
Science of the Total Environment 654 (2019) 94–106

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Spatial modeling of litter and soil carbon stocks on forest land in the
conterminous United States
Baijing Cao a, Grant M. Domke a,b,⁎, Matthew B. Russell a, Brian F. Walters b

a Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
b USDA Forest Service, Northern Research Station, St. Paul, MN 55108, USA
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Spatial patterns found in the estimated
litter and soil carbon stocks in forests

• Including Normalized Difference Vege-
tation Index facilitated the model pre-
dictions.

• Forest disturbances caused statistically
significant differences in litter carbon.

• Estimates of litter and soil carbon stocks
were 2.07 Pg and 14.68 Pg, respectively.
⁎ Corresponding author at: USDAForest Service, Northe
55108, USA.

E-mail address: gmdomke@fs.fed.us (G.M. Domke).

https://doi.org/10.1016/j.scitotenv.2018.10.359
0048-9697/© 2018 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 August 2018
Received in revised form 25 October 2018
Accepted 27 October 2018
Available online 29 October 2018

Editor: Elena PAOLETTI
Forest ecosystems contribute substantially to carbon (C) storage. The dynamics of litter decomposition, translo-
cation and stabilization into soil layers are essential processes in the functioning of forest ecosystems, as these
processes control the cycling of soil organic matter and the accumulation and release of C to the atmosphere.
Therefore, the spatial distribution of litter and soil C stocks are important in greenhouse gas estimation and
reporting and inform land management decisions, policy, and climate change mitigation strategies. Here we ex-
plored the effects of spatial aggregation of climatic, biotic, topographic and soil variables on national estimates of
litter and soil C stocks and characterized the spatial distribution of litter and soil C stocks in the conterminous
United States (CONUS). Litter and soil variables were measured on permanent sample plots (n = 3303) from
the National Forest Inventory (NFI) within the United States from 2000 to 2011. These data were used with veg-
etation phenology data estimated from LANDSAT imagery (30m) and raster data describing environmental var-
iables for the entire CONUS to predict litter and soil C stocks. The total estimated litter C stock was 2.07± 0.97 Pg
with an average density of 10.45±2.38Mgha−1, and the soil C stock at 0–20 cmdepthwas 14.68±3.50 Pgwith
an average density of 62.68± 8.98Mg ha−1. This study extends NFI data from points to pixels providing spatially
explicit and continuous predictions of litter and soil C stocks on forest land in the CONUS. The approaches de-
scribed illustrate the utility of harmonizing field measurements with remotely sensed data to facilitate modeling
and prediction across spatial scales in support of inventory, monitoring, and reporting activities, particularly in
countries with ready access to remotely sensed data but with limited observations of litter and soil variables.

© 2018 Published by Elsevier B.V.
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1. Introduction

Forests cover about 42 million km2 of the world's land surface
(Bonan, 2008), and 50 to 90% of the total annual carbon (C) flux of
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terrestrial ecosystems occurs at the interface between forests and the
atmosphere (Beer et al., 2010). In the United States (US), litter C stocks
account for between 5 and 7% (Domke et al., 2016; US Environmental
Protection Agency (US EPA), 2018) of total forest ecosystem C stocks
which is consistent with the contribution of the litter C pool globally
(Pan et al., 2011). The interaction of C from forest litter to soil organic
matter (SOM) is key to understanding how soil C stocks and microbial
decomposition will respond to climate change and whether soil C
sinks can be enhanced.

Litter decomposition alters the organic matter chemistry over time
with different litter species and tissue types degrading at different
rates (Lemma et al., 2007; Moore et al., 2011; Prescott, 2005; Prescott
et al., 2004). That said, it is not clear how forest litter quantity and
source (i.e., roots versus aboveground litter) are linked to C retention
in soils. Thus, the soil C sequestration potential through management
remains speculative (Dungait et al., 2012). To detect the temporal
change of forest litter and soil C, we must understand current C storage
in the soil, from the incorporation and transformation of litter inputs to
its ultimate mineralization. Recently, Nave et al. (2018) indicated that
reforestation increases topsoil C storage, and that reforesting lands
may add as much as 1.3–2.1 Pg C within a century in the continental
US (CONUS).

Soil C, including mineral and organic soils, hereafter referred to as
SOC is the largest stock in the global terrestrial C pool (Amundson,
2001) and accounts for approximately 56% of the total forest ecosystem
C on the managed land in the CONUS and southeast and southcentral
coastal AK (Domke et al., 2017). Therefore, even small changes in SOC
content can have tremendous impact on national and global C stocks
and stock changes.

Digital soil mapping applies geostatistical tools to determine the
quantitative relationships between soil properties and environmental
variables (McBratney et al., 2003). Considering the importance of SOC
in the global C cycle and its potential contribution in national C budgets
(US Environmental Protection Agency (US EPA), 2018), many studies
have quantified SOC stocks or its changes at national scales: in the
conterminous United States (CONUS) (Guo et al., 2006a); India
(Bhattacharyya et al., 2000); France (Martin et al., 2010); Australia
(Bui et al., 2009), Laos (Phachomphon et al., 2010); China (Li et al.,
2007); and Ireland (Zhang et al., 2011). These studies have used a
range of digital soil mapping techniques by which point estimates of
SOC are extended to national or continental scales.

