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Central to the problem of biological invasions, human activities

introduce species beyond their native ranges and participate in

their subsequent spread. Understanding human-mediated

dispersal is therefore crucial for both predicting and preventing

invasions. Here, we show that decomposing human-mediated

dispersal into three temporal phases: departure, transport and

arrival, allows to understand how the characteristics of human

activities and the biological traits of species influence each

phase of the dispersal process, and ultimately govern invasion

pathways in insects. Integrating these precise mechanisms into

future invasion models should increase their realism and

generalization for any potential insect invader. Moreover,

understanding these mechanisms can provide insight into why

some invasive insects are more widely distributed than others,

and to estimate risks posed by species that have not yet been

introduced.

Addresses
1Department of Ecology and Evolution, University of Lausanne,

1015 Lausanne, Switzerland
2US Forest Service Northern Research Station, Morgantown, WV 26505,

USA
3Czech University of Life Sciences Prague, Faculty of Forestry and

Wood Sciences, Praha 6 - Suchdol, CZ 165 21, Czech Republic

Corresponding authors: Gippet, Jérôme MW (jerome.gippet@unil.ch),

Bertelsmeier, Cleo (cleo.bertelsmeier@unil.ch)

Current Opinion in Insect Science 2019, 35:96–102

This review comes from a themed issue on Global change biology

Edited by Arnaud Sentis and Nicolas Desneux

https://doi.org/10.1016/j.cois.2019.07.005

2214-5745/ã 2019 Elsevier Inc. All rights reserved.

Introduction
All species are restricted in their geographical ranges.

These limits are determined by the species’ adaptations

to the environment within their range, interspecific inter-

actions and dispersal barriers [1]. Over the last few

centuries however, humans have increasingly facilitated

species’ movements beyond their historical ranges [2,3]

and the rate of new species introductions continues to rise

due to the ongoing globalization of trade and travel [4,5].

Some introduced species are able to establish and become
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invasive, that is, they cause ecological or economic

impacts in their introduced range [6]. These alien inva-

sive species are the second most common cause of recent

species extinctions, after biological resource usage [7]. In

terrestrial ecosystems, insects are generally the most

common and damaging group of animal invaders [8].

They cause a range of impacts on biodiversity, ecosystem

services (such as nutrient cycling and carbon storage), or

human and animal health, generating economic costs of at

least 70 billion US$ annually [8,9]. Because of their small

size, insects are easily transported by accident through

human activities [10�]. In addition, they are sometimes

introduced intentionally to serve as biological control

agents, food or even as pets [11�].

Human-mediated dispersal is increasingly recognized as a

key issue in invasion science [12,13��]. In numerous

recent studies, genetic analyses have been used to recon-

struct the global spread of many invasive insects [e.g.

14,15]. Most of these studies have found that individual

histories of insect invasions tend to be complex and

include frequent jump dispersal, multiple introduction

events and back-introductions into native ranges [16].

Interestingly, introduced populations often become

sources of new introductions via secondary introductions,

a phenomenon termed the ‘bridgehead effect’

[15,17�,18]. This is a positive feed-back process whereby

invasions generate new invasions and significantly con-

tribute to rising invasion rates worldwide [19]. Yet, new

invasions do not occur with equal probability across space

and are linked to the intensity of human activities. It has

been shown that countries with higher economic activity

[20], population density [21] or human footprint [22] tend

to receive a greater number of invasive species. However,

proxies of human activities are typically general and have

often been found to be poor predictors of new invasions

[23]. Thorough knowledge of human-mediated transport

is necessary to understand the precise mechanisms

involved in the dispersal process and predict future

invasion risk.

To achieve this, we propose distinguishing between three

temporal phases in the human-mediated dispersal process

(departure, transport and arrival), as these phases

uniquely affect spread dynamics and the geography of

invasions [13��,24]. Recognizing each of these phases is

important for three reasons. First, it facilitates identifying

the characteristics of different human activities that are

key drivers of each dispersal phase. Second, it aids under-

standing of how human-mediated dispersal filters species
www.sciencedirect.com
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based on their biological traits. Finally, it provides a basis

for the prediction of invasion risk and the allocation of

resources for managing the dispersal process.

