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A B S T R A C T

Wetlands represent the dominant natural source of methane (CH4) to the atmosphere. Thus, substantial effort
has been spent examining the CH4 budgets of global wetlands via continuous ecosystem-scale measurements
using the eddy covariance (EC) technique. Robust error characterization for such measurements, however, re-
mains a major challenge. Here, we quantify systematic, random and gap-filling errors and the resulting un-
certainty in CH4 fluxes using a 3.5 year time series of simultaneous open- and closed path CH4 flux measurements
over a sub-boreal wetland.

After correcting for high- and low frequency flux attenuation, the magnitude of systematic frequency response
errors were negligible relative to other uncertainties. Based on three different random flux error estimations, we
found that errors of the CH4 flux measurement systems were smaller in magnitude than errors associated with
the turbulent transport and flux footprint heterogeneity. Errors on individual half-hourly CH4 fluxes were ty-
pically 6%–41%, but not normally distributed (leptokurtic), and thus need to be appropriately characterized
when fluxes are compared to chamber-derived or modeled CH4 fluxes.

Integrated annual fluxes were only moderately sensitive to gap-filling, based on an evaluation of 4 different
methods. Calculated budgets agreed on average to within 7% (≤1.5 g−CH4 m−2 yr−1). Marginal distribution
sampling using open source code was among the best-performing of all the evaluated gap-filling approaches and
it is therefore recommended given its transparency and reproducibility.

Overall, estimates of annual CH4 emissions for both EC systems were in excellent agreement (within
0.6 g−CH4 m−2 yr−1) and averaged 18 g−CH4 m−2 yr−1. Total uncertainties on the annual fluxes were larger
than the uncertainty of the flux measurement systems and estimated between 7–17%. Identifying trends and
differences among sites or site years requires that the observed variability exceeds these uncertainties.

1. Introduction

The recent debate regarding the causes of an apparent plateau in
atmospheric methane (CH4) concentrations during the early 2000 s
reflects gaps in our current understanding of its climate-sensitive
sources and sinks and their variability (Kirschke et al. 2013; Schaefer
et al. 2016; Saunois et al., 2016; Poulter et al., 2017). This uncertainty
impairs confidence in climate projections due to methane’s large global
warming potential (GWP), 28–36 times larger than that of carbon di-
oxide (CO2) on a 100 year time horizon (Myhre et al. 2013). Global CH4

inventories exhibit large variability between bottom-up approaches
versus top-down estimates (Kirschke et al. 2013; Saunois et al., 2016),

but generally agree that the integrated biogenic CH4 source is com-
parable in size to the anthropogenic flux. Microbial CH4 production in
anaerobic wetland soils is the largest biogenic source, and is believed to
result in more CH4 emissions than the global production and use of
fossil fuels (Kirschke et al. 2013; Saunois et al., 2016).

While wetlands cover a relatively small fraction of Earth’s land
surface (∼10%, Rebelo et al., 2009) their contribution to the global
surface-atmosphere flux of CH4 and thus to the Earth’s radiative forcing
is disproportionally large. Representative measurements are thus
needed to assess how CH4 emissions from wetlands respond to hydro-
meteorological and land management factors, and to build a process
understanding for projecting future changes. Eddy covariance (EC)
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(Baldocchi et al. 1988) is currently the most widely used methodology
for measuring surface-atmosphere exchange of greenhouse gases (GHG)
at the ecosystem scale. While networks have been initiated around the
world to create a standardized global flux monitoring program and
database (FLUXNET) (Baldocchi et al. 2001), CH4 is not yet a fully in-
tegrated product in the resulting synthesized datasets available to the
public. We therefore lack a measurement-based benchmark for top-
down inversion-based CH4 budgets. Two international efforts have re-
cently been initiated to better constrain CH4 observations: (i) The
Global Carbon Project (http://www.globalcarbonproject.org/) laun-
ched a CH4 flux synthesis effort with the aim of collating flux data from
the global ensemble of terrestrial observations, identifying data lim-
itations and inconsistencies, and deriving standardization guidelines for
future inclusion into FLUXNET and gridded CH4 products (AmeriFlux,
2018); and (ii) the pan-European Research Infrastructure Integrated
Carbon Observatory System (ICOS) published the first protocol for
standardization of high frequency CH4 measurements, flux calculation
and quality control (Nemitz et al., 2018). Both of these projects follow
the tradition of the micrometeorological community in unifying and
(openly) releasing flux calculation algorithms within collaborative
network activities (e.g. Fratini and Mauder 2014; Mammarella et al.,
2016).

The foundation of any EC flux measurement system is a fast analyzer
capable of resolving turbulent fluctuations of the target species at ap-
propriate precision (Baldocchi et al. 1988). Laser absorption spectro-
scopy-based methane gas analyzers have been tested for their applic-
ability in EC flux measurements in the past (Tuzson et al. 2010; Detto
et al. 2011; Peltola et al. 2013, 2014; Iwata et al. 2014); however, inter-
comparison studies have only been carried out over relatively short
duration (a few weeks to months), with the exception of a single year-
long study conducted in the arctic (Goodrich et al. 2016). In terms of
absolute fluxes, the above studies reported good agreement between
different CH4 analyzer technologies, but also highlighted that sensor-
specific corrections (e.g. for density fluctuations and water vapor in-
terference) can be of the same magnitude or larger than the measured
fluxes. Further, open-path EC systems were reported to have poor data
coverage during freezing or rainy periods and in locations with ubi-
quitous high humidity or sea spray. Thus, a large fraction of the mea-
sured time series often needs to be gap-filled for budget calculations. As
a result, there is a need to better understand the effects of such cor-
rections and gap-filling uncertainties on annual CH4 flux budgets,
which may in turn be broadly used in the climate science community.

Here, we present CH4 flux measurements from a natural wetland
site over the course of 3.5 years (January 2015–July 2018) using two
commercially available CH4 gas analyzers. These systems include an
open-path CH4 gas analyzer (LI-7700, LI−COR Biosciences Inc.,
Lincoln, NE, USA) and a closed-path tunable diode laser (TGA-100A,
Campbell Scientific, Logan, UT, USA). Both CH4 flux systems rely on
shared turbulence measurements and thus have identical flux foot-
prints. This unique dual-sensor dataset features a large number of
paired observations across a wide spectrum of hydro-meteorological
variability enabling a statistically robust analysis of the measured
fluxes, their precision, detection limits and consistency. Taking ad-
vantage of these concurrent measurements we evaluate the most com-
monly used methods for flux error estimation against the directly ob-
served distribution of flux differences, which we here interpret as the
uncertainty of the flux measurement system. We further quantify the
uncertainty introduced across differing correction methods for sys-
tematic errors arising from imperfect sampling of turbulent fluctua-
tions. Next, we characterize the errors associated with gap-filling flux
time series to derive yearly CH4 budgets and quantify the resulting
annual uncertainties. Finally, we give recommendations for processing
and characterizing annual CH4 flux products, and demonstrate the
importance of accurate uncertainty estimation for interpreting mea-
sured wetland fluxes.

2. Methods

2.1. Site description

Eddy covariance measurements were carried out at the Bog Lake
Fen flux tower site in the USDA Forest Service’s Marcell Experimental
Forest (47.505 N, −93.489 W, Minnesota, USA). The flux tower is lo-
cated in an open natural peatland, characterized as poorly miner-
otophic to oligotrophic (mean pore water pH = 4.5, range 3.8–5.3)
with the dominant vegetation consisting of Sphagnum papilosum,
Scheuzeria palustris, Carex spp., and Chamaedaphne calyculata (Shurpali
et al. 1993, 1995). Bog Lake Fen soils are mapped as the Greenwood
series (Dysic, frigid Typic Haplohemists), with peat depth of about 2 m
at the EC tower. The bog has complex micro-topography, with a mosaic-
like hummock-hollow surface pattern and water balance driven largely
by precipitation (roughly half of precipitation falls as snow) and eva-
poration, since no surface water outlet is present. The climate is cold
continental with warm summers (Köppen Dfb, Kottek et al. (2006)),
with mean annual precipitation and temperature of 770 mm and 3 °C,
respectively. The snow-covered period usually starts in November and
typically lasts for ∼120 days.

