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A B S T R A C T

Dynamic occupancy models provide a flexible framework for estimating and mapping species occupancy pat-
terns over space and time for large-scale monitoring programs (e.g., the North American Bat Monitoring Program
(NABat), the Amphibian Research and Monitoring Initiative). Challenges for designing surveys using the dy-
namic occupancy modeling framework include defining appropriate derived trend parameters, and providing
usable tools for researchers to conduct project-specific sample size investigations. We present a simulation-based
power analysis framework for dynamic occupancy models that allows for the incorporation of the underlying
environmental space (i.e., as covariates) within a specific study region to inform sample size estimation. We
investigate two definitions of temporal trend: (1) a gradual, sustained (linear or nonlinear) change over a period
of many years, and (2) an abrupt increase or decrease between two time periods. We draw upon pilot data
collected following NABat protocols to inform assumed data generating values in a demonstration of our ap-
proach. Due to the complicated parameter structure of dynamic occupancy models, we emphasize the im-
portance of visualizing simulated changes over time based on different parameter settings prior to conducting a
power analysis. Our simulations revealed that the linearity of short-term trends (five years in our investigation)
conferred higher power with lower sample size than longer trends where occupancy probabilities approached
zero (ten years in our investigation). We provide an example of how to use our tools to conduct customized
investigations using questions posed by NABat, and in doing so, we shed light on general guidelines that can be
applied to programs monitoring species occupancy for other taxa. Importantly, we created an R package to
execute our approach for informing program-, species-, and study-specific investigations aimed at identifying
changes in species occupancy.

1. Introduction

Large-scale conservation monitoring programs pursue assessments
of status and trends in species distribution for imperiled or invasive
species (e.g., Jones, 2011; Noon et al., 2012; Loeb et al., 2015). To be
successful in this pursuit, baseline estimates of required sample sizes for
achieving stated program objectives must be established in the design
phase and then updated as data from early sampling efforts become
available. Using customized power analyses iteratively, as new in-
formation about the species of interest becomes available, can help
programs avoid wasting time and money (e.g., Fig. 3 in Guillera-Arriota
et al., 2010; Gerrodette, 1987), or worse, a complete loss of trust from

funding agencies (Marsh and Trenham, 2008; Reynolds et al., 2011).
Ideally, a statistical power analysis will be crafted around a well-de-
fined ecological objective that can be linked to estimable parameters
within a statistical model.

A popular metric for geographically extensive monitoring programs
is species occupancy (probability); this metric can be particularly useful
for cryptic species whose abundances cannot be reliably measured (e.g.,
Jones, 2011; Noon et al., 2012; MacKenzie and Nichols, 2004). For
example, the North American Bat Monitoring program (NABat; Loeb
et al., 2015) augments count data with detection/non-detection data
derived from recorded echolocation calls (Banner et al., 2018), because
count data (e.g., mist netting, roost surveys) are difficult to collect
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across the extent of a species’ range. For such monitoring programs, a
general temporal trend objective is often stated, “to identify an x%
change in species occupancy probability over a specified time period,
such as five or ten years, with 80% power and Type I error less than
0.05;” hereafter, we use this definition for temporal trend objective and
trend.

The dynamic occupancy modeling framework (e.g., MacKenzie
et al., 2003; Royle and Kery, 2007; Royle and Dorazio, 2008) provides a
flexible and realistic way to address temporal trend objectives, how-
ever, there remains a need to guide practitioners on statistical power
and sample size. Previous survey design guidance for dynamic occu-
pancy models focused on optimizing the estimation of model para-
meters through the minimization of their root mean square errors (see
Bailey et al., 2007; McKann et al., 2013), but did not investigate sample
size requirements for temporal trend objectives directly (but see
Mattfeldt et al., 2009). Additionally, with the exceptions of Ellis et al.
(2014, 2015), power analyses or sample size calculations often ignore
the potential influence of the underlying environmental space that will
be surveyed and ultimately used as covariates to predict the probability
of species occupancy at unsurveyed locations (species distribution
maps).

Assessing power for trend objectives in a dynamic occupancy model
is less straightforward than simply setting a specified effect size in a
linear trend model based on relevant biological knowledge about the
system (e.g., Starcevich et al., 2018; Wagner et al., 2013; Gerrodette,
1987) because of the model’s complicated parameter structure (see
Section 2.1). We propose and demonstrate that the best approach is to
graphically assess the imposed trend for different specifications of dy-
namic occupancy model parameter values to understand the implied
effect size, and to avoid using unrealistic trends in power analyses. In
this work, we investigate the connection between temporal trend ob-
jectives and the parameterization used in a dynamic occupancy model
to develop a simulation-based power analysis framework that can be
broadly used by occupancy-based monitoring programs. Our approach
also allows for the inclusion of real environmental covariate data, en-
abling us to investigate the potential influence of the underlying en-
vironmental space for different spatial extents within a specific region
of interest.

Monitoring programs are often omnibus in the sense that inference
is desired at different spatial extents and for multiple species. We cre-
ated an R (R Core Team, 2018) package dynOccuPow to execute our
approach for informing program-, species-, and study-specific in-
vestigations aimed at detecting changes in species occupancy. Our
package can be used to help researchers and/or managers weigh trade-
offs among survey design elements that can be controlled (e.g., number
of sites, visits, and years; desired power; maximum tolerance of Type I
error) while accounting for elements that cannot be controlled like
background variation inherent in the system (i.e., variation that cannot
be accounted for through the experimental design or the statistical
model). We use the context of NABat to provide an example of how to
conduct customized investigations into survey design questions, and in
doing so we shed light on general considerations for assessing change
over time using dynamic occupancy models.

