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A B S T R A C T

Estimates of the spatial–temporal distributions of forest carbon (C) stocks subject to land use and cover changes
is critical to greenhouse gas (GHG) estimation and reporting. Based on national forest inventory (NFI) and
Landsat time series data, we applied matrix models to estimate and map spatial–temporal distributions of forest
aboveground biomass (AGB) C, standing dead C, downed dead C, litter C, and soil organic C from 1990 to 2018
attributed to land cover changes and harvests in the northern United States (US). From predicted pixel-level
maps, we found that all five forest C pools of northeast states and northern tier of Great Lake states had higher C
density than other regions in the study area. We estimated that forest-related land cover changes reduced the
forest C sink by 0.15 ton C ha−1 yr−1 (with a range of 0.12 to 0.18 ton C ha−1 yr−1) a accounting for 29% of
forest C reductions over the study period. Forests remaining forests sequestered 2.38 Pg C (2.05 to 2.61 Pg C),
hence the net forest sink of the northern US increased 1.73 Pg C (1.52 to 1.93 Pg C) during 1990–2018, which is
an annual rate of 0.88 ton C ha−1 yr−1 (0.77 to 0.98 ton C ha−1 yr−1). Moreover, forest C was captured in
harvested wood products by 0.33 ton C ha−1 yr−1. An uncertainty analysis with fuzzy sets suggested that the
absolute uncertainties of land cover change and harvest impacts on standing dead C, downed dead C, and litter C
were lower than 4.50 ton ha−1 during 1990–2018. In comparison, there were high uncertainties associated with
estimates of soil organic C and AGB C densities at approximately 12–40 ton ha−1 in northern Michigan,
Wisconsin, Minnesota, and Maine, New Hampshire, and New York. This study demonstrates methods for ad-
hering to Intergovernmental Panel on Climate Change good practice guidelines for national GHG reporting and
presents spatially explicit attribution of regional trends in C fluxes to particular activities and events. The re-
solved estimates from this analysis can be used to examine local and regional land use and cover change policies
and practices in the context of C management in the northern US.

1. Introduction

Forest ecosystems, which have the largest terrestrial carbon (C)
stocks on earth, play a vital role in the global C cycle (Pan et al., 2011).
Under the United Nations Framework Convention on Climate Change
(UNFCCC), forest C estimates are a critical component of national-scale
greenhouse gas (GHG) reporting (Woodall et al., 2015a,2015b). Forest
land changes, along with natural disturbances and management activ-
ities, could play a pivotal role in altering terrestrial C fluxes and re-
ducing atmospheric CO2 concentrations (Zheng et al., 2011; Sleeter
et al., 2018). As the most uncertain term in the C budget estimation at
both global and regional scales, land-use and cover changes have been

viewed as one of the largest contributors to uncertainty associated with
global C emission estimates at approximately 1.0 ± 0.5 Pg C yr−1

since 2006 (Houghton et al., 2012; Le Quéré et al., 2016; Yu et al.,
2018). The northern forest ecosystems are undergoing considerable
land-use and cover changes accompanied with active forest manage-
ment, which is an important driver of regional GHG balances (Ma et al.,
2019). Although we have refined our understanding of the processes
that influence forest C dynamics in the northern United States (US),
uncertainties from the effects of land-use and cover changes and forest
management activities remain large (Ollinger et al., 2002; Houghton,
2003; Canham et al., 2013; Harris et al., 2016; Sleeter et al., 2018;
Alexander et al., 2018). Such large uncertainties could be reduced in
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order to strengthen the confidence in estimates included in C budget
assessments and managements at regional, national, and global scales
(Law et al., 2018). Therefore, an uncertainty analysis of forest C esti-
mates is essential for contemporary assessments and management of
forest C in the northern US.

Comprehensively and accurately quantifying the magnitude and
spatiotemporal patterns of forest C storage and sequestration capacity is
an important component of managing forest ecosystems (Cao et al.,
2019). Although prior studies have improved our understanding of C
exchange between forestland and non-forestland, C processes in for-
estland are generally underrepresented in these assessments (Hasenauer
et al., 1999; Zheng et al., 2008; Zheng et al., 2011; Hasenauer et al.,
2012; Neumann et al., 2015; Neumann et al., 2016a, 2016b; Ma et al.,
2019). Such an outcome may be expected as simulations associated
with prior studies were either limited by data availability and/or model
performance. For example, numerous models lacked representation for
varying forest species compositions (Zheng et al., 2013; Harris et al.,
2016), while some models neglected details in harvest activities in re-
gional modeling (Zhang et al., 2012; Williams et al., 2016). More im-
portantly, accurate assessment of land-cover change induced forest C
gain/loss often requires incorporation of high-resolution land-cover
data (initial surrogate for land-use change, Woodall et al., 2015a) as
forestland abandonment and expansion were substantially under-
estimated in past coarse-resolution land cover change maps leading to a
biased and under-estimated amplitudes of forest C gain/loss (DeFries
et al., 2002; Goetz and Dubayah, 2011; Zheng et al., 2011). Therefore,
methods to fully integrate high-resolution land-cover data and detailed
harvesting information to predict spatial–temporal C dynamics at dif-
ferent scales in forest ecosystems are urgently needed.

Coupled with remotely sensed data and strategic-level forest in-
ventories, researchers have developed sophisticated models to estimate
spatial–temporal distributions of forest C stocks (Dymond et al., 2002;
Yan and Zhao, 2007; Kurz et al., 2009; Liang and Zhou, 2014). For
example, a ForCSv2 (Forest Carbon Succession v2.0) extension for the
LANDIS-II model has been applied to simulate spatially-explicit forest C
succession (Dymond et al., 2002). An individual-based forest ecosystem
carbon budget model (FORCCHN) has been used to investigate forest C
distributions in China (Yan and Zhao, 2007). The CBM-CFS3 (Carbon
Budget Model of the Canadian Forest Sector) has been developed to
model C stock changes resulting from Land Use, Land Use Change, and
Forestry (Kurz et al., 2009). However, traditional simulation tools in
general may be restrictive due to insufficient in situ calibration and
validation data and rarely considering three main components (i.e.,
diameter growth, mortality, and recruitment) of forest dynamics.

