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Abstract
Effective	monitoring	of	native	bee	populations	requires	accurate	estimates	of	popu‐
lation	size	and	relative	abundance	among	habitats.	Current	bee	survey	methods,	such	
as	netting	or	pan	trapping,	may	be	adequate	for	a	variety	of	study	objectives	but	are	
limited	by	a	failure	to	account	for	imperfect	detection.	Biases	due	to	imperfect	de‐
tection	could	result	in	inaccurate	abundance	estimates	or	erroneous	insights	about	
the	response	of	bees	to	different	environments.	To	gauge	the	potential	biases	of	cur‐
rently	employed	survey	methods,	we	compared	abundance	estimates	of	bumblebees	
(Bombus spp.)	derived	from	hierarchical	distance	sampling	models	(HDS)	to	bumble‐
bee	counts	collected	from	fixed‐area	net	surveys	(“net	counts”)	and	fixed‐width	tran‐
sect	counts	(“transect	counts”)	at	47	early‐successional	forest	patches	in	Pennsylvania.	
Our	HDS	models	indicated	that	detection	probabilities	of	Bombus	spp.	were	imper‐
fect	and	varied	with	survey‐	and	site‐covariates.	Despite	being	conspicuous,	Bombus 
spp.	were	not	reliably	detected	beyond	5	m.	Habitat	associations	of	Bombus	spp.	den‐
sity	were	similar	across	methods,	but	the	strength	of	association	with	shrub	cover	
differed	between	HDS	and	net	counts.	Additionally,	net	counts	suggested	sites	with	
more	grass	hosted	higher	Bombus	spp.	densities	whereas	HDS	suggested	that	grass	
cover	was	associated	with	higher	detection	probability	but	not	Bombus	spp.	density.	
Density	estimates	generated	from	net	counts	and	transect	counts	were	80%–89%	
lower	than	estimates	generated	from	distance	sampling.	Our	findings	suggest	that	
distance	modelling	 provides	 a	 reliable	method	 to	 assess	Bombus	 spp.	 density	 and	
habitat	 associations,	while	 accounting	 for	 imperfect	detection	 caused	by	distance	
from	 observer,	 vegetation	 structure,	 and	 survey	 covariates.	 However,	 detection/
non‐detection	data	collected	via	point‐counts,	line‐transects	and	distance	sampling	
for	Bombus	spp.	are	unlikely	to	yield	species‐specific	density	estimates	unless	indi‐
viduals	can	be	identified	by	sight,	without	capture.	Our	results	will	be	useful	for	in‐
forming	the	design	of	monitoring	programs	for	Bombus spp. and	other	pollinators.
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1  | INTRODUC TION

Native	 bees	 in	 North	 America	 are	 important	 pollinators	 of	 both	
crops	and	wild	plants	 (Ashman	et	al.,	2004;	Garibaldi	et	 al.,	2013;	
Kremen,	Williams,	&	Thorp,	2002).	 Indeed,	bees,	 along	with	other	
pollinators,	 are	 considered	 keystone	 species	 that	 facilitate	 sexual	
reproduction	for	85%	of	angiosperms	worldwide	 (Allen‐Wardell	et	
al.,	1998;	Kevan,	1990).	In	agricultural	portions	of	the	United	States,	
pollination	services	provided	by	native	bees	are	valued	at	$3	billion	
USD,	 annually	 (Calderone,	 2012).	 Even	 as	 the	 ecological	 and	 eco‐
nomic	 importance	 of	 native	 bees	 is	 recognized,	 there	 is	 a	mount‐
ing	evidence	 that	many	bee	 species	 are	declining	 (Cameron	et	 al.,	
2011;	Goulson,	Lye,	&	Darvill,	2008).	These	declines	include	not	only	
managed	species	like	Apis mellifera	but	also	North	American	native	
taxa	like	bumblebees	(Bombus	spp.)	and	others	(Cameron	et	al.,	2011;	
Goulson,	Nicholls,	Botías,	&	Rotheray,	2015;	Potts	et	al.,	2010).	For	
example,	the	rusty	patched	bumblebee	(Bombus affinis)	was	listed	as	
Federally	 Endangered	under	 the	Endangered	Species	Act	 in	 2017,	
and	 several	 other	Bombus	 species	 have	 been	 proposed	 for	 listing	
(Jepsen,	Evans,	Thorp,	Hatfield,	&	Black,	2013).	Although	the	drivers	
responsible	for	population	declines	vary	among	species,	threats	in‐
clude	pesticides,	non‐native	pathogens	and	habitat	loss/degradation	
(Goulson	et	al.,	2015;	Persson,	Rundlöf,	Clough,	&	Smith,	2015).