Three phases in the human-mediated
dispersal of insects
Like natural dispersal [25,26], human-mediated dispersal

can be decomposed into three phases: departure, trans-

port and arrival ([13��]; Figure 1). Departure covers the

initiation of the dispersal process, for example, when a

host substrate containing insects is loaded onto a transport

vector, when insects attach to a potential transport vector

or when insects are captured for shipping. Transport is the

movement phase of the dispersal process; it can be

performed by any type of vector, for example cars, trains,

boats or airplanes. Arrival is the final phase of the dispersal

process, when insects become disassociated with the

transport vector, when they are released (intentionally

or not), or when they escape captivity. Each phase is

influenced by human activities that vary enormously in

their frequency, spatial scale and direction.
Figure 1
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Themannerbywhichhumanactivitiesdrivethethreephases

of the dispersal process also depends on the pathway through

which insects are dispersed [27]. The human activities dis-

persing insects can be classified into three types of pathways:

contamination, hitchhiking and harvesting (Figure 1). The

contamination pathway corresponds to the transportation of a

commodity contaminated by insects (eggs, larvae or adults)

either because the commodity is the insect’s natural host (e.g.

plants, mammals) or its immediate environment (e.g. soil,

water) [10�].Forexample, invasivefireants (Solenopsis invicta)
were shown to be dispersed during road maintenance by the

transportofsoil frominvadeddepots tomaintenancesites(i.e.

road shoulders) [28]. In the hitchhiking pathway, insects

actively attach to an object not directly related to their natural

environment (e.g. shipping container, car) [10�]. For instance,

gypsy moths sometimes lay eggs on cars and trucks that are

then transported while the vehicles travel, and the larvae

eventually detach from these vectors after hatching [29]. The

harvesting pathway consists of the intentional  capture of

insects by humans for some, often commercial, purpose

(e.g. pet trade, biological control) [11�]. This last pathway
ent to or within
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leads to introductions either by intentional release or subse-

quent escape from captivity [2] (Figure 1). European bum-

blebees (Bombus terrestris) have been harvested and reared

commercially for pollination purposes. They were directly

released into the wild in New Zealand and escaped from

glasshouses in Japan, two areas where they are now invasive

[30].

Importantly, the characteristics of how humans travel or

transport commodities (such as the distance travelled, the

type and amount of transported commodities; Table 1)

and the biological traits of species selectively transported

by human-mediated dispersal (such as morphology, life

histories or behavior; Table 2) depend both on the

dispersal phase (i.e. departure, transport and arrival)

and the dispersal pathway (i.e. contamination, hitchhik-

ing or harvesting) [13��].

Characteristics of human activities
Departure phase. The key aspect of this dispersal phase is

the number of individuals of a species that leave their native

(or invasive) range. This population level of departure

determines propagule pressure, a central feature of invasion

success [31]. The quantity of transported commodities and

traffic volume are important for the contamination and

hitchhiking pathways, respectively, because they affect

the frequency of dispersal events (propagule numbers),

and the number of individuals transported per dispersal

event (propagule size) [31,32�]. In the harvesting pathway,
Table 1
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the frequency of departure typically depends on commercial

factors such as costumers’ demand or harvesting cost [11�].

Transport phase. The distance of human-mediated dis-

persal can vary strongly with different human activities.

This is especially important for the contamination and

harvesting pathways where species are less likely to inter-

rupt the transport phase by detaching during travel, in

contrast with the hitchhiking pathway [13��]. The structure

of the different transport networks also influences the

direction of dispersal [33,34], leading to a higher propagule

pressure in the most connected areas [35�]. The properties

of transportation networks, such as their connectedness and

the existence of highly connected transportation hubs are

potential drivers of bridgehead effects [19]. Finally, the

probability of survival of insects during transport depends

on factors such as the duration of the transport, exposure to

extreme temperatures or limited access to food and water

[36��]. These external conditions are more relevant during

accidental transport rather than in the harvesting pathway

where transport is intentional and designed to keep the

species alive. However, in the contamination pathway,

insects are often transported with hosts which may provide

ideal conditions for surviving transport over long distances.