Matrix models, featuring a transition matrix calibrated to estimate
diameter growth, recruitment, and mortality, have been applied to in-
vestigate and map forest C dynamics incorporating Landsat data and
large scale in situ forest inventory data (Liang and Zhou, 2014; Ma
et al., 2016, 2018a, 2018b, 2019; Ma and Zhou, 2017). For instance, a
recent study by Ma et al. (2018a) developed C flux matrix models to
compare size- vs. age-structured models in their capacity to predict
forest C dynamics. Subsequently, Ma et al. (2018b) developed matrix
models for incorporating light detection and ranging (LiDAR) strip
samples and Landsat time-series, with field inventory measurements to
predict forest aboveground biomass (AGB) dynamics. This study found
that the use of Landsat data alone incorporating elevation, plot slope,
and aspect could produce useful estimates of AGB dynamics using
matrix models. To advance toward more spatially explicit estimates of
forest C dynamics, Ma et al. (2019) quantified how land use changes,
disturbances, and their interactions influenced future forest AGB dy-
namics (2018–2098) using national forest inventory (NFI) and Landsat
time series data in the northern US. This research suggested that if
recent trends persist, the combined effects of land use change and
disturbances may serve as an important driver of C uptake and emis-
sions in the northern US well into the 21st century. To continue this line
of research, this study seeks to improve upon prior matrix models to

estimate forest C dynamics (1990–2018) through explicit incorporation
of harvesting and land cover change metrics building upon the breadth
of Landsat and NFIs publicly available in our study area. Comparisons
of the prior simulation models with empirically obtained matrix models
can help reveal the best approaches for estimating spatial–temporal
forest C dynamics.

The US reports estimates of economy-wide GHG emissions and re-
movals each year from 1990 to near present as signatories to the
UNFCCC (US EPA, 2018). Estimating C stocks and stock changes within
the forest land category is an important part of the land sector within
National GHG Inventories related to forests. As a step toward improving
the spatial and temporal resolution of carbon stocks and stock change
estimates for the forest land category and decreasing inventory cost in
the future, the objective of this study was to characterize the impacts of
land cover change and forest management (e.g., harvesting) on con-
temporary C dynamics (1990–2018) in the northern US. We used ma-
trix models to better represent spatial–temporal distributions of forest C
stocks considering land cover change and harvesting in addition to the
refined stand dynamics modeling based on NFI and Landsat data.
Specifically we (1) applied matrix models to estimate dynamics of five
forest C pools including AGB, standing dead, downed dead, litter, and
soil organic from 1990 to 2018; (2) quantified effects of land cover
change and harvest activities on contemporary forest C dynamics
(1990–2018); and (3) used fuzzy sets to represent variability in forest C
dynamics resulting from uncertainties in the land cover changes and
harvests across the northern US.

2. Materials and methods

2.1. Field data

Field data for this study were obtained from the NFI conducted by
the US Department of Agriculture Forest Service, Forest Inventory and
Analysis (FIA) program. The FIA program maintains a public-facing
database (https://apps.fs.usda.gov/fia/datamart/datamart.html) of NFI
data that was used in this analysis. The study covers eleven states of the
northern US (Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio,
Pennsylvania, New York, Vermont, New Hampshire, and Maine) with
total area of approximately 120,000,000 ha with an inventory con-
sisting of 78,458 plots (time 1 measurement between 2008 and 2012
and remeasured 5-years later from 2013 to 2018). The area of forest
land use in this study area is approximately 68,000,000 ha. For model
calibration purposes, 62,766 permanent ground plots (80%) were used
to estimate parameters of the matrix models and 15,692 plots (20%)
were randomly selected for model validation. Each permanent ground
plot is composed of four smaller fixed-radius (7.32 m) subplots spaced
36.6 m apart in a triangular arrangement around a central subplot. For
each permanent ground plot, plot-level estimates of forest C pools in-
clude live tree, standing dead tree, downed dead wood, forest floor, and
soil (Table 1). In addition, plot-level variables including trees per hec-
tare, basal area per hectare, and measurements of slope, aspect, and
elevation were used (Table 1).

2.2. Landsat data

Landsat time-series data were obtained from the Google Earth
Engine (https://earthexplorer.usgs.gov/) and were acquired by Landsat
8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS),
Landsat 7 Enhanced Thematic Mapper Plus (ETM+ ), Landsat 5
Thematic Mapper (TM), and Landsat 5 Multispectral Scanner (MSS)
instruments from 2008 to 2018. Landsat 7 ETM+and Landsat 8 OLI/
TIRS data were processed upon download but use predicted ephemeris,
initial bumper mode parameters, or initial TIRS line-of-sight model
parameters. The data were reprocessed with definitive ephemeris, up-
dated bumper mode parameters and refined TIRS parameters, and the
products were transitioned to either Tier 1 or Tier 2 and removed from

W. Ma, et al. Ecological Indicators 110 (2020) 105901

2

https://apps.fs.usda.gov/fia/datamart/datamart.html
https://earthexplorer.usgs.gov/


the Real-Time tier (https://landsat.usgs.gov/landsat-collections).

2.3. Digital elevation model (DEM) data

Digital Elevation Model (DEM) data were obtained from the U.S.
Geological Survey's (USGS) National Geospatial Program (https://
www.usgs.gov/core-science-systems/national-geospatial-program/
national-map) to provide physiographic variables including plot aspect,
plot slope, and elevation.

2.4. Land cover change data

National Land Cover Database (NLCD) was used to quantify land
cover changes during the period (2001–2011) among three primary
cover types (grassland, cropland, and forestland) at a spatial resolution
of 30m across the northern US. The land cover classification system is
used by NLCD2011, which is modified from the Anderson Land Cover
Classification System. Forest-related land cover changes were general-
ized into three categories: (1) afforestation (from grassland and crop-
land to forestland), (2) deforestation (from forestland to grassland and
cropland), and (3) forestland remaining forestland, as the C dynamics
are different for each of these land cover changes.

2.5. Forest harvest data

Forest harvest data were obtained from the FIA database, which
include five harvest types such as clearcut, partial, seed-tree/shelter-
wood, commercial thinning, timber stand improvement, and salvage
cutting.