2.2. Instrumentation

Three-dimensional wind velocity and sonic temperature measure-
ments were made using an ultrasonic anemometer (CSAT-3, Campbell
Scientific) mounted 2.4 m above the surface. An open path CO2 and
H2O infrared gas analyzer (LI-7500A, LI−COR Biosciences Inc.) was
positioned at the same height (in reference to the center of its mea-
surement path) and offset by 10 cm to the east. High frequency CH4

concentrations were measured with two instruments: a low-power open
path analyzer (LI-7700, LI−COR Biosciences Inc.), and a closed path
trace-gas analyzer (TGA100A, Campbell Scientific), both employing
laser spectroscopy. Whereas several closed-path instruments for fast
and high precision CH4 measurements are commercially available, the
LI-7700 is the first instrument of its kind that can be operated with very
limited power and infrastructure, as neither temperature control nor
pumps are required. Typical noise levels for both instruments are
5–10 nmol mol−1 (Allan deviation at 10 Hz). Details and configuration
of the two CH4 gas analyzers are provided in Table 1. Data from all eddy
flux sensors were recorded at 10 Hz frequency. Gas-analyzers were
calibrated twice per year (step calibration), to reflect changes between
cold and warm seasons. Ancillary measurements at the tower site in-
cluded basic meteorology, soil temperature, soil heat flux and water
table position (Table 1) More details about the flux tower site can be
found in Shurpali et al. (1993; 1995), and Olson et al. (2013).

2.3. Eddy covariance methodology

Vertical turbulent fluxes were calculated using the eddy covariance
method according to the general equation (Webb et al. 1980):

=F w c( )' ' (1)

Where, w is the vertical wind speed, is air density, c is an atmospheric
scalar, primes denote turbulent fluctuations, and overbars denote
means obtained from time averaging over the flux interval, here set to
30 min. The scalar and sonic anemometer time series were aligned
using supervised cross correlation maximization after a double-axis
rotation was performed on measured wind vectors. De-spiking of high
frequency data (Vickers & Mahrt, 1997) was not performed because a
test analysis using a subset of the data revealed that the number of
identified spikes and their effect on the post-processed fluxes were
negligible (< 1%).

The sensible heat (H), latent heat (LE) and CO2 (NEE) fluxes were
calculated following standard procedures as documented elsewhere
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(e.g. Foken et al., 2012). Methane fluxes based on TGA mixing ratio
(χCH4) measurements were calculated according to:

=F w 'CH a CH
'

4 4 (2)

Density fluctuations were assumed to be removed by drying and
heating of the sample air prior to analysis. Fluxes based on mass density
( CH4) measurements by the LI-7700 were calculated according to
McDermitt et al. (2011):

= + +
+
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Where, A B, , and C are dimensionless multipliers to correct for
spectroscopic effects caused by temperature- and pressure –induced
line-broadening, µ is the molar mass ratio of dry air to water vapor, a
is the average mass density of dry air, is the mass density ratio of
water vapor to dry air, H O2 is the water vapor mass density, and T is air
temperature. The second and third terms in the parentheses are the
traditional Webb, Pearman, Leuning (WPL) terms (Webb et al., 1980).
The contribution of WPL and spectroscopic terms to calculated fluxes
are discussed in detail in Text S1 and Fig. S1, 2. Storage flux terms were
quantified using a simple 1-level approach (Rannik et al., 2009), but
were found to be negligible. Furthermore, since storage affects NEE
measured by both CH4 systems equally, no effect on flux comparisons is
expected, and therefore no corresponding adjustment was performed.

2.3.1. Post-processing of time series data
The closed path TGA system was designed to operate at stable

temperatures and pressures, and during our campaign the laser tem-
perature and cell pressure were both maintained to a high degree of
precision. However, the TGA cell temperature was also affected by the
instrument’s enclosure temperature, which is intended to be maintained
at a stable set-point above ambient. At Bog Lake Fen, ambient tem-
peratures were highly variable, especially during the cold season when
diurnal amplitudes exceeded 20 °C and 24-h maxima varied by up to
16 °C between consecutive days. As a result, the control software was at
times unable to maintain stable enclosure (and hence cell)

temperatures, resulting in low-frequency drifts in the CH4 signal for
∼10% of observations, as indicated by the instrument’s diagnostic
value for heater cycling. Such drift was not apparent in the concurrent
LI-7700 measurements, nor in other measured scalars such as CO2 or
sonic temperature (Fig. S3). These low frequency fluctuations mani-
fested as a positive slope in the Allan variance at time scales exceeding
several seconds (Fig. S4). We therefore interpret this behavior as a TGA-
specific optical fringing effect due to temperature drifts; similar arti-
facts in TGA measurements have been observed at other sites
(Mammarella et al., 2016; Jackowicz-Korczyński et al., 2010). To ac-
count for the occasionally observed optical fringing effects and to keep
post-processing routines consistent, the CH4 time series for both ana-
lyzers were de-trended by subtracting the corresponding running mean,
calculated using a first order autoregressive filter with τ = 30 s time
constant (McMillen, 1988; Rannik and Vesala, 1999).

2.3.2. Spectral corrections
Fluxes were corrected for low and high-pass filtering effects in-

troduced by de-trending and by the limited high frequency response of
the respective measurement systems. Here, we used two established
routines to (i) theoretically (e.g. Moore 1986) and (ii) empirically
(Aubinet et al., 1999; Foken et al., 2012) estimate the resulting flux
attenuation. In the theoretical case, transfer functions were obtained
from the superposition of individual analytically formulated response
terms for (a) dynamic/time response, (b) path (LI-7700) or volume
(TGA) averaging, (c) lateral sensor separation, and in the case of the
TGA system (d) low-pass filtering associated with attenuation in the
intake tube. Additionally, (e) a response term from the autoregressive
filter was implemented to account for high-pass filtering (Moore 1986,
Rannik & Vesala 1999; Massman, 2000, 2001, Horst and Lenschow,
2009).

In the empirical approach, transfer functions were determined as
the ratio of the integrated attenuated scalar cospectra to the integrated
unattenuated temperature cospectra, here considered to be the idea-
lized spectra. To reduce uncertainties, especially in the low-frequency
range, data were screened for consecutive 3-hr periods fulfilling the

Table 1
Methane gas analyzer configurations and auxiliary measurements.