Soil and ecological processes and spatial patterns are related across
different scales, and their spatial and temporal distributions are mutu-
ally influenced as well. There are many studies that have shown
relationships between environmental factors (e.g., climate and topo-
graphic factors) and litter and soil properties at continental (Domke
et al., 2017, 2016), regional (McKenzie and Ryan, 1999; Xiong et al.,
2014) and local scale (Odeh et al., 1995). Some studies have been
successful in including secondary information such as land use, soil
type, lithology, topography and other environmental factors in
predicting SOC at regional scales (Schulp and Verburg, 2009;
Simbahan et al., 2006).

Large-scale datasets of soil information, based on documented pro-
cedures and standards, are necessary for SOCassessments at continental
scales (Batjes, 2009). Harmonized legacy soil data that arise from tradi-
tional soil surveys can also facilitate new digital soil mapping activity
(Hartemink et al., 2008). The present analysis is the first known study
to use digitalmapping techniques to predict litter and SOC stocks across
the CONUS using litter and soil data sampled at the same location and
harmonized with auxiliary environmental data for prediction.

Machine learningmethods offer opportunities to predict and charac-
terize the spatial patterns of litter and SOC and the relationships be-
tween C stocks and environmental covariates allowing insights into
pedogenic processes (Domke et al., 2017, 2016). This approach has
been implemented in soil-landscape modeling (Bui et al., 2009; Hengl
et al., 2017; Vasques et al., 2012; Xiong et al., 2014), with the advantage
that it allows for both the prediction of litter and SOC and new insights
into biogeochemical processes.

To better understand the distribution of litter and SOC patterns at a
continental scale, it is necessary to identify the underlying ecological
processes responsible for these patterns. The objectives of this study
were to 1) determine and predict the spatial distribution of litter and
SOC stocks using environmental data available across the CONUS; 2) in-
vestigate the relationships between soil order, climate, vegetation, to-
pography, parent material, and litter and SOC stocks; 3) predict the
distribution of litter and SOC stocks using environmental variables and
assess the uncertainties associated with the litter and SOC predictions;
4) evaluate the impact of forest disturbance on litter and SOC stocks,
and 5) analyze spatial patterns of the litter and SOC ratio. Such quanti-
fication of litter and SOC stocks will contribute to national and global ef-
forts to estimate C storage in forest ecosystems and guide long-term
management activities. Our study is the first to investigate both litter
and soil C stocks at the same site in the CONUS.

2. Materials and methods

2.1. Study area

The study area in this analysis represents forest land in the CONUS,
which includes 48 of the US states on the continent of North America.
The CONUS occupies a combined area of over 8 million km2, which rep-
resents 1.58% of the total surface area of the Earth (including water and
land), with latitudes ranging from 24°31′ N to 49°23′ N and longitude
from66°53′Wto 124°50′W. The climate of the CONUS is highly diverse
and variable. Annual average temperature (1981–2010) ranges from b4
°C in the higher mountain areas and along the northern border with
Canada to N21 °C in the desert southwest, south Texas, and south Florida
(Kunkel et al., 2013). Average annual precipitation also varies from
b381 mm annually in much of the western US to N1016 mm in much
of the eastern US (Kunkel et al., 2013). Ten of the twelve soil orders
can be found in forest soils in the CONUS: Mollisols, Entisols, Alfisols,
Inceptisols, Ultisols, Aridisols, Vertisols, Spodosols, Histosols, Andisols.

Forest land accounts for 3.10 million km2, or 38% of the CONUS land
area (Oswalt et al., 2014). The CONUS has a varied topography, with el-
evations ranging from around 86 m below sea level (Death Valley, Cal-
ifornia) to 4421 m above sea level (Mt. Whitney, California).

2.2. Litter and soil organic carbon data

Litter and soil data were obtained from National Forest Inventory
(NFI) plots maintained andmeasured by the Forest Inventory and Anal-
ysis (FIA) Programwithin the US Department of Agriculture, Forest Ser-
vice. NFI plots are systematically distributed approximately every
2428 ha across the CONUS. Each plot which contains at least one forest
land condition (determined by reserved status, owner group, forest
type, stand size class, regeneration status or tree density) is comprised
of a series of smaller plots (i.e., subplots) where tree- and site-level at-
tributes – such as diameter at breast height (DBH) and tree height –
are measured at regular temporal intervals (USDA Forest Service,
2011). Litter and soil samples are collected along with other non-
standing tree ecosystem attributes (e.g., downed dead wood) on every
16th base intensity NFI plot distributed approximately every
38,848 ha (USDA Forest Service, 2011). Litter material is sampled adja-
cent to three of four subplots at each plot and the entire litter thickness
(i.e., duff and LFH horizons) ismeasured to the nearest 0.25 cmat points
in each cardinal directionwithin the sampling frame, which is a circle of
30.28 cm in diameter, to the point wheremineral soil begins. The entire
litter layer within the confines of the sampling frame is removed for lab
analysis (Domke et al., 2016). In this study, litter C stock does not in-
clude any fine woody debris between 0.635 and 7.366 cm diameter.
Soil attributes are measured by collecting cores from two depths: 0 to
10 cm and 10 to 20 cm beneath the litter sample adjacent to subplot 2
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(i.e., one sample per FIA plot; Domke et al., 2017). The texture of each
soil layer is estimated in the field, while physical and chemical proper-
ties are determined in the laboratory. The FIA program analyzes soils
for total C concentration by dry combustion (O'Neill et al., 2005). The
laboratory results of both litter and soil samples are managed as part
of the Soils Lab Table (SOILS_LAB) in the publicly-available FIADataMart
(USDA Forest Service, 2014).