2.6. Description of the matrix models

A conventional matrix model was applied to control for diameter
growth, mortality, and recruitment as follows (e.g. Buongiorno and
Michie, 1980; Picard et al., 2003):

= + ++ G R εy y·t t t t1 (1)

in which yt and yt+1 is number of live trees per hectare at time t and
t + 1. Gt is a transition matrix describing how trees grow or die between
t and t + 1, respectively. R is a recruitment vector representing trees
naturally recruited in the smallest diameter class between t and t + 1. ε

is a random error.
In this study, improved matrix models were made from the tradi-

tional matrix models (Eq. (1)) by adding a vector of harvests, Ht,
leading to:

= + + ++ G R εy y·  Ht t t t t1 (2)

Gt and Git are state- and time-dependent transition matrices, Git is a
submatrix of Gt, where:
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in which aijt represents the probability that a tree of species group i and
diameter class j stays alive in the same size class between t and t + 1.
The transition probability of upgrowth, bijt, represents a tree of species i
and diameter class j stays alive and grows into diameter class j + 1
between t and t + 1, assuming that trees were evenly distributed within
a diameter class. bijt was estimated as the annual tree diameter growth,
gijt, divided by the width of the diameter class. aijt and bijt are related by:

= − − −a b m h1ijt ijt ijt ijt (4)

where mijt is the tree mortality of species i and size class j between t and
t + 1, hijt is the harvesting probability of species i and size class j be-
tween t and t + 1.

Rt represents number of trees naturally recruit in the smallest size
class of each species group, between t and t + 1. Rit is a sub vector of Rt

representing recruitment of species group i at time t, where:
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The annual diameter growth of the tree of species group i and size
class j from t and t + 1 is represented by the following model (Ma et al.,

Table 1
Definitions and units of variables used in the study.

Variable Unit Definition/explanation

Forest inventory data
AGB ton ha−1 Aboveground live biomass, biomass of the aboveground portion of a tree. Includes stem wood, stump, bark, top, branches, and foliage (Jenkins et al.,

2003; Woodall et al., 2011).
SDC ton ha−1 Standing dead carbon, carbon in standing dead trees, including coarseroots, is estimated from models based on geographic area, forest type, and growing-

stock volume (Smith and Heath, 2008; Woodall et al., 2011; Domke et al., 2011).
DDC ton ha−1 Downed dead carbon, carbon of woody material > 3 in. in diameter on the ground, and stumps and their roots > 3 in. in diameter. Estimated from

models based on geographic area, forest type, and live tree carbon density (Smith and Heath, 2008).
LC ton ha−1 Litter carbon, carbon of organic material on the floor of the forest, including fine woody debris, humus, and fine roots in the organic forest floor layer

above mineral soil. Estimated from models based on geographic area, forest type, and stand age (Smith and Heath, 2002).
SOC ton ha−1 Soil organic carbon, carbon in fine organic material below the soil surface to a depth of 1 m. Does not include roots. Estimated from models based on

geographic area and forest type (Smith and Heath, 2008)
N trees ha−1 Number of trees per hectare
A ° Plot aspect showing the direction to which the plot slope faces; 0 means no slope, 180 and 360 represented south- and north-facing slopes, respectively
S ° Plot slope
E km Elevation

Landsat data
TCB W m−2 Tasseled cap brightness
DI W m−2 Disturbance index
EVI Unitless Enhanced vegetation index
SWIR nm Shortwave infrared surface reflectance
TCG W m−2 Tasseled cap greenness
SAVI Unitless Soil adjusted vegetation index
TCA W m−2 Tasseled cap angle

W. Ma, et al. Ecological Indicators 110 (2020) 105901

3

https://landsat.usgs.gov/landsat-collections
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map


2018b; All notations defined in Table 1):

= + + + + + +

+ + + + + +

g α α TCB α DI α EVI α SWIR α TCG α

SAVI α TCA α E α S α cosA α sinA θ

ijt i i i i i i i

i i i i i ij

1 2 3 4 5 6 7

8 9 10 11 12 (6)

in which αi’s are parameters to be estimated with the generalized least
squares (GLS, see Rao, 1973) for diameter growth of species group i and
size class j. θis an error term.

Tree mortality of species group i and diameter class j at time t,
mijt= P(Mijt=1|x), is estimated with a Probit function (Albert and
Anderson, 1981). Mijtk is a binary variable representing whether a tree
of species i and diameter class j died (Mijtk=1) or not (Mijtk=0):

= + + + + + +

+ + + + + +

m
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where Ф is the standard normal cumulative function, δi’s are para-
meters estimated by maximum likelihood. ξ is an error term.

Harvesting probability of species group i and diameter class j at time
t, hijt= P(Hijt=1|x), is also estimated with a Probit function. Hijtk is a
binary variable representing whether a tree of species i and diameter
class j harvested (Hijtk=1) or not (Hijtk=0):

= ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂

+ ∂ + ∂ + ∂ + ∂ + ∂ + ∞
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whereϖ is the standard normal cumulative function, ∂i’s are parameters
estimated by maximum likelihood. ∞is an error term.

Recruitment of species group i, Ri is estimated with a Tobit model
(Tobin, 1958):

= +− −R β x σ β x σ ϕ β x σΦ( ) ( )it i it i i it i i it i
1 1 (9)

with

= + + + + + +

+ + + + + +

β x β β TCB β DI β EVI β SWIR β TCG β

SAVI β TCA β E β S β cosA β sinA μ
i it i i i i i i i
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where Ф is the standard normal cumulative distribution function and φ
is the standard normal probability density function.μis an error term.

The densities of forest C pools (including AGB C, standing dead C,
downed dead C, litter C, and soil organic C) are estimated with the
following model (Ma et al., 2018b):

= + + + + + +

+ + + + + +

ψ ω ω TCB ω DI ω EVI ω SWIR ω TCG ω

SAVI ω TCA ω E ω S ω cosA ω sinA ω
it i i i i i i i

i i i i i i

1 2 3 4 5 6 7

8 9 10 11 12 (11)

in which ψi is a vector of forest C pools including AGB C, standing dead
C, downed dead C, litter C, and soil organic C, ωi’s are parameters to be
estimated with the GLS. ω is an error term and ψi is calculated with Eq.
(11).

In order to backcast forest population dynamics and associated
forest C dynamics using matrix models from 2018 to 1990, we applied
consistent annual rates of mortality, harvesting, and recruitment as
forward predictions, but minus the annual rate of tree growth to enable
backward validations. In addition, stand density was set to zero if stand
age was less than 28 years. Annual effects of land cover changes were
added every year from 1990 to 2018.

