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— The spread of invasive species can have far-reaching environmental

and ecological consequences. Understanding invasion spread patterns

and the underlying process driving invasions are key to predicting and

managing invasions.

— We combine a set of statistical methods in a novel way to characterize local

spread properties and demonstrate their application using simulated and

historical data on invasive insects. Our method uses a Gaussian process fit

to the surface of waiting times to invasion in order to characterize the

vector field of spread.

— Using this method, we estimate with statistical uncertainties the speed

and direction of spread at each location. Simulations from a stratified

diffusion model verify the accuracy of our method.

— We show how we may link local rates of spread to environmental covari-

ates for two case studies: the spread of the gypsy moth (Lymantria dispar),

and hemlock woolly adelgid (Adelges tsugae) in North America. We

provide an R-package that automates the calculations for any spatially

referenced waiting time data.
1. Introduction
When a non-native species successfully establishes in an exotic environment it

enters the spread phase of biological invasions during which the species

expands its range into suitable habitat [1]. Ecological theory has shown that

the speed of invasion spread is a joint function of the dispersal rate and the

population growth rate of the invading species [2,3]; any habitat characteristic

that influences population growth or dispersal can thus influence the rate of

spread. Rates of spread may vary considerably among species and for a

given species, spread rates may vary across heterogeneous landscapes [4,5].

Understanding the mechanisms causing heterogeneity in the rate of invasion

spread is key to predicting future rates of spread and identifying important

locations for management.

In this work, we propose automated statistical methods for estimating local

speed and dominant direction of spread along invasion fronts. Our approach

can be applied to identify statistically significant environmental and geographi-

cal determinants of local invasion rates and likely epicentra of invasion

resulting from long-range introductions.

In addition to environmentally driven heterogeneity in rates of spread, there

is considerable variation among species in the extent to which invasion spread is

discontinuous ( jumps). Spread of some species occurs via continuous expansion

of the range into contiguous areas. For example, the North American muskrat,

Ondatra zibethica, invaded central Europe from 1905 to 1927 via gradual expan-

sion of its range in concentric circles [2]. The spread of other species is highly

discontinuous, characterized by a pattern referred to as stratified diffusion [6];

following initial establishment, expansion may happen with long-range jumps
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into isolated uninvaded areas, founding new colonies that

expand and eventually coalesce to form a contiguously

invaded zone. This pattern is observed in many species of

invading organisms, such as invasion of North America by

the Argentine ant, Linepithema humile [7] and the gypsy

moth, Lymantria dispar [8].

Quantifying the spread of non-native species and relating

invasion speed to habitat heterogeneity is important for pre-

dicting and managing biological invasions. Several methods

have been developed for studying processes that control

spread rates of species. Species distribution models [9–13]

are widely used to predict distributions of invasive species,

for example, by using generalized linear models or genera-

lized additive models. A variety of methods [14–20]

combine dynamic equations within the framework of a hier-

archical Bayesian model. These novel approaches embed

dynamic equations within statistical models, allowing for a

scientific interpretation of their fitted models. The above

work has largely used spatial counts or presence–absence

disease data; by contrast, the data we use is the time of first

appearance of an invasive species.

We note that there are numerous other ways to model

data on the spread of invasive species, including data in the

form of point-level spatial data (cf. [21,22]).

Several methods have been developed for measuring

spread based upon fitting range size to time since establish-

ment or estimating spread by directly quantifying

displacement of range boundaries over time [23–25]. These

methods are generally well-suited for quantifying average

spread range and temporal variation therein, but they are

limited in their ability to quantify local spread rates and their

relation to local habitat characteristics. Also, these methods

are generally designed to quantify spread as a continuous pro-

cess; identification of long-range jumps in stratified dispersal is

usually done visually in a non-automated fashion. These gaps

in existing methodology provide our motivation for combining

recent developments in spatial statistics methodology in order

to provide an automated approach to estimate local speed

and direction of spread. Here, our focus is on constructing a

spatial surface that describes the direction and speed of

spread of an invasive species. Our method can help researchers

learn about characteristics of the spread of the invasive species,

including both local speed and direction as well as long range.