Arrival phase. Arrival is generally the most studied phase

of human-mediated dispersal in insects because the

introduction of species into a new location is typically

the only phase of human-mediated dispersal easily
diated dispersal in each pathway. Associated references indicate
respond to studies on taxa other than insects
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Table 2

Species traits and demographic parameters can be under selection in each phase of human-mediated dispersal in each pathway.

Associated references indicate papers that mention the relationship. References with an asterisk correspond to studies on taxa other
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observed [37]. In the harvesting pathway, the quality of

containment (e.g. the facilities and boxes in which insects

are kept or reared) will influence the probability of

escaping captivity [38]. In the two other pathways, quar-

antine requirements and phytosanitary treatments imple-

mented at ports of entry (e.g. fumigation, cold/heat treat-

ments, irradiation) are often implemented to reduce the

insects’ probability of surviving the arrival phase [39].

Characteristics of human-mediated dispersal can be mod-

eled to predict the associated risks, and these predictions

gain realism when they explicitly consider different

parameters involved in each dispersal phase [40,41].

Focusing on the characteristics of human activities could

be utilized in generalizable models that can be adapted

for a wide range of human activities and various types of

insects dispersed by humans through the same pathway

[42]. This is important because building a specific human-

mediated dispersal model for individual species is both

challenging and time-consuming [42].

Species’ traits and demography
Thedifferentphasesofhuman-mediateddispersalalso favor

different sets of biological traits. In plants, traits such as large

and heavy seeds are favored in the harvesting pathway while

the contamination and hitchhiking pathways favor small

seed size [43]. Less is known about the traits facilitating

transport by insects, though it is clear that species that have
www.sciencedirect.com 
historically invaded various world regions are a non-random

sample of the global species pools [36��,44,45]. Small sized

insects are less likely to be observed and therefore more

likely to contaminate material in shipments. For example,

small sap-feeding insects are commonly transported with

imported live plants [46]. Attraction to light may facilitate

association with ships and other transport vectors and thus

facilitate transport of insects in the hitchhiking pathway [47].

Departure phase. A high population size and density should

increase the probability of being collected accidentally or

voluntarily by humans, and thereby increase the frequency of

departure [48�,49]. These demographic traits are likely

selected for in all three pathways. In the harvesting pathway,

insect characteristics such as large body size and fast growth

rate increase theprobabilityofbeingharvested byhumans for

both the pet trade, and human and pet food [11�]. In the

contamination pathway, a strong association with plant spe-

cies is likely favored, given that plants and parts of plants (e.g.

seeds, roots, fruits) are economically important and a fre-

quently transported commodity [46]. This association is the

main hypothesis for why Hemiptera and other sap-feeding

species are overrepresented among introduced insects [50].

Transport phase. Traits such as higher resistance to stress-

ful conditions such as starvation, dehydration or exposure

to toxins during transport are important for surviving the

transport phase [36��,51,52]. These traits are likely to be
Current Opinion in Insect Science 2019, 35:96–102
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especially favored in the contamination and hitchhiking

pathways. Insects that have an extended sessile dormant

stage (e.g. diapause or estivation) may be more success-

fully transported in the hitchhiking pathway. Such traits

may not be necessary in the contamination or harvesting

pathway as they provide life-sustaining conditions.

Arrival phase. In contamination and hitchhiking pathways,

imported commodities and arriving vectors may be subjected

tophytosanitary treatmentsor inspectionatports [53].Behav-

ior and physiology of some species may make them more

resistant to phytosanitary treatments [54]. Small body size

(and thus poor detectability) can increase the probability of

insects evading detection [46,55]. In the harvesting pathway,

small body size, flight abilities or high levels of exploratory

behavior might increase the probability of escaping captivity.