2.7. Model calibration and validation

We adopted the same variables and functional form for the under-
lying diameter growth, mortality, and recruitment models as those es-
tablished in previously published matrix models (Ma et al., 2018b) to
ensure accuracy and avoid overfitting and/or multicollinearity issues. A
variety of stand level and Landsat variables selected for two species
groups (deciduous and coniferous) were used in the matrix growth
models (Table 2). Physiographic variables, elevation (E), slope (S), and
aspect (A), were used to control for site productivity (Lennon et al.,
2002). Landsat variables, tasseled cap brightness (TCB), disturbance
index (DI), enhanced vegetation index (EVI), shortwave infrared surface
reflectance (SWIR), greenness indices (TCG), soil adjusted vegetation
index (SAVI), tasseled cap angle (TCA) were used to replace total stand
basal area (B) as key predictors, due to their significant effects on forest
C dynamics (Ma et al., 2018b). Model validation followed Ma et al.
(2018b) where matrix models were used to produce suitable estimation
of forest AGB dynamics to actual AGB dynamics incorporating Landsat
data with elevation (E), slope (S), and aspect (A). Therefore, we applied

Table 2
Estimated parameters of diameter growth model, mortality model, harvest
model, recruitment model, aboveground live biomass (AGB) model, standing
dead carbon (SDC) model, downed dead carbon (DDC) model, litter carbon
model (LC), and soil organic carbon (SOC) model.

Diameter Growth
Deciduous
0.623**− 0.182TCB **− 0.592DI *+ 0.478EVI

**+ 0.261SWIR*− 0.849TCG*+0.971SAVI*+0.347TCA− 0.821E*−-
0.698S*− 0.593cosA*+ 0.854sinA

Coniferous
0.696**− 0.159TCB *− 0.762DI **+ 0.321EVI

**+ 0.864SWIR− 0.295TCG*+ 0.756SAVI**+0.630TCA*− 0.782E**−-
0.347S**− 0.546cosA+ 0.912sinA*

Mortality
Deciduous
0.814**+ 0.637TCB *− 0.897DI **− 0.821EVI

**+ 0.126SWIR*+0.047TCG*+0.726SAVI*− 0.357TCA− 0.851E*−-
0.674S**− 0.813cosA+ 0.871sinA

Coniferous
0.931**+ 0.513TCB **− 0.864DI *− 0.841EVI

**+ 0.526SWIR*+0.846TCG+ 0.334SAVI*− 0.842TCA*− 0.852E*−-
0.625S− 0.889cosA**+ 0.821sinA*

Harvest
Deciduous
0.628*+ 0.841TCB *+ 0.627DI **− 0.338EVI

**+ 0.825SWIR*− 0.149TCG*+0.627SAVI*− 0.294TCA− 0.354E*−-
0.839S**− 0.658cosA− 0.523sinA

Coniferous
0.852*+ 0.624TCB **+0.232DI **− 0.158EVI

*+ 0.226SWIR*− 0.851TCG+ 0.526SAVI*− 0.269TCA*− 0.620E*− 0.663-
S− 0.552cosA**− 0.116sinA*

Recruitment
Deciduous
0.636***− 0.856TCB *− 0.822DI **+ 0.845EVI

***+0.877SWIR**+ 0.937TCG*− 0.154SAVI*+ 0.863TCA**− 0.125E−-
0.789S*− 0.882cosA**+ 0.864sinA

Coniferous
0.798**− 0.152TCB **− 0.324DI *+ 0.421EVI

**+ 0.864SWIR*+0.523TCG*− 0.577SAVI**+0.811TCA− 0.327E**−-
0.716S*− 0.742cosA*+ 0.547sinA

AGB
0.348***− 0.633TCB **− 0.784DI *+ 0.201EVI

**+ 0.347SWIR*+0.812TCG**+ 0.988SAVI*+0.121TCA*− 0.367E*−-
0.864S**− 0.413cosA+ 0.345sinA*

SDC
0.135***− 0.426TCB **− 0.609DI *+ 0.152EVI

**+ 0.234SWIR*+0.215TCG**+ 0.526SAVI*+0.062TCA*− 0.126E*−-
0.217S**− 0.523cosA+ 0.241sinA*

DDC
0.107***− 0.125TCB **− 0.523DI *+ 0.116EVI

**+ 0.261SWIR*+0.269TCG**+ 0.856SAVI*+0.107TCA*− 0.226E*−-
0.521S**− 0.743cosA+ 0.294sinA*

LC
0.268***− 0.492TCB **− 0.264DI *+ 0.489EVI

**+ 0.162SWIR*+0.218TCG**+ 0.304SAVI*+0.037TCA*− 0.262E*−-
0.904S**− 0.327cosA+ 0.859sinA*

SOC
0.083***− 0.267TCB **− 0.349DI *+ 0.115EVI

**+ 0.341SWIR*+0.264TCG**+ 0.192SAVI*+0.008TCA*− 0.169E*−-
0.327S**− 0.258cosA+ 0.117sinA*

Note: Significance levels: *< 0.05; **<0.01; ***<0.001.
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the matrix models to estimate and map forest C dynamics from 1990 to
2018.

In order to more thoroughly evaluate our matrix model predictions
of forest C stocks, average AGB C and soil organic C were projected
using the Forest Carbon Succession v2.0 (ForCsv2) extension for the
LANDIS-II model (Dymond et al., 2002) at the second inventory (i.e.
remeasured during 2013–2018). This extension allows researchers to
estimate C in five pools for each living age-species cohort, plus nine
dead organic matter, and soil pools for each species (Dymond et al.,
2016). Furthermore, the accumulation of AGB C through growth and
regeneration follow the Biomass Succession (v2) extension and the
methods outlined in Scheller and Mladenoff (2004). Based on defini-
tions of forest C pools, we only compared average AGB C and soil or-
ganic C predicted by matrix models and ForCsv2 in this study.