In this study, there were 3303 coincident litter and soil samples
(0–20 cm) collected on NFI plots from 2000 to 2011. Based on the pro-
tocols for the data collected in this study, we characterized the SOC in
the topsoil (0–20 cm) layer. Litter and SOC estimates used in this
study were compiled following methods in Domke et al. (2016, 2017).

2.3. Environmental variables

We assembled our environmental variables based on the SCORPAN
conceptual model (McBratney et al., 2003), which allows incorporation
of existing soil forming information as covariates via the soil factors.
Forty categorical and continuous environmental variables represented
each soil forming factor in the SCORPAN model. They were compiled
from various data sources and resolutions with ArcGIS 10.5 (Environ-
mental Systems Research Institute, ESRI Inc., Redlands, CA) (Table 1).
Soil (S) factors included soil order, soil moisture and hydrologic soil
groups (Ross et al., 2018) variables; climate (C) factors included mean
and maximum precipitation and temperature; organism (O) factors
were represented by NDVI variables, LANDFIRE vegetation variables,
andMajor Land Resources Areas (MLRA); relief (R) factors contained el-
evation, slope and aspect; parentmaterial (P) was presented as Gamma
ray variables and surficial geology; and latitude and longitude were
used as the coordinates (n). The aboveground biomass (AGB) was
Table 1
Covariates used to model the relationships with 3303 litter and soil carbon samples across the

SCORPAN model factor Variablea Varia

Soil Available water AvaiW
Soil order orde
Soil Moisture Annual SM20
Soil Moisture July SM20
Hydrologic soil groups HYDR

Climate Mean annual precipitation ppt
Mean annual maximum temperature tmax
Ratio of precipitation to potential evapotranspiration GMI

Organism AGB abov
Forest type group forty
NDVI (monthly, maximum and sum) NDVI
Canopy bulk density Lfcbd
Canopy base height Lfcbh
Canopy cover Lfcc
Canopy height Lfch
Existing vegetation cover Lfevc
Existing vegetation height Lfevh
Existing vegetation type Lfevt
Land Resource Regions LRR

Relief Elevation Elev
Aspect Aspe
Slope Slope

Parent material Surficial geological surfg
Gamma ray Potassium concentrations GR_K
Gamma ray Thorium concentrations GR_T
Gamma ray absorbed dose rate GR_e
Gamma ray Uranium concentrations GR_U
Gamma ray Bouguer gravity anomaly GR_b
Gamma ray Magnetic anomaly GR_o
Gamma ray Magnetic anomaly GR_C
Gamma ray Magnetic anomaly GR_h
Gamma ray isostatic residual gravity anomaly GR_is

N Latitude, Longituded Lat, L

a Abbreviations: AGB, aboveground biomass; NDVI, Normalized Difference Vegetation Index
b Abbreviations: Cat., categorical; Con., continuous.
c Abbreviations: NED, national elevation dataset; NFI, National Forest Inventory.
d Latitude and longitude are the projected coordinates in NAD_1983_Albers where litter sam
obtained from the NFI database and methods and equations for its esti-
mation were produced by the USDA Forest Service (Woodall et al.,
2011). For high-resolution remote sensing data, we used Google Earth
Engine to extract Landsat 7 monthly NDVI data (30 m) in the growing
season (June to September) from 2000 to 2011. The maximum of
NDVI values from the growing season was selected as a predictor of lit-
ter C and SOC stocks.

Forest disturbances are events that cause change in the structure and
composition of a forest ecosystem, beyond the growth and death of in-
dividual organisms.We also used two sources of forest disturbance data
to evaluate the impact of disturbances on forest litter C and SOC stocks:
1) NFI data, including disturbance types (e.g., animal, human, fire,
weather, insect, disease) and 2) LANDFIRE (2010) forest disturbance
product for 2000 to 2010 compiled using remotely sensed information.
For NFI data, a disturbance is defined as one that occurred since the last
measurement or within the last 5 years for new plots. The area affected
by the disturbance must be at least 0.40 ha in size. A significant level of
disturbance (mortality or damage to 25% of the trees in the condition) is
required (USDA Forest Service, 2014). For both datasets, only distur-
bances which occurred prior to litter and soil sampling on the NFI
plots were included. In our nonparametric analyses, we used the
Kruskal-Wallis test with Dunn's multiple comparison to indicate
whether litter and SOC stocks differed significantly on disturbed and
non-disturbed plots.