2. Methods

2.1. Dynamic occupancy models

Dynamic occupancy models (for an introduction see MacKenzie
et al., 2006) assume a sampling framework where analysis units are
defined by sites, which can either be a partition of the region of interest
into equal-area spatial units (e.g., 10 km× 10 km grid cells), or by
naturally occurring units such as ponds or lakes. Sites are defined such
that it is reasonable to assume the species of interest either occupies or
does not occupy the site for the duration of the season (i.e., occupancy
is closed within season). During a visit, species observations arise

through either passive (e.g., acoustic detector, camera trap) or active
(e.g., human observer) sampling, often aggregating many observation-
level detection/non-detections into visit-level data. To account for im-
perfect detection, which occurs when the species is present at the site
but missed during a visit, at least a subset of sites must be visited more
than once during each sampling season. The repeated visits can either
be spatial (multiple visits to a site during the same survey event), or
temporal (multiple survey events to the same location in a site during
the same sampling season, although see section 10.11 in Kéry and Royle
(2016) for how the space-for-time substitution affects the interpretation
of the detection parameter); for both types of visits, it must be rea-
sonable to assume that observations from visits within a site result in
independent detection/non-detection data. In addition to the in-
dependence and closure assumptions, the dynamic occupancy model
assumes that the species cannot be detected if it is not present during
the observation process, but see (Banner et al., 2018; Chambert et al.,
2015, 2018; Miller et al., 2011) for models that can address mis-
identification errors.

2.1.1. Model specification for simulation and analysis
Large-scale monitoring programs aim to generalize inferences be-

yond survey locations by employing probabilistic sampling designs,
which select n sites for monitoring from a spatial domain comprised of
N total sites (indexed by = …i n n N1, , ; ). Our approach facilitates
investigation of two probabilistic sampling designs: the simple random
sample (SRS) and a spatially-balanced analog defined by the general-
ized random tessellation stratified (GRTS) algorithm (see Stevens and
Olsen, 2004). We simulate and analyze detection/non-detection data
according to the auto-logistic parameterization of the dynamic occu-
pancy model described in Royle and Kery (2007) and Royle and Dorazio
(2008) (Eqs. (1)–(6), see Appendix A for simulation steps).

Z Bernoulli ( )i i,1 ,1 (1)

= =logit X( ) t1 1 (2)

Z Z Bernoulli for t( ) 2i t i t i t, , 1 , (3)

= +logit a b z( )i t t t i t, , 1 (4)

Y Z Bernoulli z p( )ij t i t i t ij t, , , , (5)

=logit p W( ) .t t t (6)

This model assumes that true occupancy status in site i during the
first year, denoted Zi,1, follows a Bernoulli distribution with probability
of occurrence equal to i,1 (Eq. (1)). Logit-linear relationships between
site-level covariates and true species occupancy during the first year 1
are specified through Eq. (2), where =Xt 1 is a ×n r matrix of r covari-
ates, and is a + ×r( 1) 1 column-vector of partial regression coeffi-
cients representing assumed relationships. The occupancy status of site i
in year t follows a Bernoulli distribution with probability equal to i t,
(Eq. (3)), which is calculated assuming that a site’s occupancy status is
dependent on the status of that site in the previous year (i.e., first order
Markov process, Eq. (4)). The parameters at and bt are directly related
to site-specific colonization and extinction probabilities through

=logit a( )t t1 and = +logit a b( )t t t1 . The colonization probability, t ,
is the rate at which unoccupied sites in year t 1 become occupied in
year t. Additionally, the rate at which occupied sites in year t 1 be-
come unoccupied in year t is the extinction probability, = 1t t,
where t is the survival probability of an occupied site in year t 1
remaining occupied in year t. Site-level covariates could be included to
account for heterogeneity in i t, , but force the computation of coloni-
zation and extinction probabilities to be done assuming covariate va-
lues are zero (or average values for standardized covariates), compli-
cating interpretations. Thus, unless site-level covariates are changing
over time, we recommend relating them to initial occupancy i,1 instead
of the update probabilities ( i t, ). If site i is occupied, the probability of
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detecting a species during visit j in year t is pij t, , and individual ob-
servations (detections/non-detections), denoted Yij t, , are also assumed
to follow a Bernoulli distribution (Eq. (5)). When covariates are avail-
able, they can be included to account for heterogeneity in detection
probabilities among sites, visits, and seasons through Eq. (6), where Wt
is a × × +n J w( ) ( 1) matrix of w covariates and an intercept term and

t are partial regression coefficients representing assumed covariate-
detection relationships.