CH4 sensor
TGA-100A LI-7700

type closed path open path
laser led-salt diode laser tunable diode laser in open Herriott cell
cell 153.08 cm path length open Herriott cell, 47 cm path length

480 ml volume
effective time constant < 0.04 s < 0.025* s
cell residence time < 0.1 s n.a.*
configuration liquid N2 cooled, Nafion Drier PD200T
power (typical) > 300 W 8 W
height 2.4 m (inlet) 2.4 m (ref.: center of measurement path)
tube length 3.4 m n.a.
tube diameter 4.3 mm n.a.
flow rate 15 slpm n.a.
pump Bush Model RB0021 n.a.
separation 4 cm 49 cm

auxiliary measurements
variable location model manufacturer

soil temperature 5,10,20,30,40,50,100,200 [cm depth] T107 Campbell Scientific
air temperature 2 [m height] HMP45C Campbell Scientific
relative humidity 2 [m height] HMP45C Campbell Scientific
precipitation 1.5 [m height] TE-525 tipping bucket rain gauge Texas Electronics
wind speed 3 [m height] 05103 wind monitor R. M. Young
wind directon 3 [m height] 05103 wind monitor R. M. Young
PAR 3 [m height] LI190-SB quantum sensor LI-COR Biosciences
radiation 2 [m height] CNR4 Net Radiometer Kipp and Zonen
soil heat flux 10,10,10 [cm depth] HFP01-SC heat flux plate Hukseflux
water table position 1.5 [m distance to EC tower] FW-1 stripchart recorder Belfort
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steady-state test (2.3.4) following the recommendation of Aubinet et al.
(1999):

= =H f N
N

C f df
C f df
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Where, N and Nc are normalization factors calculated as the ratio of
integrated cospectral densities in a frequency ( f ) band where flux at-
tenuation is assumed to be negligible ( f0 to f1, here ≈0.02 to 0.07 Hz).
Cwx are the cospectral densities of vertical wind and the scalar (c) or
sonic temperature ( ). Cospectra were calculated following Nordbo &
Katul (2013) (Text S5).

Absolute spectral flux losses Fc were estimated as the ratio of the
attenuated cospectral density to the idealized cospectral density:

=
F

C f H f df
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1
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c

c

ws
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0

0 (5)

Where, f is the natural frequency, Cws is the idealized cospectrum, and
H is an EC system-specific transfer function. The right-hand fraction in
Eq. (5) is the inverse of the spectral correction factor (SCF), i.e. the
factor needed to increase the attenuated covariance to match the re-
ference covariance. Spectral corrections were applied before fluxes
were calculated (e.g. by replacing w CH4

with SCF w CH4
in Eq. (3)).

2.3.3. Data quality control & retention
Fluxes were filtered by testing the high frequency data for statio-

narity < 1, −2 < skewness < 2, < 1 kurtosis < 8, and inter-
mittency < 1, as well as for-well-developed turbulence (ITCw < 0.6)
(Foken and Wichura 1996, Vickers and Mahrt, 1997). Additionally, a
nighttime friction velocity threshold was investigated using both CH4

and CO2 observations (Papale et al., 2006) but not implemented in this
study as evidence for systematic underestimation of nocturnal CH4

fluxes was ambiguous and resulting corrections were marginal (Text
S4). Along with the flux periods removed by the QC procedures, data
were also lost during periods of sensor malfunction and servicing. For
the LI-7700, data were likewise lost when the measurement path was
temporarily obstructed, as monitored by the instrument’s relative signal
strength indicator (RSSI) measuring the current received at the detector
and by other relevant diagnostics. In our case, data were deemed
unusable if more than 2% of the high frequency data within a flux
averaging period showed RSSI < 40. Finally, flux data for all sensors
were discarded if the wind direction measurements indicated possible
flow distortion due to tower interference, or contributions to flux
footprints from surrounding upland forests (from 30° to 200°). Over
3.5 years, there were n ≈23,000 (TGA) and n ≈19,000 (LI-7700) fluxes
measured during periods with acceptable instrument diagnostics and
winds from the peatland sectors. The LI-7700 instrument was not op-
erated before March 2015, and thus lacks data for 75 days at the be-
ginning of the campaign. After quality control, the datasets retained
62% of the measured peatland fluxes (n = 15,033) for the TGA and
76% of the measured peatland fluxes (n = 14,106) for the LI-7700.
Overall, this represented 24% of half-hour periods within the 3.5-year
campaign, lower retention than for the CO2/H2O EC system (38%). This
data retention is on the low end of reported values (24% to 65%) from
(multi) yearlong CH4 flux measurements in wetland systems (Goodrich
et al., 2016; Rinne et al., 2007; Kroon et al., 2010; Hommeltenberg
et al., 2014; Jackowicz-Korczyński et al., 2010; van den Berg et al.,
2016; Wang et al., 2017).

2.4. Flux uncertainties and limits of detection

The measured flux includes the true flux (F̂ ) plus random ( ) and
systematic ( ) error components for measurement system (x) at time
(t):

= + +F F̂t x t t x t x, , , (6)

Systematic error can result from (i) mis-calibration of in-
strumentation, (ii) incomplete sampling of turbulent fluctuations, (iii)
lack of observations of non-turbulent fluxes during poorly mixed con-
ditions and, (iv) the potential underestimation of EC derived energy
fluxes that are used for calculation of the WPL terms (Richardson et al.,
2012). As described in Section 2.3.2 and Text S4, we corrected for (ii)
and estimated the magnitude of (iii) to be within 1% on annual fluxes.
While spectral corrections induce uncertainties of their own, we
nevertheless assume here that after spectral corrections, remaining

t x t x, , .
The random flux error contains contributions from sources such as

errors arising from the stochastic nature of turbulence due to limited
sampling in time and space, errors of the flux measurement system
(both in measurements and flux calculation), and uncertainty regarding
the spatial representativeness (flux footprint) of the calculated flux
(Richardson et al., 2012). The turbulent transport error (from here on
called “sampling error”) has been discussed as the largest contributor to
random flux errors in forest eco systems (Hollinger & Richardson 2005).
Here, we employ two single-instrument approaches for estimating
sampling errors ( F). First F was inferred in a one-point statistical es-
timation as the variance of the wind-scalar covariance w c

2 following
(Finkelstein & Sims, 2001), hereafter referred to as F&S:

= = +
= =n

w w p c c p w c p c w p{ 1 [ ( ) ( ) ( ) ( )]}F w c
p m

m

p m

m
2 1/2

(7)

Where, the auto- (x x p( )) and cross-covariance (x y p( )) terms for ver-
tical wind and the scalar of interest were integrated over the time-
window defined by m, here set to 200 (i.e. 20 s), p is the index of
samples, and n is the number of observations in each flux averaging
interval. The fractional flux error was then calculated by dividing the
absolute flux error by the measured covariance (

w c
F ). The F&S approach

has been evaluated as a physically meaningful estimator for turbulence
driven uncertainties in eddy fluxes (Rannik et al., 2016). It does not
incorporate uncertainty due to footprint heterogeneity nor the flux
calculation.

In our second single-instrument approach (hereafter called the H&R
approach), the flux errors were estimated from the difference in fluxes
measured 24-h apart under similar meteorological conditions (soil
temperatures within 0.5 °C) (Hollinger & Richardson, 2005). As with
the F&S approach above, the H&R approach was performed separately
for each eddy flux system. In contrast to the F&S approach, this error
estimate also incorporates the uncertainty related to the footprint het-
erogeneity. In the past functional agreement between the H&R error
and turbulent sampling error has been found, however the H&R method
yielded larger error estimates reflecting the fact that the H&R approach
also includes footprint heterogeneity (Hollinger & Richardson, 2005).

In addition to the two single-instrument approaches, we derived an
estimate of the random flux error associated with the CH4 flux mea-
surement system itself, based on the contemporaneous CH4 flux dif-
ferences between the TGA and LI-7700 systems (i.e. differences in
paired observations in time; hereafter referred to as the PD approach).
Since both CH4 flux systems were based on the same realization of
turbulence (shared sonic anemometer), neither turbulent sampling er-
rors nor uncertainty of the flux footprint affected the distribution of
paired differences. Thus (after minimizing systematic spectral losses
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beforehand) we hypothesize that PD derived errors were caused pri-
marily by flux calculations, which differed fundamentally between the
two CH4 measurement systems. For instance, the LI-7700 measure-
ments were affected by density fluctuations and estimates of the WPL
terms (Eq. 3), whereas the TGA measurements were based on mixing
ratios (Eq. (2)). In light of the ongoing effort for a global synthesis of
CH4 flux observations the PD derived errors are particularly relevant.
Specifically, it is of interest to examine how its magnitude compares to
the turbulent sampling and footprint error, which typically are accepted
as a reasonable estimation of the total random flux error (Hollinger and
Richardson 2005). Further, differences between paired observations
can reveal the long-term cumulative effects of errors and bias (Dragoni
et al., 2007), which cannot be readily predicted or modeled.

