree with split-
ting rules and fitted values for terminal nodes (for regression, the average of the 
observations that fall into the terminal node).

Decision trees are intuitive, easy to interpret, capture nonlinearities and interac-
tions very well and are very useful for high dimensional data. These properties 
make them very attractive for many ecological problems that exhibit these behav-
iors (Loh 2011; Rokach and Maimon 2015; Iverson and Prasad 1998). However, 
individual decision trees exhibit high variance and have poor prediction ability. 
Yet, they are very good building blocks in an ensemble setting where they can be 
used to build more complex models to achieve good variance bias tradeoffs 
(Dietterich 2000).

6.4  Ensemble Models

6.4.1  Bagging, Random Forest and Extreme Random Forests

Bagging is a way of reducing variance of decision trees via bootstrapping and 
aggregation of an ensemble of trees (Breiman 1996). In bagging, a number of deci-
sion trees are grown without pruning with a bootstrapped sample (sampling with 
replacement) and the resulting prediction rules averaged. It is based on the principle 
that if a single regressor has high variance, an aggregated regressor has smaller vari-
ance than the original one (Breiman 1996).

Random forests (RF) is a modification of bagging by taking a step further and 
randomizing even the predictor space. If along with the bootstrap sample, the pre-
dictors are also sampled randomly at each node and the results averaged, it results 
in further reducing variance (Prasad et al. 2006). This is the technique used in RF 
(randomForest package in R), where both datasets and predictors are perturbed to 
slightly increase the independence of each tree and then averaged to reduce variance 
(Breiman 2001). In RF, because a random subset of predictors are chosen at each 
split, many dominant predictors may not be present to define a split. This results in 

A. M. Prasad

humphries.grant@gmail.com



127

more local features defining the split instead of the dominant ones. When a large 
number of such trees are averaged, this can result in good balance between bias and 
variance and result in extremely reliable predictions. Another innovation in RF is 
that instead of computationally costly cross-validation or a separate test set to get 
unbiased error estimates, the observations not used in the training sample (usually 
one-third of the observations in the bootstrap sample), called “out-of-bag” (OOB), 
are used to obtain forecasts from the tree fitted to the remaining two-thirds (Liaw 
and Wiener 2002).

Extremely randomized trees (ERF) takes RF one step further in randomization 
(extraTrees package in R). While RF chooses the ‘best’ split at each node, ERF cre-
ates p splits randomly (i.e., independently of the response variable, p being the 
subset of predictors randomly chosen in each node) and then the split with the best 
gain (MSE for regression) is chosen. The rationale for ERF is that by randomizing 
the selection of split, the variance is reduced even further compared to the 
RF. However, ERF typically uses the entire learning sample instead of the boot-
strapped sample to grow the trees in order to reduce bias (Geurts et al. 2006). Bias 
reduction becomes more important with this form of extreme randomization, 
because randomization increases bias when the splits are chosen independent of the 
response (Galelli and Castelletti 2013). ERF can be useful as a robust predictor after 
initially screening for irrelevant predictors. For example we can use RF to select a 
parsimonious, but ecologically meaningful set of predictors, and then use this set to 
predict with ERF.

6.4.2  Boosting Decision Trees

Boosting is a method of iteratively converting weak learners to stronger ones (in our 
case, using decision trees). Boosting initially builds a base learner after examining 
the data and then reweights observations that have higher errors. Stochastic gradient 
boosting (gbm package in R) is a form of optimization algorithm of a loss function 
with added tools to reduce variance by shrinkage and stochasticity (Ridgeway 1999; 
Friedman 2002). It optimizes a loss function over function space (as opposed to 
parameter space in ordinary regression problems) by estimating gradient directions 
of steepest descent (negative partial derivatives of the loss function called the 
pseudo-residuals) such that each iteration learns from previous errors (pseudo- 
residuals) and improves on them

 
F x F x h xm m m m( ) = ( ) + ( )−1 ν γ·

 

At every stage of gradient boosting 1 < m ≤ M, the weak model Fm is slowly con-
verted to a stronger one by improving on the previous iteration Fm-1 by adding an 
estimator. The value hm(x) is the decision tree (at the m-th step) with J terminal 
nodes (the tree partitions the predictor space into J disjoint regions). The goal is to 
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minimize γm as a loss function (typically mean square error for regression), which 
has its own separate value for each of the J terminal nodes. The depth of the trees 
(i.e., the number of terminal nodes) J, defines the level of interaction and usually 
works best between 4 and 8. The shrinkage parameter ν (0 < ν ≤ 1) controls the 
learning rate of the boosting algorithm. If the number of boosting iterations (number 
of trees grown) is too large, it can lead to overfitting - ν therefore is usually chosen 
via cross-validation after finding the shrinkage parameter (values between 0.01 to 
0.001 works best). In addition, the base learner, instead of using the entire training 
set, randomly subsamples without replacement (usually set to 50% of the training 
set), which adds stochasticity and leads to increased accuracy (Friedman 2002).