2.1.2. Imposing, quantifying, and identifying temporal trends
Trends in species occupancy are defined by changes in annual oc-

cupancy probabilities over time, where annual occupancy probabilities
are computed recursively using the colonization and extinction para-
meters, = + (1 )i t i t t i t t, , 1 1 , 1 1, for years = …t T2, . We extend
the work of Bailey et al. (2007) and McKann et al. (2013) by directly
investigating power for two derived trend parameters from dynamic
occupancy models. The two trend parameters we investigate are based
on a spatially explicit parameterization of MacKenzie et al. (2003)yearly
growth rate, = /i t i t i t, , , 1 ( = …t T2, 3, , ), which characterizes inter-
annual changes for subsequent years throughout a study. Let t be the
average occupancy over all sites in year = =t, t n i

n
i t

1
1 , , and t be the

average growth rate for year =t, /t t t 1. Then, we define the average
annual growth rate as the overall average of the average growth rates for
years = … = =t T2, , , avg T t

T
t

1
1 2 , which is similar to the linear trend

parameter used in Ellis et al. (2014), Ellis et al. (2015), and Adams et al.
(2013). Similarly, we define the total growth rate as the ratio of average
occupancy in the last year to that in the first year = /Tot T 1. Total
growth rate can be used to characterize the long-term step trend in
occupancy since the initiation of the monitoring program (e.g., step-
change as in Gerrodette, 1987; Seavy and Reynolds, 2007; Wagner
et al., 2013).

Both trend parameters Tot and avg estimate net change, which can
be thought of as a measurement of total change in a parameter arising
from all sources (Mcdonald, 2003). Parameter values of less than one
for avg and Tot indicate a net decrease in the total number of sites
where the species occurs over the time interval of interest within the
defined study region. Although an observed decrease in the total
number of sites where the species occurs could be offset by individuals
moving to better habitat outside the study region, in many cases, the
decrease could represent a constriction in distribution that is often re-
lated to a declining population (see Noon et al., 2012; Holt et al., 2002;
Tempel and Gutierrez, 2012; Gaston et al., 2000).

Both trend parameters assume approximately monotonic change in
species occupancy over the duration of the study. The average annual
growth rate makes the stricter assumption that the average yearly
changes are similar (i.e., the trend is approximately linear). In our data
simulation, the imposed effect size of the trend depends on annual
occupancy probabilities, which are a function of the dynamic occu-
pancy model parameters colonization and extinction and any assumed
species-environment relationships with initial occupancy (Eqs. (1)–(6)).
Therefore, the effect size (as per power analyses) for a temporal trend
objective is indirectly set through the specification of dynamic occu-
pancy parameter values and assumed species-environment relation-
ships.

2.1.3. Conducting simulation-based power analyses
We created a fully-documented R (R Core Team, 2018) package,

dynOccuPow (See Data S1 found in Appendix B), for simulating data
under the auto-logistic parameterization of the dynamic occupancy
model, fitting those data using the same model (i.e., an unbiased si-
mulation-based approach) and assessing power to identify trends for
the average annual change and the overall total change in occupancy.
To conduct a power analysis, the user must specify a set of survey de-
signs (e.g., n sites, J visits, T years in the study), assumed values for
colonization and extinction probabilities ( × ×,T T( 1) 1 ( 1) 1), assumed

relationships between initial occupancy and detection and associated
spatially explicit covariates ( and =X ,t t1 and Wt, respectively), and
either a GRTS-based or SRS sampling design. Our approach assumes
there are no missing observations, which if violated could result in
sample size recommendations that are too liberal. Following survey
design suggestions for multi-season studies from MacKenzie and Royle
(2005) and Bailey et al. (2007), our approach also assumes the same n
sites are visited each sampling season. Lastly, for simplicity, we assume
the same number of visits to each site during each season, although a
simple extension could accommodate different numbers of visits among
surveyed sites (i.e., Ji t, rather than J).

The package includes functions for visualizing imposed trends for a
set of specified values for dynamic occupancy model parameters and
study designs, user-friendly functions for fitting models within the
Bayesian framework using rjags (Plummer, 2016), functions for
checking convergence diagnostics for the Markov chain Monte Carlo
(MCMC) samplers, and functions to generate and compare results from
simulations from multiple different survey design scenarios
(Supplement S2 found in Appendix B contains a detailed package tu-
torial). The models included in our package use weakly informative,
normal priors with a mean equal to zero and variance equal to ten on all
partial regression coefficients, which helps constrain the posterior dis-
tribution within the reasonable range of partial regression coefficient
values on the logit scale, although this can be customized (see
Supplement S2).

2.2. Example: monitoring for NABat

Many North American bat populations are declining due to habitat
alteration, expanding wind energy industry, and white-nose Syndrome
(WNS), which is a disease caused by the invasive pathogenic fungus
Pseudogymnoascus destructans of Eurasian origin (O’Shea et al., 2016;
Hammerson et al., 2017). Due to their cryptic and wide-ranging be-
havior, the probability of occurrence is a more appropriate interpreta-
tion of the occupancy parameter in the context of bat monitoring, so
hereafter we refer to occurrence rather than occupancy in the context of
NABat. A goal of NABat is early identification of changes in species
occurrence (specifically declines) in the forty-seven North American bat
species. Stationary acoustic bat detectors with ultrasonic microphones
are used to collect detection/non-detection data for up to four nights
during a season, where the season is defined as the summer active
period (Loeb et al., 2015). These detectors record bat echolocation call
files that are processed and classified to species using automated soft-
ware, thus requiring human verification to remove misidentification
errors prior to analysis (see Banner et al., 2018 and Reichert et al.,
2018).