Instrument noise for both the vertical wind and scalar measure-
ments contribute to the total random flux errors. For this study, we
assumed that the former is negligible compared to the latter (Rannik
et al., 2016), and compute the covariance error due to scalar sensor
noise ( n) following (Lenschow et al., 2000):

=
fT

_
,n

w c nf
2 2

(8)

Where, w
2 is the variance of the vertical wind measurements, and _c nf

2

is the noise (n) variance of the scalar sensor at frequency ( f ) for flux
averaging interval (T ). _c nf

2 was approximated as the difference be-
tween the scalar signal variance and the scalar signal auto-covariance at
close to zero shift (here: lag = 5).

Flux detection limits were calculated following Wienhold et al.
(1995). Specifically, the 95% confidence interval of the detection limit
was estimated as 1.96 times the standard deviation of the cross-cov-
ariance function between the vertical wind and the CH4 time series for
lags larger than the integral time scale (here: 100 < |lags| < 200 s).

2.5. Methane budget and gap filling

To calculate annual CH4 budgets, the EC time series required a gap-
filling strategy. Here we investigated the applicability and uncertainties
of 3 different approaches:

2.5.1. Approach A: extrapolating 30-min fluxes to daily fluxes with
subsequent gap-filling based on observed soil temperature response

Valid 30-min CH4 fluxes were extrapolated to a daily value if there
were a sufficient number of observations (here set to 8) for that day. To
estimate the associated uncertainty, this threshold was iteratively in-
creased from 8 to 16 half hours (1/6th to 1/3rd of possible observations
per day). Further, we randomly introduced artificial data gaps (25% of
observed 30-min fluxes each iteration) for n= 50 iterations to assess
extrapolation errors.

After extrapolation, the daily flux time series still included data gaps
with lengths ≥ 1 day. To fill these gaps, we parameterized a soil tem-
perature (10 cm depth) response function:

= =F a e Q e, andT
b T b

( )
( )

10
10

soil
soil (9)

Where, F T( )soil is the daily CH4 flux parameterized by a first order ex-
ponential of soil temperature (Tsoil, oC) with fitting coefficients a and b
obtained from a least absolute residual optimization, and Q10 is the ratio
of fluxes from a 10 °C temperature increase. The total uncertainty for
approach A was assessed as the range in CH4 budgets obtained across
the n = 50 extrapolations above (each with its own soil temperature
regression). We treat this simple variable estimate as the baseline gap-
filling approach in this study.

2.5.2. Approach B: artificial neural networks (ANN)
Artificial neural networks (ANN) are increasingly used for gap-

filling (CH4) flux time series (e.g. Dengel et al., 2013; Knox et al., 2015;
Sturtevant et al., 2016; Goodrich et al., 2016) due to (i) their capacity

for modeling data with varying temporal periodicity, and (ii) their
freedom from any prior assumption regarding the functional relation-
ship between independent and dependent variables (Papale et al. 2006;
Moffat et al. 2007). Here, we followed established routines and em-
ployed a feedforward network with variable architecture complexity
and tan-sigmoid transfer functions. Prior to network training, the 30-
min flux time series was subsampled equally into training, validation
and test subsets. The test subsets were withheld from initialization and
validation of the individual network trainings and used only to infer
uncertainty in the final chosen networks. Network training and vali-
dation were repeated numerous times with increasing complexity, i.e.
by increasing the number of hidden layers and neurons per hidden
layer.

The training variables tested included soil temperature (10 cm), air
temperature, soil heat flux (average of 5 heat flux plates at 8 cm depth),
photosynthetically active radiation (PAR), water table position, soil
moisture, atmospheric pressure, and water vapor deficit. We first
ranked these variables according to their correlation with the observed
methane fluxes, and then added them step-wise into the training data
set. After training and validation of each neural network, we computed
the mean square error (MSE) and coefficient of determination of the
modeled data compared to the withheld test data. Finally, we chose the
network with the least number of training variables, lowest number of
(hidden) layers and nodes, lowest MSE and highest R2. The ANN routine
including randomized subsampling, training and validation was re-
peated n= 50 times to calculate an ANN-derived ensemble distribution
of gap-filled time series. The uncertainty of approach B was then as-
sessed based on the ensemble range, with the ensemble mean used to
gap-fill.

2.5.3. Approach C: Marginal distribution sampling (MDS) and mean
diurnal course (MDC)

For approach C, missing 30-min fluxes were filled using averages
from available observations under similar meteorological conditions on
neighboring days (MDS) or based on the mean diurnal course ag-
gregated from fluxes under similar conditions (MDC). The MDS ap-
proach employs a modified look up table accounting for auto-correla-
tion of CH4 flux time series. Similar conditions were defined as soil
temperatures within 0.5 °C and air temperatures within 2.5 °C. The
“neighboring days” criterion was iteratively increased from 1, 2, 7, 14,
and 35 days, until data under similar conditions were available. The
methodology is described in more detail in Reichstein et al. (2005) and
Wutzler et al. (2018). We randomly introduced artificial gaps (25% of
observations) and repeated the gap-filling procedure n = 50 times for
both MDS and MDC approaches to infer the respective uncertainties
based on the ensemble range.

2.6. Statistical analysis

Flux errors are typically not normally distributed (Hollinger and
Richardson, 2005). Accordingly, Laplace (double exponential) dis-
tributions were used to describe the flux errors as

=f x µ e( , ) x µ1
2

| |/ , where µ is the mean and is a scaling factor
related to the standard deviation ( = 2 ). Briefly, Laplace distribu-
tions are unimodal, but have a sharper peak (leptokurtic) than normal
distributions. Geometric regression was employed when comparing two
flux time series to account for uncertainty in both the regressor and
dependent variable. Standard forecasting accuracy measures were used
to evaluate performance of different gap-filling approaches on withheld
observational data subsets, namely mean absolute error (MAE), root
mean square error (RMSE), and bias error (BE; calculated as the mean
of predicted minus observed values).

Uncertainties in the annual and campaign-long flux integrals were
estimated assuming negligible autocorrelation in the random error ( )
and negligible systematic errors. Thus a standard error propagation
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(Farrance and Frenkel, 2012) was performed as
= +F gapfill error( ) ( )CH i

o
i i

k
i4

2 2 , where o and k refer to the
number of observations and number of modeled fluxes within the in-
tegration interval, respectively. We neglected other (uncorrected for)
systematic errors in this propagation as we expect them to be much
smaller than the uncertainties discussed above. While assuming non-
auto-correlated errors will in principle lead to a lower bound on the
uncertainty, characterizing the auto-correlation of is beyond the
scope of this study.

3. Results and discussion

3.1. Flux attenuation

Analysis of cospectra revealed high frequency attenuation for both
CH4 systems (at f ≥0.08 Hz), whereas CO2 cospectra followed ex-
pected behavior up to > 0.2 Hz indicating less high frequency loss. At
the cospectral peak (frequencies of ∼0.16 Hz), cospectra for the LI-
7700 fell below those for the TGA, while the reverse was true at higher
frequencies, indicating different sources of high frequency attenuation
between the CH4 systems This finding agrees with theoretical ex-
pectations (e.g. tube attenuation only affected the TGA).