Still,	 while	 evidence	 is	 fairly	 clear	 regarding	 bee	 declines	 for	
some	regions	and/or	species,	the	status	of	many	bee	populations	re‐
mains	unknown	(Tepedino,	Durham,	Cameron,	&	Goodell,	2015).	In	
2015,	the	United	States	Pollinator	Health	Task	Force	proposed	the	
development	of	national	pollinator	monitoring	programs	to	estimate	
population	 trends	 and	 identify	 environmental	 stressors	 affecting	
native	 bees	 (Vilsack	&	McCarthy,	 2015).	 Central	 to	 accomplishing	
these	goals	is	the	accurate	estimation	of	bee	population	sizes	across	
species,	genera,	morphospecies	and	functional	groups	to	establish	a	
reference	benchmark	 for	evaluating	population	 trends,	 abundance	
across	different	habitats	and	assessing	the	outcomes	of	conserva‐
tion	interventions.

Although	a	variety	of	methods	have	been	commonly	used	to	sam‐
ple	wild	bee	populations	 (e.g.,	 fixed‐area	aerial	netting,	bee	bowls,	
vane	traps),	each	 is	 limited	by	 inherent	methodological	biases	that	
make	inference	of	true	densities	difficult.	In	particular,	few	methods	
account	for	the	bias	caused	by	imperfect	detection	(e.g.,	Loffland	et	
al.,	2017)	in	that	only	bees	captured	or	otherwise	detected	by	an	ob‐
server	are	counted	and	subsequently	modelled.	Regardless	of	sam‐
pling	method,	only	a	fraction	of	the	individuals	present	at	a	location	
will	be	detected	(Kéry	&	Schmidt,	2008).	Raw	counts,	which	fail	to	
account	for	detection	probability,	will	invariably	generate	estimates	
of	abundance	that	are	biased	low	if	some	individuals	are	present	but	
not	detected	(Kéry	&	Schmidt,	2008;	MacKenzie	et	al.,	2002,	2005	
).	Though	such	methods	have	merit	under	many	circumstances,	ac‐
curate	estimate	of	abundance,	or	changes	in	abundance	over	space	
and	time,	requires	consideration	of	methodological	biases	like	those	
caused	 by	 imperfect	 detection	 (MacKenzie	 et	 al.,	 2005).	 In	 addi‐
tion,	failure	to	account	for	imperfect	detection	can	obfuscate	hab‐
itat	 associations,	 particularly	when	 the	habitat	 conditions	 that	 are	

attractive	to	the	organism	also	make	it	more	difficult	for	observers	
to	detect	the	organism	(MacKenzie,	2006).	Consequently,	research‐
ers	might	be	led	to	believe	that	certain	habitat	conditions	(associated	
with	low	bee	counts)	are	low‐quality	habitats	while	bees	may,	in	real‐
ity,	be	of	equal/greater	abundance	but	less	detectable	or	vice	versa	
(MacKenzie,	2006).

Here,	we	demonstrate	 the	utility	of	hierarchical	 distance	 sam‐
pling	 (HDS)	 for	estimating	habitat‐specific	density	 (i.e.,	 abundance	
per	 unit	 area)	 and	detection	 probability	 of	 bumblebees	 in	 decidu‐
ous	 forest	 of	 central	 Pennsylvania.	Hierarchical	 distance	 sampling	
is	an	analytical	technique	that	allows	researchers	to	model	habitat‐
specific	abundance	and	heterogeneity	in	species	detection	within	a	
unified	framework	(Hedley	&	Buckland,	2004;	Kéry	&	Royle,	2015;	
Royle,	 Dawson,	 &	 Bates,	 2004).	 It	 builds	 upon	 standard	 distance	
sampling,	 which	 is	 a	 widely	 used	 method	 for	 estimating	 animal	
abundance	 while	 for	 accounting	 imperfect	 detection	 (Buckland,	
Anderson,	 Burnham,	 &	 Laake,	 2005).	 However,	 HDS	 differs	 from	
standard	distance	sampling	in	that	it	allows	for	spatial	variability	in	
abundance	and	detection	across	multiple	sites	to	be	explained	as	a	
function	of	covariates	(Kéry	&	Royle,	2015).	Although	other	methods	
exist	for	estimating	abundance	while	accounting	for	detection	(e.g.,	
occupancy,	N‐mixture,	 etc.),	most	 require	multiple	 visits,	 with	 the	
assumption	of	population	closure	between	surveys	 (Kéry	&	Royle,	
2015;	MacKenzie	et	al.,	2005).	Distance	sampling	may	be	particu‐
larly	useful	 for	 insect	studies	because	 it	 requires	only	a	single	site	
visit	to	estimate	detection	probability	and	many	short‐lived	insects	
(like	some	bee	species)	may	not	emerge	long	enough	to	allow	mul‐
tiple	visits	per	 site.	Distance	 sampling	has	been	 routinely	used	by	
wildlife	 researchers	 to	 model	 abundance	 and	 detection	 functions	
for	 multiple	 vertebrate	 taxa	 (Hammond	 et	 al.,	 2002;	 Karanth	 &	
Sunquist,	1995;	Marques,	Thomas,	Fancy,	&	Buckland,	2007).	To	our	
knowledge,	no	previous	research	has	demonstrated	the	use	of	dis‐
tance	sampling	 to	estimate	bee	abundance	or	habitat	associations	
(Bendel,	Hovick,	Limb,	&	Harmon,	2018).	Our	goals	were	to:	(a)	use	
HDS	to	evaluate	how	Bombus	spp.	detection	probability	varies	with	
distance,	survey	technique	and	habitat	attributes;	(b)	compare	abun‐
dance	and	density	estimates	generated	from	HDS	to	standard	sam‐
pling	approaches	(fixed‐width	transects	and	fixed‐radius	net	counts)	
that	do	not	account	for	imperfect	detection;	and	(c)	identify	site‐spe‐
cific	habitat	relationships	for	Bombus	spp.	across	sampling	methods.