The NABat program is using a master sample to facilitate co-
ordination and collaboration among partners (Irvine et al., 2018). The
NABat master sample is a probabilistic design created by applying the
GRTS algorithm to randomly order all 10 km× 10 km grid cells in the
contiguous United States (Talbert and Reichert, 2018). The grain size
was chosen to accommodate the long nightly foraging distances and
large home ranges of temperate bats during summer, making the oc-
cupancy framework reasonable for monitoring (i.e., closure and in-
dependence assumptions are reasonable, Loeb et al. (2015)). The NABat
master sample is a spatially balanced ordered list of all grid cells and
any consecutively numbered subset should be spatially balanced. As
with many large-scale monitoring programs, power to identify changes
in species occurrence probability is desired for different spatial subsets
(e.g., management area like a National Forest, state, country, etc.).
Within spatial subsets, the n grid cells with the smallest GRTS-order
assigned values are selected for bat surveys.

We considered two spatial subsets of the master sample within the
United States Forest Service, Region 9 (USFS-R9): USFS-R9 as a whole
and National Forest (NF) land within USFS-R9 (Fig. 1; we also ex-
amined a similar subset in the Pacific Northwestern US, see Supplement
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S2). We chose these two subsets because interest lies in inference for
both extents. Additionally, the spatially explicit site-level covariate,
percent forest cover, which has been shown to be related to occurrence
for some bat species (e.g., the big brown bat, Eptesicus fuscus, Rodhouse
et al., 2015; Kalcounis-Ruppell et al., 2005; Arnett and Hayes, 2009),
was available for the entire region (provided by Eric Winters). Un-
surprisingly, National Forest land is more forested than USFS-R9 as a
whole (USFS-R9 5-number summary= (0, 8, 27, 58, 99)% vs. NF land
5-number summary= (5, 50, 65, 82, 99)%), thus comparing these
spatial subsets allowed us to more generally consider how the en-
vironmental covariate space that is related to initial occupancy may
affect power to identify trends in different spatial subsets (e.g., NF land
vs. R9). We standardized percent forest cover to have a mean of zero
and standard deviation of one with respect to the spatial subset of in-
terest, which can help with convergence during model fitting (Royle
and Dorazio, 2008).

We generated data for two types of species, a species with average
initial occurrence and a species with high initial occurrence when percent
forest cover was at its average value (i.e., percent forest= 0). For both
species types, we used a value consistent with the estimated logit-linear
relationship between occurrence probability and percent forest cover
(all else constant) for the big brown bat from previous research, re-
flecting our best guess based on the available information. Specifically,

we used = +logit perFor( ) 0 1.4i i,1 ( = [0, 1.4]) to generate initial oc-
cupancy for species with average initial occurrence, and

= +logit perFor( ) 1.4 1.4i i,1 ( = [1.4, 1.4]) for species with high initial
occurrence. Based on pilot data from northern Wisconsin and the
western Upper Peninsula of Michigan, we assumed both species types
had constant detection probabilities of =p 0.5 ( = [0]t ); this was
consistent for most species surveyed, but no covariate information was
available to explain heterogeneity in detection probabilities. Similarly,
we did not include spatio-temporal covariates for the colonization and
extinction probabilities because we only had access to effectively static
site-level covariates.

To reflect an imperiled population, we imposed a multiplicative
decline in the survival rate for occurrence following = × dt

t
1 1

2

( = … =t T d2, , ; 0.9), imposing an aggressive 10% yearly decline in the
occurrence survival rate for the species of interest. Our approach is
similar to that taken in Rodhouse et al. (2015) and reflects the kinds of
declines induced by WNS (Frick et al., 2010) and wind turbine colli-
sions (Frick et al., 2017) that have already been observed in parts of
North America. We set = 0.81 , and held colonization constant at 0.2 or
0.01 for = …t T2, , for both spatial subsets. We investigated the same
combinations of colonization and extinction for the five- and ten-year
studies, but for the ten-year studies, we only considered the larger
spatial subset, USFS-R9. We chose these two constant levels for

Fig. 1. United States Forest Service Region 9 with National Forest land indicated by salmon-colored grid cells. For scale, this region takes up about one quarter of the
contiguous United States.

Table 1
Species-specific parameter settings used in data generation for a simulation-based power analysis aimed to identify an aggressive decline in occupancy for survey
lengths of five and ten years. Bold symbols and values denote vectors.

Subset Species Type + ×r( 1) 1 ×t( 1) 1 1 d + ×w r( 1), 1 Study

USFS-R9
High Initial Occurrence

Negligible Colonization [1.4, 1.4] 0.01 0.8 0.9 0 5,10 years
Colonization [1.4,1.4] 0.2 0.8 0.9 0 5,10 years

Average Initial Occurrence
Negligible Colonization [0,1.4] 0.01 0.8 0.9 0 5,10 years

Colonization [0,1.4] 0.2 0.8 0.9 0 5,10 years

NF
High Initial Occurrence

Negligible Colonization [1.4, 1.4] 0.01 0.8 0.9 0 5 years
Colonization [1.4,1.4] 0.2 0.8 0.9 0 5 years

Average Initial Occurrence
Negligible Colonization [0,1.4] 0.01 0.8 0.9 0 5 years

Colonization [0,1.4] 0.2 0.8 0.9 0 5 years
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colonization to get a sense for how the dynamics (i.e., colonization 0)
can affect the imposed trend, effect size, and consequently power
(scenarios defined in Table 1). Mathematically, we cannot set coloni-
zation to 0 in the auto-logistic parameterization of the dynamic occu-
pancy model, so the case where = 0.01 represents negligible coloni-
zation, implying very few of the unoccupied grid cells at the start of
each year will become occupied during the next year (about 1 in 100),
and resulting in an overall reduction in the number of sites occupied.
Ecologically, when colonization is 0.01, we can think of a scenario
where individuals are dying or leaving grid cells but not immigrating to
new cells. Whereas, when colonization occurs ( = 0.2), individuals are
dying or leaving grid cells, but immigration to new cells is also hap-
pening within the defined spatial subset.