Methane cospectra also showed low frequency attenuation due to
the applied de-trending algorithm, which appeared less pronounced for
the TGA than for the LI-7700 relative to the idealized temperature
spectrum. However, this apparent offset was proportional to the much
larger covariance contribution from a trend in the raw TGA data as
compared to the LI-7700 raw data (green and blue triangles, Fig. 1a).

Despite different frequency dependencies for spectral losses be-
tween the two CH4 flux systems, estimates of total flux attenuation
derived from empirical transfer functions were similar with median

F
c
c

± standard deviations of 20 ± 5% (TGA), and 20 ± 5% (LI-7700).
Of this 9 ± 4% were due to low frequency attenuation alone.
Individual empirically determined transfer functions at times deviated
from the idealized response ( H f0 ( ) 1; see error bars in Fig. 1b)
due to noise and incomplete trend removal (especially in the low fre-
quencies for the TGA). Such behavior has also been observed at other
sites (Aubinet et al., 1999; Peltola et al. 2013).

Estimates of flux attenuation derived from theoretical transfer

functions were similar to the empirical values for the TGA (21 ± 7%),
but systematically larger for the LI-7700 (25 ± 10%) (Fig. 2). Low
frequency losses contributed 10 ± 8% to total flux attenuation. To
elucidate the discrepancy in LI-7700 attenuation estimates we in-
vestigated individual theoretical transfer functions and found that ob-
served and modeled attenuation disagreed mostly in the high frequency
range (e.g. blue circles vs. dotted magenta line Fig. 1b), and further that
the modeled losses due to sensor separation had the largest impact on
overall attenuation. We hypothesize that violations of key assumptions
within the analytical formulation of this transfer function (e.g. lack of
differentiation between streamwise and cross-wind cospectra) con-
tributed to the observed discrepancy (Horst and Lenschow, 2009). On
an annual time scale, the cumulative mismatch of fluxes corrected with
the empirical or the theoretical approach was 0.3 gCH4 m−2 for the
TGA, and 0.6 gCH4 m−2 yr−1 for the LI-7700. This represented less than
4% of cumulative annual emissions. The small net impact on annual
fluxes for the LI-7700 was due to the non-monotonic response of cal-
culated fluxes (Eq. (3)) to increased CH4 covariance (Fig. S6c).

To put the flux attenuation for the two CH4 EC systems into context,
we also calculated spectral losses for the LI-7500 CO2/H2O measure-
ments. As suggested by the near-idealized cospectral shape (Fig. 1a)
attenuation was small, with similar estimates derived from the theo-
retical and empirical approaches (median = ±3 2%F

c
c

). Estimated
(high frequency) spectral losses of our CH4 covariance measurements
are similar to previous reports. For example Peltola et al. (2014) re-
ported a median attenuation range of ≈10–40% for 8 commercially
available CH4 gas analyzers deployed at about 6 m height (0.05–0.3 m
horizontal separation) above an agriculturally managed peatland in the
Netherlands. Iwata et al. (2014) reported 11% attenuation for the LI-
7700 deployed at 3.35 m height (0.25 m horizontal separation) over a
rice paddy in Japan, Goodrich et al. (2016) reported 15% median at-
tenuation for the LI-7700 deployed 4.2 m (0.2 m horizontal separation)
above a sedge tundra in Alaska, and Chu et al. (2014) reported LI-7700
flux attenuation to range from 20 to 30% at 2 m height above short
canopy of a freshwater marsh at Lake Erie.

Overall, theoretical expectations of spectral losses did not always
align with the observed cospectra. Thus we chose to apply the empirical
approach for all subsequent analyses in this manuscript. After assessing
the degree of systematic diurnal and seasonal variability in flux

Fig. 1. Panel a shows absolute frequency weighted and normalized cospectra under unstable atmospheric conditions (L < 0) for sonic temperature (black dashed
line), carbon dioxide (CO2, red dots), and methane as measured by the closed path TGA (hollow green squares) and open path LI-7700 (hollow blue circles) analyzers
as a function of frequency (f). Also shown are cospectra for non-detrended (i.e. raw) data from the TGA (solid green triangles) and the LI-7700 (solid blue triangles).
Further, theoretical transfer functions were applied to the temperature cospectra to show the expected combined low- and high frequency attenuation for the TGA
(green dashed line), the LI-7700 (magenta dotted line), and the LI-7700 assuming zero sensor separation (blue dash-dotted line). The plotted (co)spectra are an
ensemble average of individual (n= 800) spectra screened for stationarity ratio < 0.3 and Obukhov-Length L < L n < 0. Panel b shows theoretical transfer functions
and median empirical transfer functions (symbols) with inter-quantile-range (error bars) for the TGA (green, squares) and LI-7700 (blue, circles) analyzers. Broken
lines denote theoretical transfer functions, similar to panel a.
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attenuation (Text S6) we chose to employ constant (year-round) spec-
tral correction factors for each greenhouse gas flux system.

3.2. Flux precision & uncertainty

3.2.1. Noise & detection limits
In agreement with previous studies (Peltola et al., 2013, 2014;

Rannik et al., 2016), instrumental noise contributions to flux un-
certainty were negligible, accounting for only 3% ± 3% (median ± 1

) of the measured covariances for the TGA and 1% ± 2% for the LI-
7700 (Fig. 3a). The typical absolute noise covariance was < 1 nmol
m−2 s−1 for the interquartile range (IQR), which is on the lower end of
values reported in a comprehensive inter-comparison study (Peltola
et al., 2014), and similar to noise levels reported for eddy flux using
cavity-ring-down spectrometers (G2311-f/G1301-f; Picarro Inc, Santa
Clara, CA, USA). The TGA exhibited more noise than the LI-7700 during
this study.

Flux detection limits were estimated following Wienhold et al.
(1995), with median values of approximately 3 ± 2 ( ± 1 ) nmol m−2

s−1 for both sensors (Fig. 3b). For comparison, the 1st percentile of all
measured fluxes was 2.0 nmol m−2 s−1 for the TGA and 2.8 nmol m−2

s−1 for the LI-7700. Both instruments thus yielded reliable CH4 mea-
surements for the flux magnitudes observed at this site. Peltola et al.
(2014) reported similar CH4 flux detection limits of 2–4 nmol m−2 s−1

in their assessment of 7 different gas analyzers.

3.2.2. Turbulent CH4 sampling errors from the Finkelstein & Sim, 2001 (F&
S) approach

The median fractional random errors for individual fluxes based on
the F&S approach were 17% ± 10% ( ± 1 ) for the TGA and 14%

± 10% for the LI-7700 (Fig. 3c). These corresponded to absolute errors
of 4 ± 3 nmol m−2 s−1 for the TGA and 3 ± 3 nmol m−2 s−1 for the
LI-7700. These flux errors are comparable to those from a spring-
summer field inter-comparison study (Peltola et al., 2013) over an
oligotrophic fen in Finland with reported median errors ranging from
1.0 nmol m−2 s−1 to 5.6 nmol m−2 s−1. Some site-to-site differences in
absolute random flux errors are to be expected, as such errors scale with
the measured flux (heteroscedasticity, Fig. S7). Fractional errors here
were in good agreement with the Peltola et al. (2013) study, with dis-
tributions of

w c
F generally peaking at less than 20% for both analyzers.

The F&S random errors are per definition strictly positive, as they
characterize the sampling error distribution, and in our study highly
skewed (here, skewness > 1.7) towards large values, i.e. following a
Burr type distribution.

Based on the statistical approaches presented here and above
(3.2.1) both EC systems provided flux measurements with comparable
precision, with the LI-7700 yielding slightly lower (by ≈1 nmol m−2

s−1 on average) random flux errors according to the F&S approach.