The concept that invasions filter species based on their

traits is not new [56]. However, studies of differences in

traits between native and invasive species (or popula-

tions) generally focus on ecological filtering after human-

mediated dispersal, that is, during the establishment

stage. For example, successful invaders may have a higher

competitive ability than native species (or populations)

[57–60] or be pre-adapted to new environmental condi-

tions in their introduced range [58,61,62]. Only recently

has human-mediated dispersal started to be discussed as

an ecological filtering force or selective pressure that

might select species or phenotypes based on their pro-

pensity to disperse by human activities [13��,36��,63].
Therefore, improving our knowledge on traits favoring

species during each dispersal phase is crucial for under-

standing why some insects are more widely distributed

than others [5,64] or for predicting invasion risks of

species that may be introduced in the future [40,48�].

Conclusion
In this short review, we do not aim to provide an exhaus-

tive list of factors influencing human-mediated dispersal

in insects. Rather, we hope to stimulate further theoreti-

cal and experimental research considering phases and

pathways as distinct selective filters acting before the

establishment and spread of invasive populations. Pre-

vention has been recommended as generally the most

efficient approach for managing invasions [65]. Thus,

improved knowledge of the drivers of human-mediated

dispersal is essential for identifying some of the best

options for preventing human activities from dispersing

insects at all spatial scales.
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travellers: are ecologically harmful alien species associated
with particular introduction pathways? NeoBiota 2017, 32:1-
20.

28. King JR, Tschinkel WR, Ross KG: A case study of human
exacerbation of the invasive species problem: transport and
establishment of polygyne fire ants in Tallahassee, Florida,
USA. Biol Invasions 2008, 11:373-377.

29. McFadden MW, McManus ME: An insect out of control? The
potential for spread and establishment of the gypsy moth in
new forest areas in the United States. In Forest Insect Guilds:
Patterns of Interaction with Host Trees. Edited by Baranchikov YN,
Mattson WJ, Hain FP, Payne TL. 1991:172-186. USDA For. Serv.
Gen. Tech. Rep. NE 153.

30. Inari N, Nagamitsu T, Kenta T, Goka K, Hiura T: Spatial and
temporal pattern of introduced Bombus terrestris abundance
in Hokkaido, Japan, and its potential impact on native
bumblebees. Popul Ecol 2005, 47:77-82.

31. Simberloff D: The role of propagule pressure in biological
invasions. Annu Rev Ecol Syst 2009, 40:81-102.

32.
�

Eritja R, Palmer JRB, Roiz D, Sanpera-Calbet I, Bartumeus F:
Direct evidence of adult Aedes albopictus dispersal by car. Sci
Rep 2017, 7:14399.
www.sciencedirect.com 
The authors use a sampling study to verify the transport of adult tiger
mosquitos (Aedes albopictus) in cars, and estimate the frequency of
transport events. In combination with citizen science data on mosquito
prevalence, they use a Bayesian model incorporating commuting pat-
terns to model inter-regional flows of tiger mosquitoes in Spain and
identify key transport hubs.

33. Banks NC, Paini DR, Bayliss KL, Hodda M: The role of global
trade and transport network topology in the human-mediated
dispersal of alien species. Ecol Lett 2015, 18:188-199.

34. Chapman D, Purse BV, Roy HE, Bullock JM: Global trade
networks determine the distribution of invasive non-native
species. Glob Ecol Biogeogr 2017, 26:907-917.

35.
�

Morel-Journel T, Assa CR, Mailleret L, Vercken E: It’s all about
connections: hubs and invasion in habitat networks. Ecol Lett
2018, 22:313-321.

This paper demonstrates the importance of connectivity and species
demography for spread dynamics in a dispersal network, by coupling
computer simulations and microcosms experiments to reproduce inva-
sions by the parasitoid wasp Trichogramma chilonis.