2.8. Land cover changes and forest C transfers

We used three general land cover categories as an initial approach
to characterize land changes: forestland, cropland, and grassland. In
this study, we used definitions from the IPCC Good Practice Guidance to
classify land cover and land cover changes. Forestland includes all land
with woody vegetation consistent with thresholds used to define for-
estland in the national GHG inventory, sub-divided into managed and
unmanaged, and also by ecosystem type as specified in the IPCC
Guidelines. Cropland includes arable and tillage land, and agro-forestry
systems where vegetation falls below the thresholds used for the for-
estland category, consistent with the selection of national definitions.
Grassland includes rangelands and pasture land that is not considered
as cropland. Grassland also includes systems with vegetation that fall
below the threshold used in the forestland category and are not ex-
pected to exceed, without human intervention, the threshold used in
the forestland category. Afforestation includes land cover changes from
cropland and grassland to forestland. Deforestation includes land cover
changes from forestland to cropland and grassland. To more accurately
estimate C gains/losses from land cover changes in the northern US, we
used empirical transfer information from Zheng et al. (2011) which
provided detailed transfer rate and precisely estimated forest area and C
changes in the conterminous US including the northern US region as-
sociated with land cover change, harvest, and fire. Therefore, only
transfers of AGB C and soil organic C were considered for afforestation
and deforestation in this study. Carbon gains including soil C through
afforestation were estimated using C accumulation tables for affor-
estation (Smith et al., 2006). Carbon losses through deforestation were
estimated using average forest AGB C density from the FIA data, as-
suming that 20% of the aboveground forest C remained after forest
became non-forest (Zheng et al., 2011). Soil C losses were calculated
using soil C stocks (Smith et al., 2006) and a conversion loss of 0.25 for
the 28-year period during 1990–2018. Since our study only focused on
C stored or sequestrated in the forest land, transfers of C from harvested
forests to harvested wood products were not considered when asso-
ciated with land cover changes and harvests.

2.9. Fuzzy sets representing uncertainty

Uncertain land cover changes and harvests could lead to high
variability in predicted values of forest C pools including AGB C,
standing dead C, downed dead C, litter C, and soil organic C. The
averages of predicted forest C are important point estimates but to
understand the associated risk, ranges or sets indicating prediction
uncertainty are essential. Here we used fuzzy sets which involved de-
fining membership functions that determined the level of uncertainty
(Zadeh, 1965). A trapezoidal fuzzy set was used, mathematically ex-
pressed as f (x; a, b, c, d)=max (min (x – ab – a, 1, d – xd – c), 0). [a, b]
and [c, d] are the uncertainty intervals with membership degrees ran-
ging from 0 to 1. [b, c] represents the certainty interval for which the
membership degree is 1. [a, d] is a measure of total range of uncertainty

arising from land cover change and harvest occurrences. Based on a
prior study by Weckenmann and Schwan (2001), given the average
value of predicted forest C (

−
X ) and its relative standard deviation (Sr)

from simulations, a, b, c, d values can be calculated as follows:

Fig. 1. Spatial distribution of AGB C density (a), standing dead C density (b),
downed dead C density (c), litter C density (d), and organic soil C density (e) in
forests across the northern US based on Forest Inventory and Analysis (FIA)
plots during 2008–2018. (Note: 1Mg ha−1= 1 ton ha−1).
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3. Results

3.1. Average forest carbon density

The total forest C was composed of AGB C, standing dead C, downed
dead C, litter C, and soil organic C pools in this study. Based on the FIA
plots, average density of AGB C, standing dead C, downed dead C, litter
C, and soil organic C were 62.29, 7.13, 6.52, 16.98, and 142.75, varied
from the range of 0 to 896.32, 0 to 56.41, 0 to 72.67, 0 to 48.22, and 0
to 1123.56 ton ha−1, respectively (Fig. 1). In addition, the forest C
pools including AGB, standing dead, downed dead, litter, and soil were
all positively skewed, with most estimates< 80, 20, 25, 15, 200 ton
ha−1, respectively. The spatial C density distributions of AGB, standing
dead, downed dead, litter, and soil were displayed based on 78,458
plots across the northern US (Fig. 1). The northeast region and northern
part of Minnesota, Wisconsin, and Michigan have higher C density than
the rest of the study area.

3.2. Predictions of forest C pools

Based on the 15,692 validation plots, average AGB C, standing dead
C, downed dead C, litter, and soil organic C predicted by the matrix
models fell within the 95% confidence interval of the observed mean
values at the second inventory, demonstrating high accuracy of the
matrix models (Fig. 2). Compared to matrix models, the average AGB C
and soil organic C predicted by the ForCsv2 both fell above the 95%
confidence interval of the observed mean values, featuring an over-
estimate of C pools. Additionally, AGB C and soil organic C predicted by
the matrix models and the ForCsv2, and standing dead C, downed dead
C, and litter C predicted by the matrix models were compared with
observed values (Fig. 3). Compared with the ForCsv2, the matrix
models had 45% and 50% higher R2, 43% and 38% lower MAPE for

AGB C and soil organic C, respectively. Based on the substantially
higher RMSE, MAPE and smaller R2 than the matrix models, the
ForCsv2 displayed much less accuracy of forest AGB and soil C pre-
dictions than the matrix models (Figs. 2 and 3).

3.3. Land cover changes

According to the NLCD, ~778 km2 yr−1 of non-forest (grassland and
cropland) converted to forestland whereas 1260 km2 yr−1 of forestland
changed to non-forest, resulting in a net loss of 482 km2 yr−1 forestland
across the northern US every year during 2001–2011 (Table 3). For
each state, annual spatial variation in forest area change (afforesta-
tion+ deforestation) due to the land cover change effects ranged from
a 184 km2 yr−1 forestland loss in Maine to a 45 km2 yr−1 forestland
gain in Minnesota across the northern US (Table 3). Additionally, Mi-
chigan had the highest afforestation area with 218 km2 yr−1 and Ver-
mont had the least deforestation area with 17 km2 yr−1.