3.2.3. Differences between paired and repeated measurements
3.2.3.1. The paired differences (PD) approach. Differences in observed
fluxes followed a symmetrical distribution around a near-zero mean
(Fig. 4), which, as in earlier studies (Hollinger and Richardson, 2005;
Dragoni et al., 2007), followed a Laplace rather than a Gaussian
distribution. Fitted distributions (Section 2.6, Fig. 4) were described
by a median of 0.1 nmol m−2 s−1, a standard deviation ( ) of 8.5 nmol
m−2 s−1, and an IQR of 8.2 nmol m−2 s−1. The center 75% of observed
differences were within ±µ 1 . Skewness (0.32) was close to zero,
indicating an almost symmetric shape. Thus the distribution of paired
observations, reflecting the uncertainty due to the flux measurement

Fig. 2. Probability density distributions of relative flux attenua-
tion (combined low- and high-pass filtering) for the closed path
TGA (panel a), and open path LI-7700 (panel b) CH4 analyzers.
Results shown are based on theoretical (colored histograms) and
empirical transfer functions (gray histograms) for quality-ensured
3-hr periods during stable and unstable conditions.

Fig. 3. frequency distributions of derived errors for the TGA system (green) and the LI-7700 system (blue). Panel a shows the relative error from instrumental noise,
calculated as the second order auto-covariance (Eq. (8)). Panel b shows the fractional random flux error, estimated as the normalized standard deviation of the
covariance (Eq. (7)). Panel c shows the absolute value of the CH4 flux detection limit calculated as 1.96 times the standard deviation of the cross-covariance function
(Wienhold et al. 1995; Rannik et al., 2016).
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systems, indicated negligible bias (0.1 nmol m−2 s−1). This result is
encouraging since LI-7700 flux measurements also incorporated
uncertainty in the LE and H measurements (Eq. (3)). In the following
we use two different approaches for estimating the overall random flux
errors and assess the importance of the above derived uncertainties in
that broader context.

3.2.3.2. The Hollinger & Richardson, 2005 (H&R) approach. Estimated
errors from the H&R approach followed a double exponential
distribution with near zero means (Fig. 5), and can thus directly be
compared to the PD distribution. Inferred uncertainties were = 9 and
12 nmol m−2 s−1 for the LI-7700 and TGA, respectively, or 1.06× and
1.4× those from the PD approach. In other words, total flux uncertainty
(as estimated by H&R) was larger than the uncertainty due to the CH4

flux measurement systems (as estimated by PD). The H&R approach
might be overestimating total flux errors due to potential contributions
from non-stationarities (Hollinger & Richardson 2005). More
importantly, however, the H&R approach (like F&S) accounts for

sampling errors due to turbulent stochasticity, which were shown
previously to dominate uncertainty in turbulent transport (Rannik
et al., 2016).

Another way to compare the 2 error estimates relying on paired
measurements in time or on consecutive days (PD and H&R) is by
quantifying the resulting relative errors. Fig. 6 thus plots the H&R and
PD uncertainties normalized to the respective flux. We see that both
relative errors exhibited a decreasing trend with increasing flux mag-
nitude for < <F0 150CH4 nmol m−2 s−1. A similar trend was found for
CO2 flux errors with increasing CO2 uptake (Hollinger & Richardson,
2005). The largest relative errors were found for near-zero fluxes, ex-
cept in the case of the H&R estimates for the TGA which were largest for
apparent CH4 uptake. For fluxes > 150 nmol m−2 s−1 error estimates
tend to increase and become noisy, which (similar to negative fluxes)
was related to large variability within a small sample size in these bins.
Here we found that the flux measurement system uncertainty was
smaller than the random flux errors resulting from sampling errors and
footprint heterogeneity. Specifically PD errors were 0.79× (TGA) and

Fig. 4. Panel a shows the probability density distribution (gray histogram) of the 30-min CH4 flux differences between the TGA and the LI-7700, with corresponding
higher order statistics. Positive skewness denotes asymmetry towards larger TGA fluxes. A fitted Laplace distribution is overlaid (black line). Panel b shows the
cumulative distributions for the Laplace distribution (black solid line) with fitting coefficients. For comparison, a normal distribution with the same mean (μ) and
standard deviation ( ) is also plotted (dashed line). The overlaid box-whisker plot shows the IQR (gray box) and 1.5 times the IQR (error bars) for the measured
differences.

Fig. 5. shows the probability density distributions (gray histograms) of flux errors derived from the H&R method. Also shown are fitted Laplace distributions (black
lines) with mean (μ) and standard deviation ( ) for the TGA (panel a) and LI-7700 (panel b).
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0.90× (LI-7700) the H&R errors within the center 90 flux percentiles
( < <F10 90CH4 nmol m−2 s−1). For these typical fluxes uncertainty
estimates ranged from 6 to 41%, which is close to the 10 to 30% un-
certainty range in turbulent fluxes reported by Rannik et al. (2016). If
CH4 flux uncertainties need to be predicted for future studies, random
numbers can be drawn from the Laplace distribution parameters
(Figs. 4 and 5).

3.3. Flux correlations

Regressed fluxes between the two sensors could adequately be de-
scribed by a linear model (Fig. 7), with the largest residuals seen for
negative TGA fluxes. Approximately 70% of the negative observations
exceeded the corresponding flux detection limits but only 1% of these
were observed from both systems. It is therefore questionable whether
the measured negative net CH4 fluxes were valid observations. While a
soil CH4 sink is expected under aerated conditions (Kirschke et al.,
2013), the detected net CH4 uptake did not correlate with low water
table in this study. It is likely that these negative fluxes resulted from
measurement errors (e.g. incomplete trend removal from the TGA
measurements) that were not fully accounted for in quality control
procedures.

While ordinary least squares regression of CH4 fluxes measured with
the LI-7700 against those measured with the TGA yielded a slope and
intercept that were statistically not different from 1 and 0, respectively
(Fig. 7), geometric regression yielded a greater-than-unity slope
(1.08 ± 0.02, estimate ± 99% confidence interval) and a negative in-
tercept (−3.0 ± 0.8). Correlation analysis thus indicated a tendency
towards larger fluxes for the LI-7700 system, in contrast to the Laplace
distribution parameters described above. In the following we in-
vestigate whether this small bias persists in gap-filled annual flux es-
timates derived using different gap-filling strategies

3.4. Assessing annual CH4 budgets

For both the LI-7700 and TGA systems, only ∼24% of the flux ob-
servations over the 3.5-year experiment passed all quality-control cri-
teria. Hence, gap-filling strategies were needed to derive annual CH4

budgets. In the following, three different gap-filling approaches and
their associated uncertainties are presented.

3.4.1. Approach A: extrapolating 30-min fluxes to daily fluxes with
subsequent gap-filling based on observed soil temperature response

For this approach, we hypothesized that 30-min fluxes could be
reliably extrapolated to a daily value even if only a fraction of the 48
observations for the day was available. We found very little periodic
variability in either of the CH4 time series on an hourly timescale
(Fig. 8a, b) for both absolute and normalized fluxes (Fig. 8c, d). Rather,
most of the flux variability occurred on seasonal timescales. Similar
analyses for sensible heat fluxes are shown for comparison in Fig. S8.
We concluded that the CH4 fluxes at this site undergo only marginal
diurnal variations, which is consistent with prior findings at this site
(Shurpali et al., 1993; Olson et al., 2013) and at other peatland sites
where vegetation was not dominated by Phragmites ssp. (Jackowicz-
Korczyński et al., 2010; Peltola et al. 2013; Rinne et al., 2007, 2018).
Uncertainty analysis for the resulting extrapolations revealed little
sensitivity to the minimum observation threshold (sec. 2.5.1) and to
introduction of artificial gaps; resulting cumulative fluxes were con-
sistent to within 7%.