2.4. Modeling approaches

Three supervised machine learning methods, random forest (RF),
quantile regression forest (QRF) and k-nearest neighbor (kNN) were
chosen to model the distribution of litter C and SOC stocks. They are
CONUS. Variables in bold were predictors in the partial models.

ble abbreviation Data typeb Sourcec Original resolution Year

ater Con. PRISM 800 m 1981–2010
r Cat. STATSGO 1:250,000 1997
10 Con. ESA 1 km 2010
1007 Con. ESA 1 km 2010
OGRU Cat. USGS 250 m 2018

Con. PRISM 800 m 1981–2010
Con. PRISM 800 m 1981–2010
Con. 250 m N/A

e Con. NFI N/A 2000–2010
pgrp Cat. NFI 250 m N/A

Con. Landsat 7 30 m 2000–2010
Con. LANDFIRE 30 m 2010
Con. LANDFIRE 30 m 2010
Con. LANDFIRE 30 m 2010
Con. LANDFIRE 30 m 2010
Con. LANDFIRE 30 m 2010
Con. LANDFIRE 30 m 2010
Cat. LANDFIRE 30 m 2010
Cat USDA N/A N/A
Con NED 30 m N/A

ct Con NED 30 m N/A
Con NED 30 m N/A

eo Cat. USGS 1:250,000 N/A
Con. USGS 2 km 1999–2005

h Con. USGS 2 km 1999–2005
xp Con. USGS 2 km 1999–2005

Con. USGS 2 km 1999–2005
ouguer Con. USGS 2 km 1999–2005
rigmrg Con. USGS 2 km 1999–2005
M Con. USGS 2 km 1999–2005
p500 Con. USGS 2 km 1999–2005
ograv Con. USGS 2 km 1999–2005
on Con. NFI N/A N/A

.

ples were collected.
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all non-parametric methods and accommodate both continuous and
categorical predictors. The first two models allow estimating the rela-
tive importance of the predictor variables based on the performance
of the model if the data for each predictor were permuted randomly
(Prasad et al., 2006). Each of thesemethods can deal with complex non-
linear relationships between litter C and SOC stocks and environmental
variables. These approaches have been used successfully to predict litter
C and SOC stocks in various climatic regions (Fuchs et al., 2009; Grimm
et al., 2008; Rudiyanto et al., 2016; Suchenwirth et al., 2014). Each type
of machine learning approach has specific and different tuning parame-
ters to control how the relationship between input predictors and re-
sponse is determined. These parameters must be optimized to
generate the best model between covariates and target properties
(Brungard et al., 2015).

Random forest (RF) is a machine learning method consisting of an
ensemble of randomized classification and regression trees (CART)
(Breiman, 2001). The RF algorithm grows different trees by randomly
and repeatedly selecting predictor variables and training cases to de-
velop a random population of trees. In regression it is the average of
the individual tree predictions. The RF algorithm can be very efficient,
especially when the number of descriptors is very large (Svetnik et al.,
2003). In this study, RF was used to predict litter and SOC stocks. Two
options were presented in the final models: number of trees to grow
(ntree) and number of variables randomly sampled as candidates at
each split (mtry). We used these two parameters to prune our models.

Quantile regression forest (QRF) is a non-parametric technique used
to estimate the conditional quantiles ofmultidimensional predictor var-
iables. Therefore, QRF is able to predict more accurate results for the
conditional distribution of the response variable (Meinshausen, 2017).
In this application, the conditional quantiles were computed for α =
0.10, 0.50, 0.90 at each node of the grid from the estimated conditional
distribution.

The k-nearest neighbor (kNN) approach is also a non-parametric ap-
proach that has been used since the early 1970's in statistical applica-
tions (Duda and Hart, 1973; Franco-Lopez et al., 2001). The basic
concept of kNN is that in the calibration dataset, it finds a group of k
samples that are nearest in parameter space to unknown samples
(e.g., based on distance functions). The k plays an important role in
the model performance of the kNN, since it determines the tuning pa-
rameter of kNN (Qian et al., 2014). The parameter k is generated using
a bootstrap procedure.When kNN is used for regression, the predictions
of unknown samples are based on themeanof the response variables. In
this study, we examined k values from 1 to 25 to identify the optimal k
value for all training sample sets.
2.5. Model validation

The three model approaches were assessed using independent
validation. The whole dataset (n = 3303) was split 70 (n = 2312)/30
(n = 991) into calibration and validation sets. The 70% calibration
samples were randomly selected from the whole dataset. The
Kolmogorov-Smirnov test on the SOC distribution of the two sets
(i.e., calibration and validation sets) was applied to ensure they have
the similar distributions. The error metrics used to compare models
were the coefficient of determination (R2, Eq. (1)), root mean squared
error (RMSE, Eq. (2)),

R2 ¼ 1−
Pn

i¼1 yi−ŷið Þ2Pn
i¼1 yi−yið Þ2

ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

byi−yi
� �2

=n

vuut ð2Þ
residual prediction deviation (RPD, Eq. (3)),

RPD ¼ SD
RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= n−1ð Þp ð3Þ

and ratio of performance to inter-quartile range (RPIQ, Eq. (4)) (Bellon-
Maurel et al., 2010),

RPIQ ¼ IQ
RMSE

ð4Þ

where, byi is the ith mean of posterior prediction distribution, yi is the ith
observation, yi is the mean of yi, n is the number of predicted or ob-
served values with i = 1,2, …, n, SD is the standard deviation, and IQ
is the interquartile range, which is the difference between the third
and first quartiles (IQ = Q3− Q1). Also, the predictions from the vali-
dation dataset were compared to the observed values using two one-
sided tests (Wellek, 2003).