We were specifically interested in the sample size required to
identify the decline scenarios shown in Fig. 2 for the two derived trend
parameters ( Tot and Avg). In our power analysis, we assumed a visit
design with four visits to sites (J= 4) for all scenarios, which was based
on recommendations provided for species with a detection probability
of about 0.5 in McKann et al. (2013). We considered equal-intensity
sampling (same percentage of grid cells surveyed) for the two spatial
subsets: 1% of grid cells, 1.5% of grid cells, and 2.1% of grid cells
(Table 2). We also investigated equal-effort or fixed sample sizes of

…30, 40, , 90 grid cells regardless of the spatial subset’s extent to re-
present the 30-grid-cell guideline from initial NABat recommendations
(Loeb et al., 2015) up to a larger sample size of 90 grid cells, which has
been feasible for regions in the western United States.

We generated one-hundred realizations of occurrence probabilities
assuming the species-specific characteristics and duration of study de-
scribed in Table 1, for a sample size of n=60 (shown in Fig. 2). These
simulated trend lines allow us to visualize how the combination of in-
itial occurrence and colonization/extinction parameters interact to
impose trends on occurrence over time, and the amount of variation
among them sheds some light on relative effect sizes for each scenario.
The scenarios we considered resulted in linear trends (Fig. 2, most five
year scenarios), curvilinear trends (ten year scenarios), trends with
large effect sizes (Fig. 2, colonization=0.01, and most five year stu-
dies), and those with more modest effect sizes (Fig. 2, coloniza-
tion= 0.2, average initial occupancy, ten year study). For larger n, we
would expect the variability among the one-hundred simulated trends
for each scenario in Fig. 1 to decrease, and for smaller n we would
expect it to increase.

Using dynOccuPow we conducted simulation studies with 100 si-
mulated datasets for each of the twelve scenarios specified in Table 1
for each n specified in Table 2 (datasets for n=60 shown in Fig. 2). The

Fig. 2. Trends simulated according to twelve species- and survey-length-specific scenarios. Five-year and ten-year surveys are denoted by the vertical dashed line.
Comparisons can be made between survey length (5 vs. 10 years), two different spatial subsets (NF land= salmon, USFS-R9=blue), two levels of colonization
(panels), and two levels of baseline initial occupancy (rows).

Table 2
Number of grid cells surveyed given different percentages of the total number of grid cells selected for two spatial subsets of interest, the USFS-R9 and the land in the
region that is owned by the National Forests.

Spatial subset 1% 1.5% 2.1% =n 30 =n 40 =n 50 =n 60 =n 70 =n 80 =n 90

USFS-R9 182 273 382 30 40 50 60 70 80 90
NF Land 15 22 30 – 40 50 60 70 80 90
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functions in our package use a Bayesian implementation of the auto-
logistic dynamic occupancy model. We specified 3 independent chains
for 10,000 iterations with a burn-in of 5000 to sample from the pos-
terior distribution. We observed reasonable convergence of the MCMC
samplers for all scenarios except for those where the average occur-
rence probability approached zero in latter years, which required larger
sample sizes than the ones we investigated. We saved the MCMC draws
from the posterior distribution, the posterior means, the posterior
medians, the posterior standard deviations, and 95% credible intervals
for all parameters of interest. Values of one for Tot and avg represent no
change in occurrence probability during the study. Power was com-
puted as the proportion of realizations of data that, when analyzed,
resulted in 95% credible intervals for Tot and avg with upper and lower
endpoints that both fall below one, the no-change value.

3. Results

In general, we observed higher power for both trend parameters
with larger sample sizes (Figs. 3–5). This result was expected because,
given the assumed detection probability of 0.5, we fixed the number of
visits at a value that was sufficient for convergence of estimators from
the dynamic occupancy model (McKann et al., 2013). Therefore, in-
creasing the number of grid cells, holding all else constant, allowed for
more precise estimation of annual species occurrences. We also ob-
served higher power for the total growth rate than for the average
annual growth rate in all scenarios (Figs. 3–5).