3.4. Forest C changes under land cover changes and harvests

Land cover changes and forest harvests reduced forest C sink by
0.15 ton C ha−1 yr−1 and 0.38 ton C ha−1 yr−1, accounting for 29%
and 71% of C reductions across the study region (Table 4). Harvest
activities accounted for higher annual C removals than land cover
changes, an estimated difference of 0.22 ton C ha−1 yr−1. However,
forests remaining forests sequestered 2.38 Pg C with annual C seques-
tration of 1.94 ton C ha−1 yr−1 from 1990 to 2018, in which Penn-
sylvania had the greatest C sequestration with 0.35 ton C ha−1 yr−1

and Indiana had the least with 0.05 ton C ha−1 yr−1. Considering land
cover changes and harvests, forests of the northern US sequestered 1.73
Pg C (forest C changed from 6.23 to 7.96 Pg C) during 1990–2018,
which is an annual rate of 0.88 ton C ha−1 yr−1 (Table 4 and Fig. 4).
Net forest C gain had the highest value of 0.29 ton C ha−1 yr−1 in
Pennsylvania and the lowest value of 0.03 ton C ha−1 yr−1 in Indiana
(Table 4). In addition, the AGB C, standing dead C, downed dead C,
litter C, and soil organic C comprised 15.99–23.10%, 3.17–3.45%,
2.30–2.54%, 2.47–2.83%, and 68.08–76.07% of total forest C across the
northern US from 1990 to 2018.

Fig. 2. Average predicted and observed AGB C and
soil C at the second inventory of the matrix models
and the ForCsv2 (a), average predicted and observed
standing dead C, downed dead C, and litter C at the
second inventory of the matrix models (b) with the
95% confidence interval of the observed mean va-
lues. Based on definitions of forest C pools, we only
compared average AGB C and soil organic C pre-
dicted by matrix models and ForCsv2. (Note:
1Mg ha−1= 1 ton ha−1).
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3.5. Spatial characterizations of forest C

In consideration of land cover changes and harvests, the spatial
distributions of C density of AGB, standing dead, downed dead, litter,
and soil (ton ha−1) across the northern US were characterized at a
resolution of 200m×200m based on improved matrix models (Fig. 5).
The average density of AGB C, standing dead C, downed dead C, litter
C, and soil organic C was 59.44, 6.06, 5.19, 15.73, and 138.27 ton
ha−1, respectively, during 1990–2018 (Fig. 5). The highest forest C
stocks shown on the maps were predicted by the matrix models in three
states: Maine, New Hampshire, and Vermont.

3.6. Uncertainty analysis

To quantify the uncertainty induced by land cover changes and
harvests, fuzzy sets were constructed for repeating randomization
processes to generate forest C uncertainty maps (Fig. 6). We examined

the uncertainties of land cover change and harvest impacts on five
forest C pools through model 12, which are represented by average
value of predicted forest C and its relative standard deviation. Gen-
erally, the absolute uncertainties of land cover change and harvest
impacts on standing dead C, downed dead C, and litter C were lower
than 4.50 ton ha−1 (Fig. 6b, c, d). In comparison, high uncertainties of
soil organic C and AGB C storage were at about 12–40 ton ha−1 in the
northern Michigan, Wisconsin, Minnesota, and Maine, New Hampshire,
and New York (Fig. 6a, e).

4. Discussion

4.1. Forest carbon estimation comparisons

The average density of AGB C, standing dead C, downed dead C,
litter C, and soil organic C were 62.29, 7.13, 6.52, 16.98, and 142.75
ton ha−1, respectively, in the northern US. Grouping the countries by

Fig. 3. Observed and predicted AGB C (a, b) and soil C (c, d) at the second inventory of the matrix models and the ForCsv2, observed and predicted standing dead C
(e), downed dead C (f), and litter C (g) at the second inventory of the matrix models. Based on definitions of forest C pools, we only compared AGB C and soil organic
C predicted by matrix models and ForCsv2.
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main forest region in Europe, the average range of forest C (including C
stored in stem, branch, foliage, and root) for all countries and stands is
153.2 ton ha−1 for P. abies and 171.2 ton ha−1 for F. sylvatica. with
30 cm DBH (Neumann et al., 2016a). Our results for AGB C is lower
than European forest C estimates. In addition, our model estimated net
annual forest C sequestration rate at 1.94 ton C ha−1 yr−1 during
1990–2018, falling in the range of historically reported estimates from
0.97 to 2.32 ton C ha−1 yr−1 (Birdsey et al., 1993; Turner et al., 1995;

Heath et al., 2011; Zheng et al., 2011; Woodall et al., 2015b). Globally,
it has been reported that the current forest C stock is estimated to be
861 ± 66 Pg C, with 42% in live biomass (above- and below-ground),
8% in deadwood, 5% in litter, and 44% in soil (a depth of 1m) (Pan
et al., 2011). In comparison, our predictions of AGB C, deadwood C,
litter C, and soil organic C (a depth of 1m) were made up 16–23%,
5–6%, 2–3%, and 68–76% of total forest C across the northern US from
1990 to 2018, respectively. Obviously, our results for soil organic C
stocks are higher than global estimates, but AGB C, deadwood C, and
litter C are all lower. However, our results are consistent with Woodall
et al.'s (2015b) findings in terms of total C stocks in the continuous US.
This improved empirical-based matrix modeling provided con-
temporary forest C predictions considering effects of land cover changes
and harvests on diameter growth, mortality, and recruitment coupling
with big datasets such as Landsat or large scale NFI data, which is in
principle more accurate and reasonable. Therefore, forest C simulations
using process-based models or other empirical models while con-
sidering disturbances should be carefully calibrated and validated using
inventory data to avoid overestimation or underestimation in forest C
predictions.

4.2. Consideration of uncertainty

Taking into consideration uncertainty is especially critical when
studying the forest C dynamics because forests are highly complex
dynamic ecosystems constantly intervened by human activities such as
land cover changes and harvests (Miehle et al., 2006; Ma et al., 2019).
In general, there are three uncertainty sources in forest C simulations,
namely, parameter uncertainty, scenario uncertainty, and model un-
certainty (Lloyd and Ries, 2007). Here, we focused on quantifying the
parameter uncertainty from the land cover change and harvest impacts
by incorporating detailed land cover change histories derived from the
NLCD data and specified harvesting information from the NFI data in
terms of fuzzy set theory which describes uncertainty in terms of
membership degree (Weckenmann and Schwan, 2001). In this study,
we used a two-step approach to estimate parameter uncertainty in the
forest C predictions. First, Monte Carlo simulations (Fichthorn and
Weinberg, 1991) were used to produce random realizations of possible
parameters thus generating the average and relative standard deviation
of outputs. Then uncertainty in forest C predictions from land cover
changes and harvest activities in terms of fuzzy sets determined the
level of output uncertainty caused by uncertain parameter inputs. The
uncertainty range of outcomes related to land cover changes and har-
vests indicated these human activities to be perhaps the most important
uncertainty regarding the strength of the forest C sequestration.