In this study, all analyses were conducted with R 3.4.3 (R
Development Core Team, 2017). The ‘randomForest’ (Liaw and
Wiener, 2002), ‘quantregForest’ (Meinshausen, 2017), and ‘caret’
(Kuhn, 2018) packages were used for litter and SOC stock predictions
and the ‘equivalence’ package (Robinson, 2016) was used for two one-
sided tests. We used continuous and categorical variables to generate
the predicted litter C and SOC stock (0-20 cm) maps, produced by the
‘ModelMap’ package (Freeman and Frescino, 2009). All variable layers
were projected and resampled to the same extent and resolution
(1 km) to create spatial characterizations of litter C and SOC predictions
for the CONUS. The details of the modeling procedure can be found in
Fig. S1.

3. Results

3.1. Litter and soil carbon predictions

Estimated mean litter C varied from 0 to 144.62 Mg ha−1, while the
estimated SOC varied from 0.26 to 524.83 Mg ha−1 in the 0–20 cm pro-
file (Fig. 1). The litter C and SOC data were both positively skewed
(Table 2), with most estimates b 50Mg ha−1 and 100 Mg ha−1, respec-
tively. After log transformation of litter C and SOC, themean andmedian
values were similar to each other, approximating a normal distribution.
The range of the calibration data encompassed that of the validation
sample, and its frequency distribution was slightly more positively
skewed andmore variable than that of the validation sample. Log trans-
formation of litter C, soil C, NDVI and AGB reduced their variability.

3.2. Correlations

The strongest positive correlationwas found between themaximum
NDVI of growing season and AGB (r= 0.46, p b 0.01, Fig. 2a). Bothmax-
imum NDVI and AGB were significantly and positively correlated with
log-transformed litter C stock (Fig. 2b and c). Moreover, the correlation
between litter C and the maximum NDVI was still slightly higher than
that between SOC and the maximum NDVI (Fig. 2b and d). Therefore,
it is reliable to use NDVI data to replace AGB data in the modeling
stage, since AGB data is point based.

3.3. Model performance and variable importance

The results from the optimal models for each non-parametric ap-
proach are summarized in Table 3. Generally, the models representing
each of the three non-parametric approaches performed better for
SOC than litter C stocks. Although the predictive power of the model is
variable depending on model type and C pool, for SOC the QRF model,
RPD was 1.22 for validation, and this was close to the value of 1.40
that is considered fair for models and predictions which may be used



Fig. 1. a) Litter carbon samples (n = 3303); b) soil carbon samples (n = 3303) in the CONUS.
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for assessment and correlation (Viscarra Rossel et al., 2006). Average
prediction performance of the validation data were expressed by the
RPIQ index, with values of 1.01 (litter C) and 1.39 (SOC). The best
Table 2
Summary statistics of litter and SOC stocks (Mg ha−1) acquired from NFI data collected across

Variable Mean SD Median Minimum

Litter C 8.11 10.75 4.41 0
Soil C 56.87 38.46 48.74 0.26

Abbreviations: SD, standard deviation; SE, standard error.
coefficient of determination (R2) was 0.20 and 0.35 for litter (RF
model) and SOC (QRF model), with an RMSE of 9.23 Mg ha−1 and
28.15 Mg ha−1 respectively. The RPD values (1.11 of litter C and 1.22
the conterminous US (Domke et al., 2016, 2017).

Maximum Range Skewness Kurtosis SE

144.62 144.62 3.48 21.11 0.19
524.83 524.57 3.05 20.29 0.68



Fig. 2. Correlations with litter carbon stocks and other variables: a) NDVI and log-transformed aboveground biomass (AGB); b) NDVI and log-transformed litter carbon stock; c) log-
transformed litter carbon stock and AGB; d) log-transformed soil carbon stocks (0–20 cm) and NDVI.
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of SOC) indicated fair models that could be improved with additional
data and co-variates (Chang et al., 2001). Despite the variability in the
validation plots (Fig. 3a), the litter C model showed slight overestima-
tion and the model fitted the lower estimates better (i.e., for litter C
values b 20 Mg ha−1). A slight overestimation of SOC for lower esti-
mates (SOC b 50 Mg ha−1) and underestimation for estimates higher
than 150 Mg ha−1 was apparent (Fig. 3b). By only using the best corre-
lated predictors to litter and SOC (i.e., 10 covariates, bold in Table 1), the
independent validation of the QRF SOCmodel showed 29% of explained
data variability, while RF litter C model showed 15% of explained data
variability (Table 4). Variable importance in this study was determined
by IncNodePurity, which is used to measure quality of a split for every
variable (node) of a tree bymeans of theGini Index. It revealed different
dominating environmental features for litter C and SOCmodels (Fig. 4).
Variable importance amongpredictors showed similar patterns for litter
C and SOC. Climate moisture index (GMI) proved to be themost impor-
tant predictor for litter C, while it was the third strongest for SOC. Spatial
Table 3
Summary statistics of random forest (RF), quantile regression forest (QRF), and k nearest
neighbor (kNN)models using all variables to predict litter carbon (C) and soil organic car-
bon (SOC) stocks (Mg ha−1) across the conterminous US.