There is another slightly different approach to boosting that differs in the way the 
objective function is optimized with separate terms for training loss and regulariza-
tion (Friedman 2001) called xgboost (Chen and Guestrin 2016). This method 
(xgboost package in R) differs from gbm in the way regularization is implemented 
when boosting, improving on its ability to control overfitting. It also handles tree 
pruning differently; gbm would stop splitting a node if it encounters a negative loss 
while xgboost splits to the maximum depth specified and then prunes the tree back-
wards to remove splits with no positive gain. Although boosting with carefully 
selected parameters can outperform RF, it can overfit noisy datasets due to the itera-
tive learning process and has to be used with caution, or by using algorithms that 
automatically control overfitting with internal mechanisms (Opitz and Maclin 1999; 
Hastie et al. 2009).

6.4.3  RuleFit

RuleFit also uses decision tree ensembles to derive rules - however, these rules are 
used to fit regularized linear models in a flexible way that captures interactions 
(Friedman and Popescu 2008). It is similar to stochastic gradient boosting in that it 
combines base learners (decision tree rules) via a memory function with shrinkage 
to form a strong predictor. A large number of trees are generated from random sub-
sets of the data and numerous rules assembled from a specified subset of terminal 
nodes. The predictor variables from these nodes allow for the estimation of linear 
functions where in addition to the rule-based base learner, linear basis functions are 
included in the predictive model. This is a useful feature because linearity from 
decision trees are hard to approximate. The large number of rules formed in the 
rule-generation phase, along with the linear basis functions are then minimized 
using regularized regression using lasso penalty (Tibshirani 1996; Zou and Hastie 
2005). In regularized regression (ridge, lasso or elastic net) an additional penalty is 
imposed on the coefficients while minimizing the loss function. The final ensemble 
formed by regularized regression, results in rules, variables and linear coefficients 
sorted by importance. In contrast with other ensemble methods, RuleFit outputs 
coefficients in addition to prediction rules, which can be interpreted as regular linear 
coefficients.

A. M. Prasad

humphries.grant@gmail.com



129

6.5  Multiple Abundances – Habitat Suitability

The response, which in our case is an assessment of the habitat quality of white oak, 
is typically a measure of species abundance as reflected by its dominance and den-
sity (McNaughton and Wolf 1970). Dominance and density together capture many 
aspects of habitat quality. The measure that we used traditionally (Iverson et  al. 
2008; Prasad et al. 2016) is the importance value (IV) which captures the relative 
abundance weighted by other species present in the FIA plot (Woudenberg et al. 
2010) as follows for each species X in a FIA plot:
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BA is basal area, NS is number of stems (summed for overstory and understory 
trees) and N is the total number of species in the plot. This measure, which is a blend 
of dominance and density, reflects the biotic pressure that accounts for the interac-
tion with other species and hence can reflect the realized niche better.

Another measure of species abundance that is proposed here is called mature 
average diameter (MAD). This dominance measure is derived by averaging the 
mean diameter of all trees of the target species in the plot after discounting the con-
tribution of juveniles; juveniles are considered ephemeral because their contribution 
is negligible for this application. Juveniles were defined as: (min (avg-
dia) + q1(avgdia))/2; where avgdia is the average diameter, min is the minimum and 
q1 is the first quartile average diameter of all the FIA plots with white oak. This 
measure of dominance captures the absolute abundance of the species in contrast to 
the relative importance value (IV).

To capture the density of the species better, I propose another measure of abun-
dance, mature species density (MNT), as the total number of trees of the species in 
the plot after discounting the juveniles. This measure of abundance denotes how 
well the species has colonized a site.

All three forms of abundance measures (IV, MAD, and MNT) in FIA plots were 
aggregated to 20 km cells and scaled from 0–100 (Fig. 6.1). They reflect different 

Fig. 6.1 The current maps of abundance for white oak - the importance value (IV), mature average 
diameter (MAD) and mature number of trees (MNT) per FIA plot aggregated to 20 km cells. The 
abundance values have been reclassified in the legend for illustrative purposes
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aspects of habitat quality and should be modelled separately, with the overall effect 
spatially summarized similar to the multi-stage ensemble models (Anderson et al. 
2012). I expect this approach to provide a better estimate of how the species would 
respond to climate change at a macro-scale compared to a single measure of abun-
dance. Plurality of outputs and methods are important in gauging the overall 
response of the species, which has a complex nonlinear relationship with the 
environment under changing climates (Bowman et al. 2015).