We take advantage of recent statistical theory on the estimation

of spatial gradients. We test our methods on simulated data

generated from a stratified diffusion model and apply them

to two detailed case studies of biological invasions, the histori-

cal spread of the gypsy moth and the hemlock woolly adelgid,

Adelges tsugae, in North America.
2. Data
(a) Gypsy moth
Native to Europe and Asia, the gypsy moth was accidentally

introduced from France to Massachusetts in the late 1860s

[26], it has since spread throughout much of the northeastern

USA. The gypsy moth is now established in a large area com-

posed of the North Atlantic states and bordering Canadian

provinces, as well as a second focus resulting from a

long-range jump event to Michigan around 1980 [5,27,28].

The invasion of the gypsy moth across North America has

been slow compared to the rate of spread of many other alien
species [29]. Mean spread was estimated at 21 km per year

from 1960 to 1990 [27]. The relatively slow rate of spread

can be attributed, in part, to the fact that females of North

America populations are flightless. Gypsy moth populations

spread by short-range windborne dispersal of 1st instar

larvae through a process known as ‘ballooning’ [30]. Egg

masses are also accidentally transported across longer dis-

tances on wood or human-made objects, forming new

colonies ahead of the invasion front and resulting in a pattern

of stratified diffusion [8].

The full invasion history of the gypsy moth in the USA is

reflected in the year of government designation of gypsy

moth quarantine by county. County-level quarantine records

for the gypsy moth are maintained by the United States

Department of Agriculture (US Code of Federal Regulations,

Title 7, ch. III, §301.45). Historically, an entire county was

usually designated part of the quarantined area when estab-

lished gypsy moth populations were first detected anywhere

within the county. These records are updated annually and

exist from 1934 to the present. From 1900 to 1934, the year

when counties were first infested has been described in various

other published sources (e.g. [27,31,32]). As additional covari-

ates, we used county-level data derived from a national forest

inventory system on the per cent of the forest basal area com-

prised of oaks, which is a favoured food plant of the gypsy

moth, and the size (square kilometre) of each county [33].
(b) Hemlock woolly adelgid
Hemlock woolly adelgid (HWA) is an insect species respon-

sible for defoliation of its host trees, eastern hemlock and

Carolina hemlock [34,35]. Native to East Asia, it was first

discovered in the eastern USA in Virginia in the 1950s [36].

HWA life stages can be transported by wind, wildlife,

especially birds, and humans. Since its discovery, it has gradu-

ally expanded its range into much of the northeastern USA

[35,37]. By 1969, it was found in southern Pennsylvania and

it invaded southern New England by 1985, spreading at an

estimated speed of 20–30 km year21 [35].

As with the gypsy moth, historical spread of the HWA

was recorded at the county level. Records from the US

Forest Service Forest Health Protection are available for

1951, 1971, 1981, 1996, and from 2001 to 2011. We use the

basal area of hemlock [38] and plant hardiness zone [39]

for each county as additional covariates for our analysis.
3. Methods
Historical spread of the gypsy moth has previously been estimated

as averages over space. [27] Estimated spread rates have been

determined for five geographical regions by the slope of a least-

squares regression of time on distance to a reference point in

each region. Spread rates have also been estimated by measuring

the average displacement of range boundaries over time [23,24].

Previous research on quantifying spatial gradients from

georeferenced biological data has focused on detecting zones

or boundaries of rapid change across space using geostatistical

wombling [40]. Wombling methods involve estimating local

vector gradients by fitting bilinear functions over a lattice of

points. This method has been applied to genetic [41] as well

as ecological [42] data. More recent wombling methods for

areal data feature Bayesian hierarchical spatial models in

order to identify significant boundaries after accounting for
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Figure 1. Year of first appearance by county for the gypsy moth (a) and hemlock woolly adelgid (b).
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spatial dependence via Markov random fields [43–45], with

applications to ecology and epidemiology.

The use of spatial gradients to estimate biological spread is

motivated by the fact that if the surface is the waiting time to

first appearance, then the reciprocal of the gradient length is a

measure of the invasion speed: fast spread leads to shallow

waiting time surfaces, while slow spread results in steep surfaces.

Previously [46] estimated spread gradients using a thin plate

spline applied to waiting times (as measured by wavelet phase

angles) to study outbreak spatial dynamics of the larch budmoth.