Method Dataset R2 RMSE (Mg ha−1) RPD RPIQ Bias

RF Litter C 0.20 9.23 1.11 1.01 0.36
SOC 0.33 28.39 1.21 1.37 3.18

QRF Litter C 0.16 10.90 1.05 0.89 −2.91
SOC 0.35 28.15 1.22 1.39 −3.17

kNN Litter C 0.11 10.89 1.06 0.79 −0.38
SOC 0.28 29.32 1.17 1.33 0.74

Abbreviations: RMSE, root mean square error; RPD, residual predict; RPIQ, ratio of perfor-
mance to inter-quantile range.
location (latitude and longitude) played a dominant role in both
models, while elevation ranked high for both models. NDVI also pre-
sented relatively strong prediction power when compared to other
top ranked variables. Soil moisture variables (Available water and soil
moisture) ranked in themiddle of variable importance. For bothmodels,
the categorical predictor forest type group was the least important var-
iable. Gamma ray variables appeared to be important to litter C, espe-
cially Potassium (GR_K) and Thorium (GR_Th) concentrations. The
land resource regions variable did not rank as important in both litter
and soil C models.

The optimalmodels for litter C and SOCwere further validated using
Two-One-Sided Tests of equivalence (Wellek, 2003). The RF approach
provided the best summary statistics and the model predictions were
statistically equivalent with litter C estimates in the validation dataset
(Table 4). The QRF approach provided the best fit to the training dataset
and the predictionswere statistically equivalent to the SOC estimates in
the validation dataset.

3.4. Spatial characterization of litter and soil carbon

The distribution of litter C and SOC stocks (Mg ha−1) (Figs. 5a and
6a) and their SD (Figs. 5b and 6b) and coefficient of variation (CV)
(Fig. S4) were characterized at a resolution of 1 km× 1 km. The total lit-
ter C and SOC stocks in 0–20 cm for the CONUSwas 2.07±0.97 (total±
SD) Pg Cwith an average density of 10.45± 2.38Mg ha−1, and 14.68±
3.50 (total± SD) Pg Cwith an average density of 62.68± 8.98Mg ha−1,
respectively, for a surface of about 3.10 million km2. The total surface
represented by the grid is 24% of the actual CONUS (8,080,464.3 km2).
The highest stocks shown on the predicted maps were forecast by the
models in three areas: northeastern US, northernWisconsin and north-
west coastal forest. For litter C, SD varied from 0.95 to 33.80 Mg ha−1,



Fig. 3.Observed and predicted values of the validation dataset from random forestmodels for a) Litter C; quantile regression forestmodel for b) soil organic carbon (SOC) in 0–20 cm. Black
line is the regression line and the dash line is the 1:1 line.
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while coefficient of variation ranged from 0.33% to 4.28%; for SOC, SD
ranged from 7.60 to 148.75 Mg ha−1, while coefficient of variation
ranged from 0.20% to 1.70%.

3.5. Forest disturbance impact on forest carbon stocks

Litter C and SOC stocks were summarized by forest disturbance
types in Fig. S2 based on FIA data. The fire disturbance group presented
the second highest SOC stocks and the third lowest in litter C stocks. The
disease group of forest disturbance presented the highest litter C, but
the lowest soil C. The Kruskal-Wallis test results suggested that the dif-
ference of litter C and SOC stocks between the disturbed and non-
disturbed plotswere not statistically significant. However, litter C stocks
were significantly different between disturbance groups (p = 0.0091),
while the disease group had the highest litter C and the animal group
had the lowest. Also, the forest disturbance (LANDFIRE) showed signif-
icant impact on litter C stocks (dataset from Domke et al. (2016), n =
5236, p= 0.0056). For both litter and soil, the mean andmedian values
of C stocks in non-disturbance groups tended to be slightly higher but
not statistically significantly different than that of the disturbance
group.

3.6. Litter and soil carbon ratio distribution

A map characterizing the ratio of litter C to SOC showed that 75% of
sample sites had a litter and soil C ratio lower than 0.21, and only 1.5%
(51 sample sites) with higher litter C than SOC (ratio N 1, red points in
Fig. S3). There were some spatial patterns of regions with high ratios,
Table 4
Summary statistics of best models using partial covariates (variables that are bold in
Table 1) to predict litter carbon (C) and soil organic carbon (SOC) stocks (Mg ha−1) across
the conterminousUS. TOST is two-one-sided test resultswhere NE=not equivalent and E
= equivalent where the absolute value of the mean of the differences is ±25% of the
standard deviation.

Dataset Method R2 RMSE
(Mg ha−1)

RPD RPIQ Bias CNFI − Cpred

Mean SE TOST

Litter C RF 0.15 10.22 1.09 0.78 −0.51 0.17 0.20 E
SOC QRF 0.29 29.14 1.18 1.34 −4.42 −1.56 0.45 E

Abbreviations: RMSE, root mean square error; RPD, residual predict; RPIQ, ratio of perfor-
mance to inter-quartile range; SE, standard error of themean difference; CNFI, carbonmea-
sured in National Forest Inventory; Cpred, carbon predicted with method.
including areas located in the Sierra Nevada Mountains, northern and
southern Rocky Mountains, Lake States, and southeast coast flatwoods
regions.
4. Discussion

4.1. Carbon stock estimates

Globally, it was reported that the current litter C stock in theworld's
forests was 43± 3 Pg C (5% of total forest C) (Pan et al., 2011). Our pre-
diction of litter C in the CONUS accounts for approximately5%of the
world's litter C stocks. Sanderman et al. (2017) reported that the global
forest SOC in 0–30 cmprofilewas 223.4 Pg (148.93 Pg of SOC in 0–20 cm
after depth-weighted average). Thus, our analysis suggests that forest
SOC of 0–20 cm in CONUS accounts for approximately 10% of the
world's.