Nevertheless, we only estimated the possible ranges in forest C
predictions as an index of uncertainty from land cover changes and
harvests due to the complexity of modeling human intervention pro-
cesses in forests. In addition, we did not consider spatial auto-correla-
tion for absolute uncertainties in this study. Admittedly, this study only
considered very limited and narrow sources of uncertainty thus caution
should be extended to applying the uncertainty as drivers of forest C
flux. Therefore, more accurate and deeper sources of uncertainty can be
explored to reduce uncertainty associated with forest C predictions. In
all, it is a challenging task to account for numerous sources of un-
certainty in forest C predictions based on matrix models.

4.3. Forest C storage changes and factors contributing to change

Forests comprise 65% of land area and are the largest terrestrial C
sink on the planet (Pan et al., 2011). Deforestation and forest de-
gradation, however, release a tremendous amount of the sequestrated C
back to the atmosphere. The Intergovernmental Panel on Climate
Change (IPCC) indicates that C emissions and removals associated with
land use and cover changes can be attributed to specific activities
(IPCC, 2013). In this study, we estimated that land cover changes

Table 3
Average annual land cover (km2 yr−1, percent of forest area change) in the
northern US during 2001–2011 from the National Land Cover Database
(NLCD). The land cover classification system is used by NLCD2011, which is
modified from the Anderson Land Cover Classification System.

State Affa Defb Netc

Minnesota 162 (0.14%) −117 (0.10%) 45 (0.04%)
Wisconsin 101 (0.13%) −153 (0.20%) −52 (0.07%)
Illinois 31 (0.04%) −73 (0.09%) −42 (0.05%)
Indiana 24 (0.05%) −34 (0.07%) −10 (0.02%)
Michigan 218 (0.27%) −163 (0.20%) 55 (0.07%)
Ohio 53 (0.09%) −121 (0.21%) −68 (0.12%)
Pennsylvania 55 (0.09%) −138 (0.21%) −83 (0.12%)
New York 25 (0.04%) −139 (0.20%) −114 (0.16%)
Vermont 5 (0.04%) −17 (0.13%) −12 (0.09%)
New Hampshire 9 (0.07%) −26 (0.20%) −17 (0.13%)
Maine 95 (0.21%) −279 (0.63%) −184 (0.42%)
Total 778 (1.16%) −1260 (2.24%) −482 (1.08%)

Note: Aff=afforestation, Def= deforestation.
a Afforestation includes land area changes from cropland and grassland to

forestland.
b Deforestation includes land area changes from forestland to cropland and

grassland.
c Net change=Aff+Def.

Table 4
Annual forest C (1000 ton yr−1) changes subject to land cover changes (LCC)
and harvests in the northern US during 1990–2018.

State Affa Defb LCCc Frfd Harveste Netf

Minnesota 194 −838 −644 14,343 −3259 10,440
Wisconsin 123 −1258 −1135 14,506 −4153 9218
Illinois 35 −672 −637 4061 −921 2503
Indiana 28 −349 −321 3625 −1128 2176
Michigan 257 −1432 −1175 13,715 −3169 9371
Ohio 66 −1143 −1077 11,533 −1274 9182
Pennsylvania 69 −1379 −1310 23,910 −2632 19,968
New York 37 −1413 −1376 19,775 −2230 16,169
Vermont 9 −202 −193 4843 −101 4549
New Hampshire 13 −308 −295 5048 −1721 3032
Maine 157 −2318 −2161 16,767 −4928 9678
Total 988 −11312 −10324 132,126 −25516 96,286

Note: Aff=afforestation, Def= deforestation, Frf= forests remaining forests.
a Afforestation includes land area changes from cropland and grassland to

forestland. C gains including soil C through afforestation were estimated using
C accumulation tables for afforestation (Smith et al., 2006).

b Deforestation includes land cover changes from forestland to cropland and
grassland. C losses through deforestation were estimated using average forest
AGB C density from the Forest Inventory and Analysis (FIA) data, assuming that
20% of the aboveground forest C remained after forest became non-forest every
year (Zheng et al., 2011). Soil C losses were calculated using soil C stocks
(Smith et al., 2006) and a conversion loss of 0.25 for the 28-year period during
1990–2018.

c LCC=CAff+CDef.
d C sequestration by forests remaining forests was estimated using matrix

models.
e Effects of harvest (excluding the amount of C stored in wood products) on C

sequestration using matrix models.
f Net C change=CAff+CDef+ CFrf+ CHarvest. Negative numbers indicate

carbon sources (i.e. sum of annual C decrease) while positive numbers represent
carbon sinks (i.e. sum of annual C increment).
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(afforestation+ deforestation) reduced the forest C sink by 0.15 ton C
ha−1 yr−1 during 1990–2018, accounting for 29% of C reductions
across the northern US. Obviously, the periodic trend was a decline in
forest C sink strength due to greater deforestation than afforestation
without considering effects of forests remaining forests growth. Ad-
ditionally, conversion between forestland and non-forestland resulted
in a net loss of 482 km2 yr−1 forestland across the northern US every
year during 2001–2011. Such a large loss of forest area can be partly
explained by the inaccurate distinction between deforestation and in-
tensive management operations such as clearcutting regeneration
techniques. As some deforestation might be inaccurately ascribed to
forest management operations there would effectively be no change in
land use (Woodall et al., 2016). Prior to 1985, uncertainty in land cover
change data induced a wide margin of forest C estimates. Uncertainty in
forest C estimates due to land cover change was reduced by nearly 50%
after 1985, largely due to increased spectral and spatial resolution,
improved mapping capabilities, and increased data availability (Sleeter
et al., 2018). Additionally, our results should be interpreted in an ap-
propriate context as we only focus on forest C changes in the forestland,
but not C stored in the grassland and cropland. With the land cover
changes, we only considered the major pools of AGB C and soil C
transferred from grassland and cropland to forestland and from for-
estland to grassland and cropland. We did not consider the transfers of
standing dead C, downed dead C, and litter C to and from different land
cover categories. Therefore, our forest C simulations were subject to the
bias caused by the changes in land cover. Although maintaining for-
estland via conservation easements will be one policy consideration in
the future, additional approaches such as reforestation and afforesta-
tion might be needed to ensure terrestrial C accumulation within di-
verse land covers in a context of global change.