[47] used a similar spline surface approach to study spread of

avian influenza. The thin plate spline approach yielded gradients

which reflect the magnitude and direction of the spread, a simple

general-purpose approach for visualization, but does not yield

measures of statistical uncertainty associated with local spread

estimates which prevents rigorous inference regarding whether,

for example, any observed spatial variation is significant. In

order to facilitate understanding the models and inferential pro-

cedure, we summarize our approach in the following sections.

The mathematical details for the Gaussian process gradient

models are provided in the electronic supplementary material.
(a) Estimating gradient surface using Gaussian
processes

Given data on time of first appearance of an invasive species,

we are interested in constructing a surface that describes the

direction and speed of spread of the invasive species. We use

Gaussian process models as a convenient and rigorous approach

to estimate such a surface. Gaussian processes are commonly

used for spatial interpolation [48]. We use a Gaussian process

to spatially interpolate time of first appearance. The gradient

of this Gaussian process is known to also follow a Gaussian

process [49].

Based on fitting a Gaussian process to our data, we develop

methods for estimating speed and direction of the spread of the

invasive species, and for detecting sites of long-range dispersal.

We also provide, in the electronic supplementary material,

computer code for an R [50,51] software package that automates

the inference.

We assume we have observations of the year of first appear-

ance Y ¼ {Y(s1), . . . , Y(sn)} at locations {s1, . . . , sn}, si [ R2. For

our examples, data are county-level quarantine records and the

spatial locations {s1, . . . , sn} are taken to be the centroids of
counties for the gypsy moth (n ¼ 571) counties (figure 1a) and

for the HWA (n ¼ 340) counties (figure 1b). The data are discrete

(areal) in space as they represent counties. In order to use a

Gaussian process gradient model, we treat the data as if they

are from the centroid of each county. In order to investigate the

potential sensitivity of our conclusions to this approximation,

we perturb the locations of the centroids of each county and

perform the analysis with this perturbed data. We find that the

estimated spread patterns of the perturbed datasets are similar

to those of the original dataset (see electronic supplementary

material for details). Our methods are ideally suited to data

that are point-level, that is, where we can identify individual

locations of invasion, or when the data are obtained at an aggre-

gate (areal) level where the areal units are reasonably similar in

size and shape. We note that we have not studied the sensitivity

of our methods to problems where the size or shape of the areal

units are considerably different. Hence the results from applying

our method to data with highly variable sized or shaped areal

units should be treated with caution. Coordinates are projected

using the Albers equal-area conic projection with standard

parallels 298300 and 458300. Y(si) is the year county i was added

to the quarantine. We assume Y(s) can be modelled using

an isotropic Gaussian process. For our applications, we

assume the original process Y(s) ¼ m(s)þ w(s)þ e(s), with

mean function m(s) ¼ b0 þ b1sx þ b2sy, correlated spatial error

w(s) � GP(0, K( � )) with Matérn covariance smoothness n ¼ 3
2,

which takes the explicit form K(r) ¼ s2(1 þ fr) expf2frg, and

uncorrelated error e(s) � N(0, t2), where t2 is a nugget effect

that captures measurement error.

The gradient of waiting time rY(s) can be defined by taking

the derivative of Y(s) with respect to spatial directions over R2.

The spatial gradient vector rY(s) [ R2 indicates the dominant

direction of spread. When Y(s) is the time of first appearance

of the species, the gradient length krY(s)k measures the

change in waiting time for spread of the species. Small change

in time surfaces means fast spread, while large change indicates

slow spread. Therefore, the reciprocal of the gradient length

1=krY(s)k represents the speed of spread. Because Y(s) is a

Gaussian process, well-established results [49] show how we

can obtain the distribution of rY(s) by using its direct relation-

ship to the distribution of Y(s). This allows us to estimate both

the direction and speed of spread of the invasive species based

on the observations of time of first appearance.