6.6  Explanatory Variables (Predictors)

The explanatory variables represented a blend of climate, soil and topographic vari-
ables that were deemed most ecologically relevant after repeated tests (Table 6.1). 
For sources and other details, refer to Prasad et al. (2016). The current climate data 
are for the period 1981–2010 (Daly et al. 2008), and the future climate is Hadley 
Global Environment Model [HAD, Jones et al. 2011] for the greenhouse concentra-
tion pathway of RCP 8.5 (Representative Concentration Pathways; Moss et  al. 
2008) which represents the high emission future scenario (Meinshausen et al. 2011). 
The future RCP 8.5 climate scenario represents equilibrium conditions of the 
general circulation model (GCM; McGuffie and Henderson-Sellers 2014) for 
approximately 2100.

Table 6.1 The explanatory variables (predictors) used in the five models for white oak. These are 
a parsimonious set of ecologically relevant variables screen selected after repeated modeling

Climate

tjan Mean January temperature (°C)
tmaysep Mean May–September temperature (°C)
pmaysep May–September precipitation (mm)
gsai Growing season aridity index (ratio of May–September precipitation by  

May–September evapotranspiration index)
Elevation
elvmax Maximum elevation (m)
elvsd Elevation standard deviation
Soil
clay Percent clay (< 0.002 mm)
om Organic matter content (% by weight)
ph Soil pH
sieve10 Percent passing sieve no. 10 (coarse)
sieve200 Percent passing sieve no. 200 (fine)

Climate: Data for the period 1981–2010 from (PRISM Climate Group), GCM data from NEX-
DCP30 (Thrasher et al. 2013).
Elevation: From the NASA’s Shuttle Radar Topography Mission provided at a resolution of 3” 
(Guth 2006). We calculated the maximum value and standard deviation at 10 and 20 km2 grids.
Soil: From Natural Resource Conservation Service’s County Soil Survey Geographic (SSURGO) 
database (NRCS 2009). Data was processed by (Peters et al. 2013) and aggregated to 10 and 
20 km2 grids
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6.7  Multi-Model Ensemble Approach

To achieve good bias-variance tradeoff, I used an ‘ensemble-of-trees’ via aggrega-
tion, randomization, boosting (randomForest, extraTrees, gbm, xgboost packages in 
R) and the ruleFit module (http://statweb.stanford.edu/~jhf/R_RuleFit.html). All 
these five approaches have their strengths and weaknesses depending on the training 
set. RandomForest and extraTrees have the least number of parameters to manipu-
late but cannot outperform the carefully tuned gbm and xgboost models. The gbm 
and xgboost algorithms, however, have more parameters to manipulate although the 
default settings often perform well. RuleFit in addition to robust prediction, gives 
linear coefficients and rule-sets. Multi-model ensemble approaches have been used 
where prediction uncertainty needs to be stabilized to yield more robust predictions 
(Jones and Cheung 2015; Martre et al. 2015). For the multi-model approach to work 
well, the models should be based on a similar framework (in this case decision 
trees) but should adopt structurally different approaches so that the final ensemble 
averages these heterogeneous approaches (Tebaldi and Knutti 2007). My approach 
consists of combining the five models (ensemble of models) to obtain two types of 
predictions: a) where output of all models are averaged (AVGMOD), and b) where 
they are averaged but only those cells common to these five models (an AND opera-
tion) make it to the final model (CAVGMOD). This procedure treats these models 
as a committee of experts and uses their average and common averaged prediction, 
improving prediction of single models by averaging out the errors. The overall 
thrust of the predictions are better captured by this approach for future climates. For 
this to work most effectively, the parameters for each of these five models need to 
be optimized via a repeated cross-validation approach in order to obtain a model 
with the most favorable bias-variance ratio. To do this, I used the caret package in R 
and repeated the ten-fold cross-validation, five times and chose the parameters with 
the lowest error (Kuhn 2008).

The multi-model, multi-response ensemble approach for the high emission future 
climate is illustrated for white oak using the three measures of abundance (IV, MAD 
and MNT) for the average model (AVGMOD), and the common average model 
(CAVGMOD) (Fig. 6.2). The CAVGMOD retains all the important habitats, while 
smoothing out the lower abundance values compared to AVGMOD and is therefore 
preferred in situations where reducing noise is desirable.