Forest harvesting transfers C within forest ecosystems from live to
dead wood, and outside of forest ecosystems to atmosphere and harvest
products (Sleeter et al., 2018). Although fluxes of C due to harvest
activities varied over time, our study estimated that forest harvesting
accounted for 71% of C reductions through harvest products across the
study region, with a decline of forest C sink by 25.52 Tg C yr−1 (0.38
ton C ha−1 yr−1) during 1990–2018. This C removal estimate of har-
vesting aligns with numerous other studies, largely based on FIA plots.
For instance, the US Environmental Protection Agency (EPA) estimated
harvest removals at 143 Tg C in 1990, 134 Tg C in 2000, and 95 Tg C in
2009 (EPA, 2011; Williams et al., 2012), whereas Sleeter et al. (2018)
estimated the combined harvest+ emission removal at 135, 133, and
84 Tg C yr−1 for the same years. More generally, forest harvest C re-
movals have been estimated in a range of studies spanning different
temporal periods and applying different modeling, and range from 90
to 150 Tg C yr−1 (Williams et al., 2016). Our C removal estimate of
harvest is substantially lower than these studies as we only considered C
transfers to harvested products, but did not consider transfers within

forest ecosystems from live to dead wood and outside of forest eco-
systems to atmosphere through direct C emissions across the entire
nation. However, our results are consistent with a previous study
(Zheng et al., 2011) which estimated forest harvest removals by
23.86–27.21 Tg C yr−1 during 1992–2001 covering the same states.

Prior studies have shown evidence of increases in biomass across
many forest types caused by forest growth (Johnson et al., 2000;
McMahon et al., 2010). In our study, we found that forests remaining
forests growth would increase the forest C sink by 1.94 ton C ha−1 yr−1

during 1990–2018, that over offset the C reductions from land cover
changes (0.15 ton C ha−1 yr−1) and harvests (0.38 ton C ha−1 yr−1)
and therefore resulted in net C increments (1.41 ton C ha−1 yr−1) in
this area. This result indicated that the northern US region served as a C
sink in the past 28 years when considering land cover changes and
forest harvesting activities. Moreover, the estimated forest C transferred
to harvested wood products was 0.33 ton C ha−1 yr−1. The forest C
transferred to the wood products pool can be considered an addition to
the C stored in the forests. As a renewable resource, harvested wood
products may be recycled and reclaimed for energy resulting in a slow
decomposition process (Lippke et al., 2010). The cumulative C stored in
these products is a substantial store of C as the wood products in
buildings have lives of 80 yr or more (Winistorfer et al., 2007, US EPA,
2018).

4.4. Spatially explicit and continuous forest C estimation

Under the UNFCCC, the US is required to report GHG emissions and
sinks each year from 1990 to near present (US EPA, 2018). Forest
ecosystems alone account for over 80% of all terrestrial aboveground C
and over 70% of the C stored in soil (Balshi et al., 2007). Due to the
importance of forest C storage to the global C budget an understanding
of the contemporary role of forest C sequestration in forests is required
(Pan et al., 2011). Our study extended prior work (Woodall et al.,
2015a,2015b; Domke et al., 2016, 2017; Ma et al., 2018a,2018b; Ma
et al., 2019) from being limited to a plot-network to being spatially
explicit and continuous across the northern US. Based on matrix models
with NFI, Landsat, and DEM data, the average forest C density maps of
AGB, standing dead, downed dead, litter, and soil during 1990–2018
contain much more spatial details than the plot-based forest C estimates
(Woodall et al., 2015a,2015b; Domke et al., 2016, 2017; Ma et al.,
2018a,2018b; Ma et al., 2019). Spatially explicit forest C estimates
which are also spatially continuous are critical for future forest C
modeling and forest C estimation. Additionally, our model predictions
indicated that average forest C density in the New England region is 2–6
times larger than that of forest C pools in the Great Lakes region. This
may be related to New England tree density being much higher than
that of the Great Lakes region. This result is consistent with historical
studies which suggested average forest C density of New England region

Fig. 4. Accumulated forest carbon storage changes in different pools subject to land cover changes and harvests from 1990 to 2018.
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Fig. 5. Predicted average aboveground live biomass, standing dead carbon,
downed dead carbon, litter, and soil organic carbon subject to land cover
changes and harvests in 200m resolution for the northern US during
1990–2018. (Note: 1 Mg ha−1= 1 ton ha−1).

(caption on next page)
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was greater than that of the Great Lakes region (Domke et al., 2017; Cao
et al., 2019; Ma et al., 2019). Our study based on available NFI,
Landsat, and DEM data using matrix models provided a baseline for
future forest C estimates in the northern US. The data products devel-
oped in this study reflect C density estimates for all forest ecosystem
pools for the period 1990 to 2018. These estimates can be used by state
and local entities interested in forest C estimation and reporting. These
products can also serve as a basis for comparison as new methods and
models are developed to leverage high resolution, remotely sensed in-
formation with NFI data.

5. Conclusions

In this study we used matrix models coupled with NFI, Landsat,
DEM, and NLCD data to estimate the spatial and temporal distributions
of forest AGB C, standing dead C, downed dead C, litter C, and soil C in
the northern US from 1990 to 2018 while considering land cover
changes and harvests. We estimated land cover changes and forest
harvesting reduced the forest C sink by 0.15 ton C ha−1 yr−1 and 0.38
ton C ha−1 yr−1, accounting for 29% and 71% of forest C reductions
over the study period. However, forests remaining forests sequestered
2.38 Pg C with annual C sequestration of 1.94 ton C ha−1 yr−1 from
1990 to 2018. Therefore, the net forest sink of the northern US in-
creased 1.73 Pg C during 1990–2018, which is an annual rate of 0.88
ton C ha−1 yr−1. In conclusion, our study provides foundations for
future GHG estimation and reporting and opportunities to improve
modeling, estimation, and attribution of forest C dynamics across spa-
tial scales in support of inventory, monitoring, and reporting activities.
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