36.
��

Renault D, Laparie M, McCauley SJ, Bonte D: Environmental
adaptations, ecological filtering, and dispersal central to
insect invasions. Annu Rev Entomol 2018, 63:345-368.

A general review addressing the importance of environmental filtering
throughout the invasion process. The authors focused their analysis on
the role of dispersal abilities and stress resistance in invasion success,
and raise questions about how the potential interactions between these
two selective forces could either enhance spread dynamics or lead to
trade-offs between a species ability for natural dispersal or for dispersal
with humans.

37. Puth LM, Post DM: Studying invasion: have we missed the
boat? Ecol Lett 2005, 8:715-721.

38. American Committee of Medical Entomology: American society
of tropical medicine and hygiene: arthropod containment
guidelines, version 3.2. Vector Borne Zoonotic Dis 2019, 19:152-
173.

39. Allen E, Noseworthy M, Ormsby M: Phytosanitary measures to
reduce the movement of forest pests with the international
trade of wood products. Biol invasions 2017, 19:3365-3376.

40. Cope RC, Ross JV, Wittmann TA, Watts MJ, Cassey P: Predicting
the risk of biological invasions using environmental similarity
and transport network connectedness. Risk Anal 2019, 39:35-
53.

41. Lustig A, James A, Anderson D, Plank M: Pest control at a
regional scale: identifying key criteria using a spatially explicit,
agent-based model. J Appl Ecol 2019, 56:1515-1527.

42. Savage D, Renton M: Requirements, design and
implementation of a general model of biological invasion. Ecol
Modell 2014, 272:394-409.

43. von der Lippe M, Kowarik I: Interactions between propagule
pressure and seed traits shape human-mediated seed
dispersal along roads. Perspect Plant Ecol Evol Syst 2012,
14:123-130.

44. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM,
Slippers B: Increasing numbers and intercontinental spread of
invasive insects on eucalypts. Biol Invasions 2016, 18:921-933.

45. Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL:
Global compositional variation among native and non-native
regional insect assemblages emphasizes the importance of
pathways. Biol Invasions 2016, 18:893-905.

46. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO:
Live plant imports: the major pathway for forest insect and
pathogen invasions of the US. Front Ecol Environ 2012, 10:135-
143.

47. Wallner WE, Humble LM, Levin RE, Baranchikov YN, Carde RT:
Response of adult lymantriid moths to illumination devices in
the Russian Far East. J Econ Entomol 1995, 88:337-342.

48.
�

Liebhold AM, Brockerhoff EG, Kimberley M: Depletion of
heterogeneous source species pools predicts future invasion
rates. J Appl Ecol 2017, 54:1968-1977.
Current Opinion in Insect Science 2019, 35:96–102

http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0075
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0075
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0075
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0075
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0080
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0080
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0080
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0080
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0085
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0085
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0085
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0090
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0090
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0090
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0090
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0090
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0095
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0095
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0095
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0100
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0100
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0100
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0105
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0105
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0105
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0105
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0110
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0110
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0110
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0115
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0115
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0115
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0120
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0120
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0125
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0125
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0125
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0130
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0130
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0130
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0135
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0135
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0135
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0135
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0135
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0140
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0140
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0140
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0140
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0145
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0150
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0155
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0160
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0160
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0160
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0165
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0170
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0175
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0180
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0185
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0185
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0190
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0190
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0190
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0190
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0195
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0200
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0200
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0200
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0200
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0205
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0210
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0215
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0220
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0220
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0220
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0225
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0230
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0235
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0240
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0240
http://refhub.elsevier.com/S2214-5745(18)30188-3/sbref0240


102 Global change biology
Using a mechanistic model of bark beetle (Scolytinae) invasions, the
authors find that despite the depletion of species source pools, the
establishment of new species is likely to continue due to increased import
rates. The paper demonstrates that the understanding of key underlying
mechanisms in the invasion process is crucial for predicting future
invasions.
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