Our other interest is in detecting long-range jumps. For each

spatial location, our goal is to investigate whether they represent
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Figure 2. (a) Patterns of spread of the gypsy moth. Blue and red arrows indicate local speeds and directions of spread, and are plotted where spread is significant.
The length of the arrows indicates the speed of spread—longer arrows indicate faster spread. The colour of each arrow represents the time of first appearance of the
process. Blue implies the earliest appearance, and red indicates the latest appearance. Green points indicate potential sites of long-range jumps. Green arrows around
a point indicate significant directions of long-range jumps. (b) Zoomed in figure of northeastern USA.
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plausible introduction well ahead of the general spatial diffu-

sion. For this we use the concept of ‘total gradient’ function,

G(r). For a particular location and for a given cardinal direction,

the total gradient G(r) measures the change in the waiting time

for the spread of the species to a distance r away from the

current location. Small G(r) means shallow time surfaces

which comes from fast spread of the species. This implies a

potential long-range spread in that direction. Because Y(s) is a

Gaussian process, we can easily also obtain the distribution

of G(r) [49]. Based on this result, we can learn about the

conditional distribution of G(r) jY(s) to search for any such

long-range jumps.

In addition to total gradient, we also investigate the use of a

Rayleigh test from circular statistics [52]. Although we find that

this test is not a perfect method, it may still be a useful fast

preliminary test for long-range jumps. Details for the Rayleigh

test are provided in the electronic supplementary material.
(b) Inferential procedure
Our approach combines well-established spatial statistics tools in

a novel way. Our inferential procedure is based on the Gaussian

process gradient model and may be summarized as follows.

1. The Gaussian process model is fit to Y(s):

We infer the mean and covariance parameters Q ¼ (b0, b1, b2,

s2, f, t2) of the Gaussian process Y(s) based on a Bayesian

approach. Q is sampled from the posterior distribution

using a Markov chain Monte Carlo (MCMC) algorithm. The

posterior mean is estimated as Q̂ ¼ (1=m)
Pm

i¼1 Qi.

2. Detecting diffusive expansion:

We are interested in learning about local speed and direction

of spread. For each location si and a given posterior sample

Q, the gradient rY(si) has the distribution rY(si) jY(si), Q,

which is a normal distribution because Y(si) is modelled as

a Gaussian process.

— The mean speed of spread is estimated as

(1=n)
Pn

i¼1 1=krY(si)k.
— By plotting all statistically significant gradients (figure 2)

we can visualize the vector field of spread.
3. Detecting sources and long-range jumps:
For each location si and a given posterior mean Q̂, we obtain

the total gradient G(r) from the conditional distribution

G(r) jY(si), Q̂ which also follows a normal distribution.

— We flag a location as a potential site of a long-range intro-

duction (figure 2) if: (i) the spread is significant for at least

two out of the four cardinal directions, and (ii) for the

remaining directions it is not significantly small.

(c) Driving factors of spread
We can gain insight into drivers of spread by relating the

geographical variation in spread to habitat characteristics.

To account for spatial dependence we fit a Bayesian spatial

regression model to log-speeds using the spBayes R package

[53]. We apply a log transformation to the response since the

speeds have right-skewed distributions. If the mean speed at

location s0 is given by V(s0), then we assume

logV(s0) ¼ XT(s0)bþ w(s0)þ e(s0),

where X(s) is a vector of the spatially varying environmental

and geographical covariates of interest. We assume

w(s) � GP(0, G( � )), G( � ) has Matérn covariance smoothness

with smoothness n, range f and partial sill s2 and

e(s) � N(0, t2). Priors are selected as before and joint estimation

is done via MCMC for Q ¼ {b, s2, f, t2, n}.
4. Results
(a) Gypsy moth
Significant speeds and directions of historical spread of the

gypsy moth are plotted at the locations of each invaded

county in figure 2. The mean speed over all counties is

22.6 km year21, with a median of 15.7 km year21. Distri-

butions for the magnitude of spread at each location tend

to be right-skewed, where the 95% credible interval is

(1.7 km year21, 64.9 km year21).

In figure 2, we also test whether there are long-range jumps

of length r ¼ 18 in the four cardinal directions. Points



Table 1. Results of a spatial regression of speeds of spread (km year21)
for the gypsy moth (a) and hemlock woolly adelgid (b) including posterior
means and 95% credible intervals obtained using the highest posterior
density interval algorithm [54].