6.8  Results and Interpretation

One of the main goals while modeling future climate habitats of tree species is the 
need to gauge both model reliability and prediction confidence.
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Fig. 6.2 The multi-model predictions for the three responses (importance value (IV), mature aver-
age diameter (MAD) and mature number of trees (MNT)) for the future harsh (Hadley, RCP 8.5) 
climate scenario for white oak. The AVGMOD is the average response across the five models, the 
CAVGMOD is the average response across the five models restricted to values common to all 
models. The abundance values have been reclassified in the legend for illustrative purposes
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6.8.1  Model Reliability

Model reliability, which measures how well the models fit the data, reflects the 
vagaries of the training data, depending on whether the tree species is habitat spe-
cific, sparse, or a generalist. The sparser species have poor fit due to lack of training 
data and generally have poor model reliability. The habitat specific trees have the 
best model fit due to a better correlation with the environmental variables, with 
higher confidence in future predicted habitats. The model fit of generalists can vary 
depending on how widely and sparsely the species are distributed spatially. These 
species-specific vagaries affecting model reliability can be roughly measured via 
R-square-like measures via OOB, cross-validation or through a separate training 
and test dataset. For example, the R-square for the IV response of the RF model for 
the habitat-specific loblolly pine (Pinus taeda) was 0.79. In comparison, the 
R-square measure for our generalist species example of white oak (for the five mod-
els and three responses) averaged ~ 0.47.

6.8.2  Prediction Confidence

Even for species with good model reliability, the spatial configuration of the habitat 
quality in the predicted output (as measured via abundance values) can vary. For 
example, in Fig. 6.2, the classes 1–3 and 4–7 figure prominently even in CAVGMOD, 
and are of lower habitat quality than the higher classes. Because we can take advan-
tage of the continuous distribution via regression models (after rescaling the abun-
dances to values between 0 and 100), we have the ability to interpret the predicted 
habitats in terms of “prediction confidence” by reclassifying the results. The multi- 
model ensemble method helps mitigate the effects of spurious model artifacts (what 
can be termed “fuzzy values”) at the low end of the abundance spectrum. The 
CAVGMOD approach further helps us identify only those prediction signals that 
have been strong in all five of the model predictions. Further, continuous predictions 
do not lend themselves to easy interpretation. Therefore, reclassifying them with the 
purpose of identifying the core regions where we have the highest confidence (based 
on abundance values) becomes useful for interpretation.

6.8.3  Combined Habitat Quality and Prediction Confidence

Using the CAVGMOD approach, we can average the predicted abundances of IV, 
MAD and MNT to capture the important future habitats as reflected by these three 
aspects of abundance and then reclassify the output to highlight the prediction con-
fidence of the averaged response (Fig. 6.3). I have classified the future habitats to 
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five confidence zones based on the predicted abundance: (1) Very low (1–3); 
(2) Low (4–7); (3) High (8–15); (4) Higher (16–25); (5) Highest (26–100). Class 1 
(Very low) would include many model artifacts (for example values close to zero 
that were regressed as 1–3) that are of dubious habitats that can be discarded as 
unreliable. Class 2 (Low) may also contain some regions with dubious habitats and 
some with low habitat suitability and should be treated with caution. Confidence in 
the habitat suitability classes increase steadily from Class 3 onwards (High, Higher 
and Highest).

Compared to the three CAVGMOD responses (Fig. 6.2), the single combined 
response (Fig. 6.3) highlights those areas (High and Higher classes) where we have 
the most confidence in the habitat quality of future habitats based on all three aspects 
of the abundances. For white oak, these areas (green and dark green) are predomi-
nantly in the north-east, north-central and south-central regions.

6.8.4  Predictor Importance

The importance of the predictors for each of the responses (IV, MAD and MNT) 
varied among the five models for white oak, although the first three were similar for 
all five models. These were recorded and averaged across the five models for the 
three responses (Table 6.2). For IV and MAD, the three most important variables 
are ph, tmaysep and tjan (Table 6.1), which explain 47.5% (IV) and 48.2% (MAD) 
of the variation for white oak. For MNT, the order varies with sieve10 and clay 
becoming important, but the same three variables (ph, tmaysep and tjan) still explain 
40.1% of the variation. The predictor importance of the final combined response of 
the multi-model ensemble is the average for the three individual responses (IV, 
MAD and MNT) (Table 6.3). Again, the three most important variables (ph, tmay-
sep and tjan) explain 46.5% of the total variation. Because white oak is a generalist 

Fig. 6.3 The average of 
the three predictions 
(importance value (IV), 
mature average diameter 
(MAD) and mature number 
of trees (MNT)) for 
CVAGMOD (Fig. 6.2), 
with values common to the 
three predictions for white 
oak
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species occupying a vast swath of the eastern US, ph captures variation from east 
to west, while tjan and tmaysep are more important in capturing the north-south 
variation, and hence figures prominently in the final response.