3.1. Comparing spatial subsets

3.1.1. Equal-intensity sampling
The geographic area for USFS-R9 is much larger than that defined

by NF land within USFS-R9 (Fig. 1). Thus, there is a large disparity in
sample sizes between the equal-intensity sample sizes for USFS-R9 and
NF land. Specifically, USFS-R9 sample sizes are large (> 181) and
tended to be well-powered for identifying net changes in occurrence,
whereas sample size for NF land are small (< 30) and tended to be
under-powered for most scenarios (Fig. 3). Lower colonization afforded
higher power for both trend parameters in both spatial subsets (Fig. 3)
with one exception. The exception was the scenario with high baseline
initial occurrence in USFS-R9 (Fig. 3: bottom row, blue lines), which
had approximately perfect power (out of 100 realizations) regardless of
assumed colonization values. Furthermore, for both spatial subsets, the
assumed value for baseline initial occurrence appeared to affect the
power to identify changes in occurrence, with higher values of baseline
initial occurrence affording more power (Fig. 3: top vs. bottom row).
Most of the differences between the spatial subsets we observed in this
comparison are due to the large disparity in sample sizes. Next, we
consider equal-effort sample sizes for both subsets to address our
question about how the species-environment relationship between
percent forest cover and initial occurrence affects power.

3.1.2. Fixed-effort sampling
For the fixed-effort sample sizes, we observed higher power for all

scenarios with lower colonization versus those with higher colonization

Fig. 3. Comparison of power (y-axis) to identify a decline in occurrence over five years using Tot (triangles) and Avg (circles) for equal-intensity sampling efforts (x-
axis). Colors distinguish between spatial subsets (R9: blue; NF: salmon). The two levels for colonization are shown in the panels (left= 0.01, right= 0.2), and the two
levels of initial occurrence in the rows (top=Average Initial Occurrence, bottom=High Initial Occurrence). The sizes of the plotting characters are proportional to
the true trend imposed during data generation; smaller values represent larger effect sizes, and are shown with larger plotting characters.
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(left panel vs. right panel, Fig. 4). We also observed more power from
the fixed-effort sample sizes within NF land than those within USFS-R9.
This result is likely due to a combination of the strong relationship
assumed between initial occurrence and percent forest cover and the
fact that the percentage of the spatial subset being sampled is higher in
NF land than it is in USFS-R9. Specifically, for the fixed-effort sample
sizes considered, the percentage of the total subset that was sampled
ranged from 0.15% to 0.5% in USFS-R9 and from 2% to 6% in NF land.
Additionally, the effect size of the imposed trend was larger in NF land
than in USFS-R9, a direct result of the average percent forest cover
being higher in NF land and driving up the average initial occurrence (
0.8 vs. 0.75 in Fig. 2).

3.2. Comparing five and ten-year studies within USFS-R9

For the ten-year studies, the average annual growth rate ( avg) was
insufficient for identifying trends. This insufficiency in power in the
ten-year studies was directly tied to an assumption made by the average
annual growth rate parameter; specifically, the assumption that
changes in the ratios of average occurrence probability between sub-
sequent years are constant. For the five-year studies, the assumption
was reasonable because the trends reflected an approximately linear
decline in occurrence (see Fig. 2). For the ten-year studies, however, the
decline was curvilinear. Specifically, the ten-year decline appeared
exponential when colonization was 0.01 and/or initial occurrence was
high, and it appeared to be more cubic in nature when colonization was
0.2 and initial occurrence was average (Fig. 2); thus, the average annual

occurrence parameter was not appropriate for identifying the nonlinear
trends.

We observed consistently higher power for the total growth rate
( tot) coming from ten-year studies then we did for that from the five-
year studies (Fig. 5, green triangles vs. purple triangles, right panel).
Conversely, in the ten-year studies with negligible colonization, the
total growth rate parameter exhibited insufficient power to identify the
imposed trend regardless of the level of initial occurrence. This ob-
servation is despite the large effect size for the change in average oc-
currence between year one and year ten in these scenarios (see Fig. 2).
This apparent contradiction is a direct result of the average occurrence
probabilities in the later years (years 7+) being extremely close to zero,
and thus requiring larger sample sizes for precise estimation. In other
words, the simulated Y for these scenarios are too sparse (are mostly
zeros) for the dynamic occupancy model to estimate the parameters
(see Fig. 6) with the sample sizes we investigated and the sampler
settings used (3 chains, 10,000 iterations, burn in of 5000, and thinned
by 3). This relationship can be thought of as a floor effect that we would
hope not to observe, as it corresponds to regional extinction of a spe-
cies.

Lastly, we observed extremely high power for both trend parameters
from the five year studies when colonization was low, regardless of
initial occurrence. This is a direct result of the large effect size from
these scenarios, which appear as the strong negative linear relationship
and large change from the initial to the final average occurrence
probability in the imposed trends in Fig. 2. Further, the imposed trend
is linear for five-year studies, and the occurrence probability in the final

Fig. 4. Comparison of power (y-axis) to identify a decline in occupancy during a five year period using Tot (triangles) and avg (circles) for fixed-effort sample sizes (x-
axis). Colors distinguish between spatial subsets (R9: blue; NF: salmon). The two levels for colonization are shown in the panels (left= 0.01, right= 0.2), and the two
levels of initial occurrence in the rows (top=Average Initial Occurrence, bottom=High Initial Occurrence). The sizes of the plotting characters are proportional to
the true trend imposed during data generation; smaller values represent larger effect sizes, and are shown with larger plotting characters.
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year was large enough that it could be estimated with low bias and high
precision (Fig. 6, left of the dashed line, both plots).