To gap-fill those days with no valid 30-min flux measurements, we
parameterized a response curve to soil temperatures; measurements
from multiple depths were evaluated for inclusion. Regression analysis
revealed the strongest correlation of fluxes with 10 cm soil tempera-
tures, with consistent variance across the observed soil temperature
range (Fig. 9). The relationship was fitted by a first-order exponential,
yielding Q10 (relative increase over a temperature difference of
10 °C) = 2.9 (95% confidence interval: 1.9–4.3), RMSE = 9.5 nmol
m−2 s−1, and R2 = 0.88. Our Q10 estimate is within the range for mi-
nerotrophic peat (1.5 to 6.4) reviewed in Segers (1998). It should be
noted that EC derived Q10 values show large inter-site and inter-annual
variability (e.g., 2.3–12; Jackowicz-Korczyński et al., 2010; Song et al.,
2015; Peltola et al., 2013; Rinne et al., 2018). Rinne et al. (2018) argue
that this spread in reported Q10 values might reflect non-temperature
confounders and differing depths for soil temperature measurements.

Fig. 6. The relationship between relative error estimates and CH4 fluxes for the
TGA (panel a) and the LI-7700 (panel b). Relative errors were estimated using
the H&R approach (grey area with dashed line), the PD approach (blue area
with dotted line). Lines denote medians, whereas areas denote the IQR of each
bin.

Fig. 7. scatter plot of 30-min CH4 fluxes as measured by the TGA and LI-7700
systems. Overlaid are ordinary least squares (OLS) regression lines (magenta
line with gray shaded 90% prediction bounds), and geometric (GEO) regression
line (cyan).
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Here, flux regressions with water table position were much more
complex than for soil temperature and did not follow a simple linear or
log-linear relationship. Similar findings were reported from other peat
moss vegetated wetlands (e.g. Rinne et al., 2007, 2018; Jackowicz-
Korczyński et al., 2010).

Gap-filled daily fluxes from approach A showed good agreement
between both EC systems (Fig. 10a, b). Over the course of 3.5 years,
cumulative fluxes were 62.9 g−CH4 m−2 (TGA) and 63.5 g−CH4 m−2

(LI-7700) with gap-filling uncertainties of 0.9 g−CH4 m−2 (TGA) and

1.1 g−CH4 m−2 (LI-7700) (Table 2). At 30-min time scales, approach A
yielded the worst performance of all gap-filling approaches tested here
(Table 2). This was expected as this approach is designed for daily ra-
ther than half-hourly prediction. However, approach A was also subject
to the largest positive bias errors resulting in the highest cumulative
flux estimates. These biases were caused by inter-annual variability in
soil temperature responses. Specifically 2015 was the least sensitive
(Q10 = 2.3) as compared to the other 3 years (Q10 ≈3.1), leading to
over predicted fluxes in 2015. Thus the simple one-variable predictor
model performed better for shorter (e.g. ≤ 1 year) time series. In the
following we investigate how more complex gap-filling approaches
with multiple predictors (ANN) and with moving time windows (MDS/
MDC) perform as compared to the baseline approach.

3.4.2. Approach B: artificial neural networks (ANN)
Our second gap-filling strategy employed ANNs, which enabled di-

rect gap-filling of the 30 min flux time series without prior extrapola-
tion to daily values. Here, the final training data sets included as ex-
planatory variables soil temperature, soil heat flux, water table
position, and atmospheric pressure. ANN derived budgets yielded cu-
mulative fluxes of 61.1 g−CH4 m−2 when applied to the TGA time
series, and 61.8 g−CH4 m−2 when applied to the LI-7700. The coef-
ficient of determination for the ANN predictions against withheld CH4

flux data was R2 = 0.83 (TGA) and R2 = 0.85 (LI-7700) with improved
forecasting performance and smaller bias compared to the baseline
(approach A): MAE ≤ 8.9 nmol m−2 s−1 and RMSE ≤ 11.5 nmol m−2

s−1 (Table 2). We attribute this improvement in part to the fact that the
ANN was able to resolve sub-daily variations of CH4 emissions. ANN
derived budgets were ∼3% smaller than with the baseline approach
presented above (Tables 2 and 3).

Fig. 8. Panel a and b summarize the temporal variance in CH4 fluxes binned by half hour of the day (y-axis) and month of the year (x-axis). The color scale
corresponds to the bin average CH4 fluxes (z-axis and color scale) for the TGA (panel a) and the LI-7700 (panel b). Also shown are variations in fluxes normalized by
the mean flux (coefficient of variation) for the TGA (panel c) and for the LI-7700 (panel d). Contours and surface colors are color coded by flux magnitude (panel a,b)
and by the coefficient of variation (panel c,d).

Fig. 9. scatter plot of daily CH4 fluxes versus soil temperature (10 cm) for the
TGA (green) and the LI-7700 (blue) datasets. Also shown is the best fit to a 1-
term exponential =y aebx (black solid line), with 90% prediction bounds (black
dashed lines). Prediction bounds were [12.54, 12.81 nmol m−2 s-1] for a, and
[0.10, 0.11 °C] for b.
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3.4.3. Approach C: Marginal distribution sampling (MDS) and mean
diurnal course (MDC)

The MDS and the MDC approaches yielded cumulative fluxes of
62.3 g−CH4 m−2, and 62.4 g−CH4 m−2, respectively, when applied to
the TGA time series, and 62.3 g−CH4 m−2 and 61.8 g−CH4 m−2 when
applied to the LI-7700 time series. Thus, they fell in between the ANN
budgets of 61.1–61.8 g-CH4 m−2 and the Tsoil derived budgets of
62.9–63.5 g-CH4 m−2. Accuracy and uncertainty were comparable
between the MDS and MDC approaches, and overall performance was
similar to that of ANN.

Over the 3.5 year period, the cumulative flux budgets derived across
the four different gap-filling approaches and two different CH4 flux

systems agreed remarkably well - to within 2.4 g−CH4 m−2, or 4% of
the mean cumulative flux. Peltola et al. (2013) found similarly close
agreement for a seasonal multi-sensor CH4 study (4% over ≈180 days),
and Goodrich et al. (2016) report 8% agreement between two CH4 flux
systems for a year-long campaign. In a 2 year study, Hommeltenberg
et al. (2014) found ∼10% sensitivity of annual CH4 flux estimates to
varying gap-filling approaches.

3.5. Annual flux uncertainty and interannual variability in CH4 emissions

Hydro-meteorological conditions at the site varied strongly between
the years 2015–2017. For instance, in 2015 the lowest peat

Fig. 10. Panel a shows an overview of
3.5 years of CH4 flux measurements at Bog
Lake Fen from 01/2015 (J15) to 08/2018
(S18). Measured and extrapolated daily fluxes
for the TGA (green) and LI-7700 (blue) are
shown together with associated extrapolation
errors (error bars). Also shown are fluxes
parameterized by soil temperature (red line)
with associated uncertainty (red shaded area),
and gap-filled fluxes based on ANN for the TGA
(black dots) and the LI-7700 (cyan dots). Panel
b shows cumulative fluxes for the TGA (green
line) and LI-7700 (blue line). Shaded areas
show the range of gap-filled budgets derived
from all 4 gap-filling approaches evaluated
here. The insert in panel b shows yearly CH4

emissions (bar plots) and associated flux un-
certainties (error bars). Superscript letters de-
note unique years with flux ± uncertainty
different from other years: b > a, ab is not
statistically distinguishable from either a or b.
Panel c shows measured soil temperature
(10 cm, black line) and water table position
(blue line).