6.9  Discussion

The main goal of the multi-model, multi-response approach developed here is to 
produce more reliable and ecologically interpretable models that can be used to help 
decision makers in managing tree species (Bell and Schlaepfer 2016). Tree species 
ranges are dynamic by nature and the additional impact of anthropogenic climate 
change makes it harder to predict distribution for future climates irrespective of the 

Table 6.2 The predictor importance of white oak averaged across the five models for importance 
value (IV), mature average diameter (MAD) and mature number of trees (MNT). The Percent Gain 
reflects the proportion of variance explained by the variable

IV MAD MNT
Variables Percent gain Variables Percent gain Variables Percent gain

ph 16.7 ph 22.1 ph 17.2
tmaysep 16.6 tmaysep 16.5 sieve10 12.9
tjan 14.2 tjan 10.6 tmaysep 12.3
sieve10 10.2 elvmax 7.3 clay 10.8
clay 7.9 pmaysep 7.0 tjan 10.6
gsai 6.5 om 6.9 sieve200 8.1
elvmax 6.1 sieve10 6.7 elvsd 7.7
pmaysep 6.1 elvsd 6.4 pmaysep 5.6
om 5.5 gsai 6.3 om 5.5
elvsd 5.3 sieve200 6.0 gsai 5.3
sieve200 5.0 clay 4.2 elvmax 4.0

Table 6.3 The average 
predictor importance of the 
five models for white oak 
averaged across the three 
responses (IV, MAD and 
MNT in Table 6.2) and sorted 
by the Percent Gain

AVG
Variables Percent gain

ph 18.7
tmaysep 15.1
tjan 11.8
sieve10 9.9
clay 7.6
elvsd 6.5
sieve200 6.4
pmaysep 6.2
gsai 6.0
om 6.0
elvmax 5.8
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modeling approaches used (Zurell et al. 2016). However, managers need to be able 
to target specific areas for facilitating species conservation and other multiple-use 
management objectives. The first step in accomplishing these goals is to explore 
where the most probable future suitable habitats will occur. The multi-model, multi- 
response approach addresses the inherent complexity in tree species response in a 
systematic and statistically defensible manner. It also provides maps of regions 
where we have high confidence in the future suitable habitats for tree species that 
exhibit good model reliability (Hannemann et al. 2015). The tree species that exhibit 
high model reliability are typically species that are habitat specific, although gener-
alists like white oak can also be adequately modelled. The tree species that typically 
have poor model reliability are those that are sparse (both closely and widely dis-
tributed), which for eco-evolutionary and biogeographic reasons have not extended 
their range. Models for these species should be treated with caution because their 
habitats are difficult to predict with environmental variables; biogeographic and 
eco-evolutionary variables are not easy to incorporate without extensive Gene X 
Environment studies.

The multi-model, multi-response model I present as an example, demonstrates 
that suitable future habitats for white oak are most likely to be in the north-east, 
north-central and south-central regions of the eastern United States (Fig. 6.3). This 
type of information is important for resource managers dealing with uncertainty and 
mandates to incorporate climate change in their management portfolios. While suit-
able habitats lack information on the likelihood of colonization, these can be 
assessed at a later stage via dispersal models (Prasad et al. 2016). However, to assess 
the probability of establishment of colonized sites involves finer scale process- based 
models that account for biotic interactions.

Another challenge when modeling tree species habitats under current and future 
climates lies in the transfer of ecological space (the niche of the species) to eco- 
geographic space (the mapped niche), which results in spatial autocorrelation 
effects. The problem of spatial autocorrelation can become acute with conventional 
parametric techniques and, while less problematic with non-parametric statistical 
learning methods, can still manifest in residual errors (Hawkins 2012; Kühn and 
Dormann 2012). In this study, there was negligible global residual spatial autocor-
relation, although local ones were present. However in niche-based spatial model-
ing, some residual spatially auto-correlated errors have to be tolerated, and 
interpreted with caution. The alternative is extremely complex, autoregressive, para-
metric models that in many cases defeat the purpose of a more flexible modeling 
approach (Merow et al. 2014).

6.10  Conclusion

Predicting habitat quality is the first stage in the analysis of future distribution of 
tree species because dispersal and site-specific constraints will prevent colonization 
and establishment in all available suitable habitats (Prasad et al. 2016). Predicting 
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these suitable habitats using robust modeling techniques is the essential first step 
and I present the multi-model and multi-response ensemble technique as a method for 
modeling tree species dynamics for better management under changing climates.
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