Nationally, our results indicate that litter C and SOC in 0–20 cm ac-
count for 4.83% and 34.22% of total US forest C stocks (40.19 Pg) (US
EPA, 2015), respectively. Our results for both litter C and SOC stocks
are higher than those of China and Mexico. Our results are consistent
with Domke et al.'s (2016, 2017) findings in terms of total C stocks
which is not surprising given the same NFI data were used. However,
our study extended the work of Domke et al. (2016, 2017) from site-
specific to continuous predictions across the CONUS. The predicted litter
and soil C maps (Figs. 5 and 6) contain much greater spatial detail than
the point-based estimates previously published (Domke et al., 2016,
2017). This is important for future forest C modeling and site-specific
management activities. The mean of all Rapid Carbon Assessment
(RaCA) site SOC stocks to 100 cm was reported as 345.4 Mg ha−1,
with a median of 183.2 Mg ha−1 (Wills et al., 2014) in the CONUS.
These were much higher than our SOC density and might be because
RaCA included samples with extreme high values from agricultural
farmland and wetland. In a study of China's forests, it was estimated
that litter C stock (not including woody debris) in the period of
2004–2008 was 0.50 ± 0.024 Pg, with an average density of 5.95 ±
0.35 Mg C ha−1 (Zhu et al., 2017). Also, although forest area size
(3.10 million km2) in our study is about two times that of China
(1.53 million km2), litter C in the CONUS forest (2.07 ± 0.97 Pg) is
four times of that in China's, and showed much higher average density
of 10.45 ± 2.38 Mg ha−1. Compared with China's 189 sample sites,
this study contained higher sample density and covered more diverse



Fig. 4. Variable importance from random forest model of litter and quantile regression forest model of soil carbon predictions.
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forest types. Considering the areal extent, our results are in the same
magnitude as these previous predictions from China and Mexico.

Our estimates based on available NFI data provided a baseline for lit-
ter and soil C stocks in the CONUS. The presented stocks reflect the total
C of forest litter and soil for the period 2000 to 2011 and can be used as a
benchmark for future comparison with new data or enhance modeling
methodologies. This background information is valuable as a reference
to evaluate spatio-temporal litter and soil C changes in the CONUS.

4.2. Sample variation and density

Geographically speaking, the high variation presented in those areas
with high C density, such as northeastern area, west coastal area, lake
state area and rocky mountain area. Not surprisingly, the SD was
much smaller in litter C prediction than those in SOC prediction, likely
because the range of SOCwasmore than two times that of litter C. Inter-
estingly, the spatial distribution of litter C SD also exhibited strong spa-
tial patterns (Fig. 5b), with clusters containing the highest level of
variation in heavily forested regions in the northeastern US. When the
results showed low levels of litter and soil C density, the spatial distribu-
tion of SDwasmore homogeneous across landscapes (e.g., in the south-
eastern US).

In this study, we demonstrated relationships and predictions using
remote sensing image-based data (NDVI, LANDFIRE and Gamma Ray),
allowing for continental scale analysis of forest C stocks where limited
field data are available. In terms of sample density, Somarathna et al.
(2017) suggested aminimum of 15 samples of soil C per square kilome-
ter to reach models' maximum predictive capability for a hill area in
Australia, and Vaysse and Lagacherie (2017) suggested sample density
as 1/13.5 km2 for a regional study in France. Comparing to those studies,
our sample density ismuch lower (about 1/1000 km2) and our results of
soil C prediction are better as indicated by the R2. This could be a reflec-
tion of the greater resolution (30m) of remote sensing data that we ap-
plied, which enabled the expansion of litter and soil C stocks from plot-
based observations to a pixel-based continuous layer across the CONUS.

4.3. Relationships between carbon stock and environmental variables

The predictionmethod, such as RF andQRFusing R software, was ca-
pable of exploring the relationship of litter and soil C to their
environment predictors. Based on the validation indices, the models
showed a higher performance (i.e., higher R2, lower RMSE, higher RPD
and RPIQ) in calibration data (70%) than in validation data (30%).

The positive correlation between the SOC and NDVI was also found
in a tropical forest in India, which demonstrated the fact that NDVI
can be considered to be an effective spectral vegetation index to esti-
mate SOC (Kumar et al., 2016). There was also a study in the western
US which reported that NDVI is one of the most important variables of
affecting soil pyrogenic and particulate C (two forms of SOC) stocks
(Ahmed et al., 2017). Ourfindings are in agreementwith studies that in-
dicate organic C inputs to the soil, in addition to the loss due to erosion
and mineralization, are the important factors explaining variation of
SOC stocks.

The distribution of litter C presented a similar spatial pattern as with
temperature that warmed from north to south. This is because temper-
ature and precipitation decrease the C density of litter (Zhu et al., 2017).
A microcosm experiment in a rain forest in China found that a rise of 10
°C in temperature significantly decreased the total mass of litter for the
primary forest (He et al., 2009). However, the northeastern coastal area
of Florida (Everglades) showedhigh litter C stocks, and thismight bebe-
cause of the high production and low decomposition rates in mangrove
ecosystems (Liu et al., 2017). Also, soil C stocks presented a spatial pat-
tern due to the temperature. Forests in the northeast and west coastal
areas of the US accumulated higher SOC than forests in the southeast,
due to the longer C turnover time in high-latitude compared to low-
latitude zones (Hakkenberg et al., 2008; Wang et al., 2018).