Table 2
Overview of gap-filled cumulative CH4 flux budgets over 1307 days. Accuracy of filled data was evaluated on half-hourly observational data withheld from gap-filling
(Section 2.5) and is presented as the mean absolute error (MAE), root mean square error (RMSE) and the bias error (BE). Gap-fill ranges represent the ensemble of
budgets derived from bootstrapped datasets using the respective gap-filling method.

gap-fill method* CH4 analyzer MAE RMSE BE R2 cumulative flux gap-fill range relative gap-fill unc.
[nmol m−2 s-1] [nmol m−2 s-1] [nmol m−2 s−1] [g-CH4 m−2] [g-CH4 m−2] [%]

Tsoil (A) TGA 10.7 15.3 0.26 0.67 62.9 [62.5, 63.4] 1
ANN (B) TGA 8.9 11.5 0.20 0.83 61.1 [60.0, 62.9] 5
MDS (C) TGA 9.4 12.6 0.03 0.79 62.3 [61.4, 63.1] 3
MDC (C) TGA 10 13.8 −0.10 0.76 62.4 [61.6, 63.1] 2
Tsoil (A) LI-7700 9.9 12.4 0.23 0.75 63.5 [62.9, 64.0] 2
ANN (B) LI-7700 7.4 8.4 −0.10 0.85 61.8 [61.0, 62.3] 2
MDS (C) LI-7700 6.2 8.3 0.26 0.85 62.3 [61.8, 62.7] 1
MDC (C) LI-7700 6.4 8.4 0.07 0.84 61.8 [61.2, 62.2] 2

* Fluxes were gap-filled using a soil temperature response model (Tsoil), artificial neural networks (ANN), marginal distribution sampling (MDS), and mean
diurnal cycles (MDC). Details are provided in Section 2.5.
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temperatures and latest spring thaw onset were recorded (Fig. 11).
Assessing the uncertainty in annual flux products arising from mea-
surement and gap-filling errors is important, as these may exceed the
inferred interannual variability. Our results show that cumulative
emissions increased steadily from 2015 to 2017. In the case of the TGA
time series, only 2015 showed a significant difference from the other
2 years (Table 3; Fig. 10b insert), whereas 2016 and 2017 were statis-
tically indistinguishable. In case of the LI-7700, uncertainties were
largest in 2015 (due to frequent gaps and hence high gap-filling errors),
which as a result was only statistically distinguishable from 2017 (and
not 2016). Based on the year-by-year analyses presented here (Table 3)
we found the uncertainty of annual fluxes to range from 1.4 to
2.5 g−CH4 m−2 yr−1 (7 to 17% of measured annual emissions).

Uncertainties in annual CH4 wetland flux estimates have been

reported previously and are summarized in Table 4. The literature
shows that uncertainties in annual fluxes have been consistently esti-
mated at < 33% with a median of 11%, with the exception of one
boreal peatland site with near zero fluxes (Wang et al., 2017).

4. Recommendations and implications for CH4 flux measurements
and processing

Our results indicate that reliable CH4 flux estimates can be achieved
with close agreement between independent flux measurement systems.
This suggests that a reliable global database of EC-derived CH4 flux
products can be obtained via systematic and standardized processing.
To this end, we make the following recommendations and conclusions
based on our data and analyses:

1 Flux underestimation associated with covariance attenuation for
typical wetland CH4 EC systems is on the order of 10 to 25%, and
thus needs to be appropriately accounted for. We achieved con-
sistent results between the empirical approach and theoretical ap-
proaches to within 4% of annual fluxes. For our data, the empirical
approach (Aubinet et al., 1999; Foken et al., 2012), yielded the
closest agreement between the EC systems evaluated here. After
applying spectral corrections, remaining systematic error was esti-
mated at < 2% of annual fluxes, and thus much smaller than
random flux errors and gap-filling errors. Despite the substantial
corrections required for the open-path LI-7700 measurements, the
resulting final fluxes agreed well (on average ± 0.05 nmol m−2

s−1) with those from the closed-path TGA system, demonstrating
that the applied corrections are scientifically sound.

2 Based on statistical analysis of CH4 time series, both the closed- and
open-path systems provided a sufficient accuracy and precision to
reliably characterize flux magnitudes and their predominant modes
of variability at our study site. Estimated turbulent sampling errors
were similar between both systems with a mode at ≈20% of mea-
sured covariances Median fluxes were ˜1 order of magnitude above
estimated flux detection limits 3 ± 2 ( ± 1 ) nmol m−2 s−1. Thus,
either open- or closed path EC systems can be suitably used de-
pending on site characteristics and needs.

3 Random flux error estimates derived from differences between
paired or repeated measurements in time suggested that the errors
of the flux measurement system and flux calculation were smaller
than errors due to the stochasticity of turbulent transport and that
resulting from flux footprint heterogeneity. Thus it is feasible to
merge CH4 flux observations made with different measurement
systems within global syntheses and interpret trends and variability
among sites or years within the limitations of flux uncertainty de-
rived from a single eddy covariance system. If CH4 flux uncertainties

Table 3
Interannual variability in annual CH4 emissions and associated uncertainty ranges.

year CH4 Analyzer median** gap-fill range*** gap-fill uncertainty total uncertainty* fraction gaps

[g-CH4 m−2 yr−1] [g-CH4 m−2 yr−1] [%] [g-CH4 m−2 yr−1] [%] [%]

2015 TGA 14.3 a [13.7, 15.1] 9 1.7 12 78
LI-7700 14.4 a [13.8, 15.4] 11 2.5 17 85

2016 TGA 19 b [18.7, 19.4] 4 1.4 7 80
LI-7700 18.4 ab [17.5, 19.0] 8 1.6 9 75

2017 TGA 19.9 b [19.6, 20.7] 5 1.6 8 72
LI-7700 20.1 b [19.7, 20.8] 6 1.8 9 70

* Total uncertainties were estimated by standard error propagation of the gap-fill and the random flux errors (Section 2.6).
** Superscript letters denote unique years with flux ± uncertainty different from other years: b > a, ab is not statistically distinguishable from either a or b.
*** Combining all 4 gap-filling approaches.

Fig. 11. Annual time series of daily soil temperature (panel a) and surface al-
bedo (panel b), for 2015 (dark blue), 2016 (light blue), 2017 (green), and 2018
(orange).
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need to be predicted, fitted Laplace error distributions from this
study can be used for random number generation.

4 We find that the CH4 flux time series can be appropriately gap-filled
using regression models, look-up tables, or machine learning ap-
proaches. The last two approaches performed the best in this study.
Since established and publicly available tools exist for gap-filling
flux products based on look up tables (Wutzler et al., 2018) we re-
commend this approach to facilitate transparency and reproduci-
bility for synthesis purposes. However, for time series with long gaps
(e.g. multiple months) machine learning approaches or simple re-
gression models are advised. The performance of gap-filling tech-
niques should be re-evaluated in future studies focusing on long
term (e.g., decadal) flux time series.

5 We recommend estimating gap-filling uncertainty by generating an
ensemble of bootstrapped time series with artificial data gaps.
Despite the overall strong agreement between the gap-filled budgets
obtained in this study, gap-filling uncertainties (up to 11% of the
annual flux) were found to be on the same order of magnitude as the
year-to-year emission differences.

6 The total uncertainty in annual CH4 emissions is ≤17% for the
dataset examined here. For a typical sub-boreal wetland flux of
about 15 gC-CH4 m2, this yields an uncertainty range of ≈2.6 gC-
CH4 m−2. Uncertainties need to be rigorously accounted for when
assessing the carbon balance of peatland ecosystems, and when in-
terpreting site-to-site or year-to-year variability in CH4 emissions.
Here, we observed that estimated annual emissions in 2017 were
statistically distinguishable from the previous two years.
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