(a) gypsy moth b

intercept 21.6 (211.0, 9.3)

longitude 25.1 (28.1, 22.2)

latitude 2(26.6, 1.2)

county size 20.00007 (20.00020, 0.00002)

quarantine date 0.0006 (20.0044, 0.0056)

basal% susceptible trees 0.0023 (0.0000, 0.0042)

(b) HWA b

intercept 19.5 (3.1, 36.6)

longitude 29.8 (214.9, 24.8)

latitude 8.5 (1.7, 16.0)

quarantine date 20.003 (20.009, 0.003)

Ipresence of hemlock 0.09 (0.01, 0.07)

plant hardiness zone 0.014 (20.19, 0.23)
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Figure 3. (a) Patterns of spread of the hemlock woolly adelgid. Blue and red arrows indicate local speeds and directions of spread, and are plotted where spread is
significant. The length of the arrows indicates the speed of spread—longer arrows indicate faster spread. The colour of each arrow represents the time of first
appearance of the process. Blue implies the earliest appearance, and red indicates the latest appearance. Green points indicate potential sites of long-range jumps.
Green arrows around a point indicate significant directions of long-range jumps. (b) Zoomed in figure of Richmond area.
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identified as probable long-range jumps are marked in green

in figure 2, along with green arrows which indicate significant

directions of jumps. Our method identifies three potential sites

around the northeastern coast, Michigan, and central-western

Pennsylvania. Prior analysis confirms two of these sites, as the

population was first introduced in Massachusetts in the 1860s

and a discrete population was later established in Michigan

[27]. A close examination of figure 1 also highlights a jump

to Centre County, PA in the mid-1970s.

We relate speed of spread to latitude and longitude, quar-

antine date, county size, and finally the per cent basal area

comprised of trees preferred as hosts of the gypsy moth.

Estimated parameters of the spatial regression model are
given in table 1a. We verify that, on average, the gypsy moth

spread faster as it moved west. We also found that basal area

of susceptible host trees is significantly associated with faster

invasion, consistent with the concept that local growth rates

will be larger in the face of more favourable habitat, and

should consequently enhance invasion spread rates.

(b) Hemlock woolly adelgid
Significant speeds and directions of spread for the HWA are

plotted at each county in figure 3. We find a mean speed of

spread of 20.5 km year21 across counties, with a median

speed of 13.5 km year21. Distributions for the magnitude of

spread at each location tend to be right-skewed, where the

95% credible interval is (3.0 km year21, 59.2 km year21).

Probable sites of long-range introductions are also ident-

ified in figure 3. We detect areas of apparent long-range

dispersal near Richmond, VA, and southern PA, suggesting

a pattern of stratified diffusion also for this species. Morin

et al. [35] previously found that expansion is significantly

influenced by availability of host trees. Low winter tempera-

tures can cause extensive mortality in HWA populations and

limit expansion to the north [55]. Therefore, we relate speeds

of spread to environmental features including the presence

or absence of hemlock trees, and the average plant hardiness

zone for each county, an index based on the mean annual mini-

mum winter temperature [39]. Estimates from the regression

model are given in table 1b. We observed evidence that histori-

cally expansion is faster to the west and north. We also find as

in [35] that spread is significantly associated with the abun-

dance of host trees. We also tested the interaction between

plant hardiness zone and latitude and found that for a given

latitude, HWA spread significantly slower through areas

with lower (colder) plant hardiness zones [b ¼ 3.4 (0.4, 6.3)].

(c) Simulation
We tested the ability of our method to recover the effects that

spatially varying habitats have on the speed of spread.

To accomplish this, data are simulated from a stratified
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Figure 4. (a) Patterns of spread of the simulated invasion. Blue and red arrows indicate local speeds and directions of spread, and are plotted where spread is
significant. The length of the arrows indicates the speed of spread—longer arrows indicate faster spread. The colour of each arrow represents the time of first
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Green arrows around a point indicate significant directions of long-range jumps. (b) Waiting times of the stratified diffusion simulation [6].
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diffusion model following [6]. Stratified diffusion is a

combination of neighbourhood diffusion and long-distance

dispersal. As the size of the original colony expands, new

colonies are more likely to be created by long-distance migrants.

The simulation starts with a single colony, centred at the

initial point of invasion. The occupied area grows out in a

circle with the radius r growing at constant rate c. This

colony can then form offspring colonies from long-distance

migrants in a random direction at a distance L from the

invasion front. New colonies form at a rate l(r) that is a

function of the colony radius. These offspring colonies

grow at speed c and form offspring colonies of their own.

The stratified diffusion simulation approach may be

summarized as follows.
Algorithm 1. The stratified diffusion simulation approach.