4. Discussion

Dynamic occupancy models provide a flexible framework for si-
mulating and analyzing detection/non-detection data that is reasonably
consistent with monitoring programs designed to characterize changes
in species distributions over time. Real ecological data may not be

consistent with the assumed model, and given the complicated para-
meter structure for trends within dynamic occupancy models, visua-
lizing trends during the data-generation step of a simulation-based
power analysis is important to ensure the imposed trends are reason-
able approximations to what is expected for the species of interest (e.g.,
Fig. 2). Thus, simulation-based power analyses can provide good
starting places for programs and can help refine survey design re-
commendations as new data become available.

We provide a tool for investigating two derived temporal trend

Fig. 5. Comparison of power (y-axis) to identify a decline in occurrence during a five year study using Tot (triangles) and avg (circles) for fixed effort sample sizes (x-
axis). Colors distinguish between lengths of studies (ten-year: green; five-year: purple). The two levels for colonization are shown in the panels (left= 0.2,
right= 0.01), and the two levels of initial occurrence in the rows (top=Average Initial Occurrence, bottom=High Initial Occurrence). The sizes of the plotting
characters are proportional to the true trend imposed during data generation; smaller values represent larger effect sizes, and are shown with larger plotting
characters.

Fig. 6. Posterior mean occupancy is plotted versus year for each realization of data (each line), under the effectively no colonization scenarios with Average Initial
Occurrence (left) and High Initial Occurrence (right) in a ten-year study. The vertical dashed line is at five years, differentiating five- and ten-year studies. Five-year
studies in the power analysis were actually different realizations of data, but showed extremely similar results.
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parameters and conducting simulation-based power analyses
(dynOccuPow) such that measurable trend objectives can be articu-
lated and met using dynamic occupancy models. We simulated and
analyzed data using a dynamic occupancy model (i.e., an unbiased si-
mulation-based approach), making the implicit assumption that sur-
vival and colonization rates and underlying species-environment re-
lationships are the main drivers of how species distribution changes
over time. Additionally, our approach assumes the grain size of analysis
units, the timing or spatial location of visits, and the length of the
season are defined such that it is reasonable to assume closure and
independence of observations arising from visits within the same
season. Considering whether or not the dynamic occupancy model is a
reasonable framework for characterizing trend within the system of
interest prior to using our approach for power analysis is critical. We use
the bat monitoring program NABat as an example, which was designed
so that data could be analyzed using occupancy models. In our example,
we specifically considered between-season mortality via WNS, wind
turbines, and habitat alteration that is reflected regionally in terms of
net change in occurrence. We envision this framework to be broadly
appealing for many species distributional change processes, and thus
other geographically extensive occupancy monitoring programs in ad-
dition to NABat.

Unlike a typical power analysis, where the user sets the effect size
for the parameter they wish to identify as an input (e.g., estimate and
residual standard deviation for a linear trend parameter), the effect size
for trend-detection objectives is a function of the model parameters
specified by the user. The complicated structure of derived occupancy
(or occurrence) and trend parameters motivated our development of
visualization tools for plotting the trends induced by a set of species-
specific values for colonization, extinction, initial occupancy, and de-
tection probabilities. These tools can be used to translate prior in-
formation (e.g., results from analyzing pilot data or expert knowledge)
into imposed trends, facilitating articulation and refinement of mea-
surable program objectives. In the context of our example, we knew
little about colonization and extinction probabilities for bats in USFS-
R9, so we investigated a variety of decline scenarios for different survey
lengths to characterize (as broadly as possible) potential declines.

We focused on differences in the estimated sample size required
achieve an 80% chance of identifying imposed trends within two spatial
extents and for two lengths of studies based on 95% credible intervals
for two derived trend parameters ( Tot and Avg), using a dynamic oc-
cupancy model. Comparing fixed-effort sample sizes for NF land within
USFS-R9 to all of USFS-R9, we highlighted the importance of assumed
species-specific relationships between landscape covariates and initial
occurrence. Namely, that the effect size for an imposed trend will be
higher for the spatial subset that has, on average, higher values for a
covariate that is strongly and positively associated with initial occur-
rence. We expect this relationship to hold in general, and we expect the
inverse to hold as well. If covariate information is available for the
sample frame (e.g., through a GIS layer), it can be used in the power
analysis to generate realistic detection/non-detection data and address
questions at different spatial extents. The ability to include actual
covariate data into a power analysis and compare different spatial
subsets within a region of interest is a unique feature of our approach.

The five- vs. ten-year scenarios revealed some interesting general
results and cautionary guidelines for designing occupancy-based mon-
itoring programs. Particularly, it is important to choose appropriate
trend parameters for identifying changes in occupancy or occurrence,
conditional on the characteristics of the trend imposed. That is, total
growth rate Tot is reasonable for monotonic change (linear or func-
tional), but the average growth rate Avg is only appropriate for linear
changes. Additionally, although we would hope not to observe a rapid
regional extinction (e.g., trends imposed by colonization= 0.01 in our
ten-year study), the dynamic occupancy model will require infeasibly
large sample sizes to identify the change with the total growth rate
parameter due to the rarity of observed detections as occupancy

probabilities approach zero. Conversely, the model will be well-pow-
ered to identify an aggressive decline in the short run with the total
growth rate parameter, suggesting that it is important to monitor spe-
cies often (e.g., every 5 years). Ideally, data from continual monitoring
could be used to update and inform species-specific assumed parameter
values at many intervals to keep sample size estimates from power
analyses current and reflective of the most up-to-date approximation of
reality.