Moisture-related factors (e.g., precipitation, climatemoisture index)
control SOC in Florida (Xiong et al., 2014), and this also applied to the
CONUS scale. Factors relating to moisture were the dominant variables
in the models highlighting the importance of the interaction between
climate and soil variables in controlling SOC stocks. Guo et al. (2006b)
studied climatic effects on SOC in the CONUS, and also found that the ef-
fect of temperature on SOC is complicated or confounded by other
SCORPAN factors. For example, it was corroborated that soil C mineral-
ization responds quite differently to climate change by parent material
and litter type in a temperate forest (Rasmussen et al., 2008).

Interestingly, forest type group ranked low in importance for litter C,
but ranked high in importance for soil C. One contributing factormay be
the mobility of leaf and woody material, which was suggested by a
study inWesternAustralia that observed roughly 40–60% of the existing



Fig. 5. Predicted litter carbon a) stock (Mg ha−1) b) standard deviation in 1 km resolution for the CONUS.
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litter was removed by wind or flood annually from all the experiment
sites (Kumada et al., 2009). This also explained the complexity and un-
certainty on litter C predictions and why adding a climate variable such
as wind speed could possibly improve the model. Another model im-
provement could come from insights through litter decomposition
studies. A study in British Columbia tested 14 overstory tree species



Fig. 6. Predicted soil organic carbon in 0–20 cm a) stock (Mg ha−1) b) standard deviation in 1 km resolution for the CONUS.
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(broadleaf, needleleaf, or mixedwood) and found that long-term litter
decay rates may not differ much among forests of different tree species
composition (Prescott et al., 2004).

4.4. Forest disturbance and litter soil carbon ratio

We evaluated the influence of disturbance on litter C and SOC stocks
using two different data products: FIA and LANDFIRE. The FIA data are
more accurate with site-specific forest disturbance types, while the
LANDFIRE data are applicable to large scale disturbances, since they
were obtained from remote sensing images and created with a 500 m
buffer. The disease group of forest disturbance presented the highest lit-
ter C, but the lowest SOC,which suggested these sites had high potential
for a site-specific disturbance to transfer C from live to dead pools
(McGarvey et al., 2015). The mean difference between the two litter
and soil estimates and the observed values account for only 2.1% and
2.7% of mean estimated litter C and SOC, respectively. Statistical equiv-
alence between NFI estimates and model predictions for litter C and
SOC provides evidence that employing remotely sensed information
can enable the expansion of forest C pool estimates across a range of
spatial scales for which limited field observations often exist. For
longer-term forecasts, these data provide information on forest dynam-
ics linked to past changes in climate, land-use, and disturbances. These
studies can often offer landscape-scale reconstructions, or in some situ-
ations, can be used to infer stand-level histories.

Litter C to SOC ratios larger than 1 appeared in either mountainous
areas or lake and coastal flatwoods areas. This is because soil layers
and depth to bedrock or other impervious surfaces were likely much
shallower inmountainous areas and slower decomposition of leaves re-
sulted in denser litter layers in flatwoods (Rayamajhi et al., 2010). In the
US Lake States, it is possible that wetlands and streams with more run-
off and less water storage may have lower average water tables and the
potential for more aerobic conditions which can reduce SOC storage
(Barksdale et al., 2014). A litter dynamic study (Upton et al., 2018) sug-
gested that litter inputs strongly impact litter chemistry of the topsoil,
however, ultimately the total C storage at their study sites is controlled
by howvariation in environmental conditions (e.g., all the SCORPAN en-
vironmental variables included in our study) govern long term decay
processes rather than litter inputs linked to specific vegetation types.

5. Conclusions

In this study we characterized the spatial distributions of litter C and
SOC stocks in the CONUS using environmental variables from the NFI
and obtained from remotely sensed data products. Sixmain conclusions
can be drawn from this study. 1) Spatially continuous and explicit esti-
mates of litter C stocks on forest land in the CONUSwere 2.07± 0.97 Pg
and SOC stocks at 0–20 cm depth was 14.68± 3.50 Pg, 2) our estimates
are comparable to other national estimates for the US and our results
suggest that litter C and SOC in 0–20 cm account for 4.83% and 34.22%
of total forest C stocks nationally, 3) the high-resolution litter C and
SOC stock predictions can be used to facilitate forest C spatial modeling
and provide insight to site-specific management activities at different
scales, 4) the role of forest disturbances on litter C and SOC stocks in for-
est ecosystems is complex, 5) our results suggested that the RF and QRF
prediction models performed better than kNN models although results
across the three methods were similar, and 6) despite the variability in
litter and soil observations across a large geographic scale, all modeling
approaches performed better for soil compared to litter layers and the
spatial pattern of association between litter, SOC, and environmental co-
variates observed from the RF and QRF models may reflect spatial pat-
terns in litter decomposition, soil chemistry, and plant and microbial
communities. Furthermore, these methods can be expanded to data-
limited areas by the application of remote sensing techniques. These
conclusions illustrate the application of harmonizing field measure-
ments with remotely sensed data to improve modeling and estimation
across spatial scales in support of inventory, monitoring, and reporting
activities, particularly in countries with ready access to remotely sensed
data but with limited field observations of litter and soil variables.
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