Initialize with the first colony with the coordinates s0 and radius r0.

for t ¼ 1 : T do

Given nth colony sn with radius rn,t at time t.

1. Obtain the radius rn,tþ1 from nth colony: rn,tþ1 ¼ rn,t þ cdt,

where dt is a time difference. (e.g. dt ¼ t þ 1� t ¼ 1)

2. With probability l(rn,tþ1), a new colony snþ1 is generated in a

random direction at a distance L

end for

Return coordinates for N number of simulated colonies (s0, . . . , sN ).

Note that N may be much smaller than T if l is small.
We begin with an initial introduction in Massachusetts in

1900. Colony range expansion c varies by longitude to simulate

a slow period of initial expansion; c ¼ 10 km year21 east of 2788
and c ¼ 20 km year21 west of 2788. New colonies form at rate

l(r)¼ 0.1 r a distance L¼ 10 km from the invasion front.
Additionally, to mimic the observed gypsy moth data an

artificial long-range jump is introduced in Michigan in 1950.

The simulation is run for 107 years with an annual timestep.

The time until the invasion front reaches each county is

recorded as the simulated quarantine data (figure 4b).

Figure 4a indicates that our automated method successfully

identified the two fixed colony introductions as regions of

long-range jumps. We recover mean spread rates in the

west of 10.7 km year21 and in the east of 21.4 km year21,

close to the true values used in the simulation. We also test

our method under two different simulation scenarios—slow

spread and fast spread of the invasive species. Our method

successfully detects long-range jumps and recovers the true

spread rates well under both scenarios (see electronic

supplementary material for details).

5. Discussion
To study the establishment and spread of biological inva-

sions, we present a new method to estimate local rates and

direction of spread, and identify key spatial features including

sources, sites of rapid spread, and long-range jumps. We visu-

alize and make inferences on historical patterns of spread of the

gypsy moth and HWA as well as validate the methodology on

simulated data. Posterior inference in a Bayesian setting allows

us to test the significance of spread patterns and spatial features

of these invasions in a statistically rigorous way.

Taking our local estimates of gypsy moth spread and

averaging them across time yields results in line with

previous estimates [27]. We find an average speed of

11.4 km year21 across counties quarantined from 1900 to

1915, followed by a slow spread (5.0 km year21) across coun-

ties from 1916 to 1965, and then a period of very rapid

expansion (25.8 km year21) from 1966 to 2000. These changes

may also be related to the differences in Allee effects among

different regions along the invasion front as evidenced in

[56]. From 2000 to present, coincident with USDAs ‘Slow

the Spread’ program of control [8] we calculate an average

speed of 14.6 km year21.
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Our estimates for the spread of HWA when spatially

averaged are also in line with previous estimates (e.g. [36]).

There is evidence that HWA range expansion is limited

both by a lack of host trees and in the north by winter temp-

eratures. We note the important role of wildlife, especially

migratory birds, as a means for HWA movement [57], in

addition to windborne dispersal and human transport [35].

Ourabilities to identify patterns of spread are constrained by

the spatial and temporal resolution of our data. County-level

quarantine data are typically coarser than, for example, gypsy

moth pheromone trap count data, though [24] showed the

two sources of gypsy moth data provided similar spread esti-

mates. Additionally, the original Gaussian process must be

sufficiently smooth for a gradient process to exist (we take the

Matérn model with smoothness parameter n ¼ 3
2), with the con-

sequence that some information is lost at local scales. We rely for

the most part on annual records, but before 2001 the range of

HWA was recorded at less frequent intervals. This is a potential

source of bias in our early analysis of HWA spread.

For large spatial datasets, fitting a Gaussian process is a

computational burden. Once the original Gaussian process is

fitted, however, we can draw samples by composition from

the gradient process quickly. When the number of spatial

locations is in the thousands we have to rely on approximations

such as the predictive process model of [58].
Generally, whenever the data are point-referenced wait-

ing times, the speeds of spread can be estimated from the

inferred gradient process. Therefore, the methods presented

here should be generally applicable to both ecological and

epidemiological invasions. These methods are also poten-

tially applicable to non-invasion problems such as the

spread of an advantageous allele [59], or recurrent outbreak

waves [46]. An R package that automates the inference is

available in the electronic supplementary material.
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