Survey design questions should be investigated on a case-by-case
and species-by-species basis, using the foremost information (pilot data)
available. In our example, we observed the sample size required to
identify overall changes in occurrence increase for the higher coloni-
zation rate ( = 0 2. vs. = 0 01. ). We also note that our pilot data were
extremely limited with respect to the region of interest (i.e., detection
data came from two northeastern states within a large area). In addition
to obtaining more pilot data for estimating detection probabilities of bat
species in the region, we recommend gathering data to obtain estimates
of realistic colonization rates for bats in the region and updating the
analysis accordingly.

5. Conclusion

Our tools can be used in an iterative fashion to evaluate and adjust
objectives during initial design of monitoring programs, and to refine
survey design recommendations during implementation. For example,
in the case of NABat, no pilot data was available when the monitoring
plan (Loeb et al., 2015) was written, so an initial sample size re-
commendation was based on existing survey design literature without
conducting a formal power analysis; the recommendation was to survey
at least 30 grid cells. In contrast, our refinement of the initial re-
commendations in light of pilot data show much more effort is needed
to identify changes in species occurrence driven by a multiplicative
decrease in survival rate. Although our results make use of limited pilot
information, they are an improvement over the initial recommenda-
tions, highlighting the importance of collecting sufficient data to be
used with tools like DynOccuPow, ultimately making the best use of
monitoring resources.
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Appendix A. Data simulation details

Large-scale monitoring programs aim to generalize inferences be-
yond survey locations by employing probabilistic sampling designs,
which select n sites for monitoring (indexed by = …i n1, , ) from a
spatial domain comprised of N total sites (n N ). Our approach fa-
cilitates investigation of two probabilistic sampling designs: the simple
random sample (SRS) and a spatially-balanced analog defined by the
generalized random tessellation stratified (GRTS) algorithm (see
Stevens and Olsen, 2004). Detection/non-detection data are simulated
and stored in an array, × ×Yn J T , where its elements represent visit-level
detections from a survey of n sites (rows) with J visits to each site
(columns) for a duration of T seasons (layers of ×n J matrices). The
data take on the values: =y 1ijt if the species was detected at least once
during visit j to site i in season t, or =y 0ijt if undetected; our approach
assumes no missing observations, which if violated could result in
sample size recommendations that are too liberal. Following survey
design suggestions for multi-season studies from MacKenzie and Royle
(2005) and Bailey et al. (2007), we also assume the same n sites were
visited each sampling season. Lastly, for simplicity, we assume the same
number of visits to each site during each season, although a simple
extension could accommodate different numbers of visits among sur-
veyed sites (i.e., Ji t, rather than J).

To generate Y , we used a form of the auto-logistic parameterization
described in Royle and Kery (2007) and Royle and Dorazio (2008). The
model assumes a Markov dependence between the true occupancy of
site i in year t, given its status in year t 1 ( = …t T2, 3, , ). The Markov
dependence is specified through colonization and extinction para-
meters. The colonization probability, t , is the rate at which unoccupied
sites in year t 1 become occupied in year t. Additionally, the rate at
which occupied sites in year t 1 become unoccupied in year t is the
extinction probability, = 1t t , where t is the survival probability
of an occupied site in year t 1 remaining occupied in year t. Following
model specifications, our approach generates the initial occupancy state
for each site, =z 1i,1 if site i is occupied and =z 0i,1 if site i unoccupied
from a Bernoulli( )i,1 distribution. The model allows for logit-linear
relationships between site-level covariates and species occurrence
during the first year through = =logit X( ) t1 1 , where =Xt 1 is a matrix of
covariates, and is a vector of partial regression coefficients re-
presenting the assumed relationships.

The occupancy statuses for subsequent years ( = …Z t T, 2, ,i t, ) are
simulated sequentially, conditional on the previous year (Markov de-
pendence), using the distribution specified by the model:

=Z Z Bernoulli1 ( )i t i t i t, , 1 , . The yearly occupancy probabilities are
calculated according to = +logit a b z( )t t t t 1, where zt 1 is an ×n 1
vector representing the true occupancy status in year t 1. The para-
meters at and bt are related to site-specific colonization and extinction
probabilities through =logit a( )t t1 and = +logit a b( )t t t1 . Our ap-
proach accommodates the general form of the auto-logistic para-
meterization, which allows for site-level covariates on the update
probabilities and is commonly used by practitioners (e.g., Rodhouse
et al., 2012, 2015). However, the computation of the colonization and
extinction probabilities must be done assuming covariate values are
zero (or average values for standardized covariates), which can com-
plicate interpretations. Therefore, unless the site-level covariates are
changing over time, we recommend relating them to initial occupancy.

The final step in our data simulation approach uses the true occu-
pancy status of site i in year t (simulated Zi t, ) and estimated detection
probabilities to generate Y . The probability of detecting a species
during visit j in year t if site i is occupied is pij t, and the individual
observations yijt are simulated from a ×Bernoulli z p( )i t ij t, , distribution.
When covariates are available, they can be included to account for
heterogeneity in detection probabilities among sites, visits, and seasons
through the logit-linear relationship, =logit p W( )t t t , where Wt has
dimensions × ×n J w( ) and w is the number of covariates.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.ecolind.2019.05.047.
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