2  | MATERIAL S AND METHODS

2.1 | Study area

We	surveyed	bees	within	the	Pennsylvania	Wilds	region	of	north‐
central	 Pennsylvania,	 focusing	 on	 Centre	 and	 Clinton	 Counties	
(Figure	 1).	 This	 region	 lies	 within	 the	 Appalachian	 Plateau	 of	 the	
northcentral	Appalachian	Mountains	and	is	characterized	by	a	rug‐
ged	 series	 of	 high‐elevation	 ridges	 (300–600	m.a.s.l.)	 punctuated	
by	low	valleys	along	the	Allegheny	Front	(Shultz,	1999).	Vegetation	
communities	 within	 the	 Pennsylvania	 Wilds	 are	 chiefly	 mature	
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deciduous‐	or	mixed	forest	 (80–100	years,	post‐harvest;	McCaskill	
et	al.,	2009)	with	oak	(Quercus spp.),	hickory	(Carya	spp.)	and	east‐
ern	 hemlock	 (Tsuga canadensis)	 among	 the	 most	 common	 species	
(Wherry,	Fogg,	&	Wahl,	1979).	We	concentrated	our	efforts	within	
deciduous	 forests	 of	 Sproul	 and	Moshannon	 State	 Forests	where	
oak	 silviculture	 aims	 to	 restore	 young	 forest	 age	 classes	 through	
timber	 harvest	 and	 regeneration.	 Because	 silvicultural	 practices	
within	these	two	State	Forests	aim	to	restore	habitat	for	forest	wild‐
life,	we	focused	our	survey	efforts	within	regenerating	oak	stands,	
0–9	years	post‐management.	During	surveys,	a	variety	of	flowering	
plants	were	available	to	Bombus	spp.	including	low‐growing	shrubs	
like	 hillside	 blueberry	 (Vaccinium pallidum)	 as	 well	 as	 herbaceous	
forbs	 like	 eastern	 teaberry	 (Gaultheria procumbens)	 and	 common	
cow‐wheat	(Mellampyrum linerare).	Most	tall	woody	plants	were	not	
flowering	except	for	Devil’s	walkingstick	 (Aralia spinosa),	which	we	
detected	only	within	a	few	of	our	sites.

2.2 | Site selection and survey placement

We	 randomly	 selected	 47	 timber	 stands	 within	 Sproul	 and	
Moshannon	 State	 Forests	 that	 had	 been	 recently	 treated	 with	
overstory	 removal	 (basal	 area:	 2.3–9.2	 m2/ha).	 We	 attempted	
to	 maximize	 the	 distance	 between	 sites	 such	 that	 our	 average	
distance‐to‐nearest‐site	 was	 1,110	m	 (SE:	 107	m;	 range:	 464–
4,516	m).	This	reduced	the	likelihood	of	individuals	being	detected	
at	multiple	sites	(Redhead	et	al.,	2016).	Timber	harvest	units	aver‐
aged	23.14	ha	(SD:	18.62	ha;	range:	2.54–103.92	ha)	in	size.	A	sin‐
gle	survey	point	was	located	within	each	harvest	using	a	random	
point	 generator	 tool	 in	ArcGIS	10.2	 (ESRI,	 2011).	We	attempted	
to	minimize	edge	effects	by	ensuring	points	were	relatively	con‐
sistent	 in	 their	 placement	with	 respect	 to	 timber	harvest	 edges;	
sampling	was	 restricted	 to	 areas	 at	 least	80	m	 from	 the	edge	of	
timber	harvests	and	our	final	sample	of	sites	was	a	mean	distance	
of	118.67	m	(SE:	6.24	m).

2.3 | Transect surveys

At	each	point,	we	 sampled	Bombus	 spp.	using	 three	 survey	 types:	
(a)	 distance	 transects;	 (b)	 transect	 counts;	 and	 (c)	 aerial	 netting	
counts.	 Both	 distance	 transects	 and	 fixed‐width	 transect	 counts	
occurred	 simultaneously	 along	 66	m	 transects	 oriented	 north‐
to‐south	 and	 centred	 at	 each	point	 location.	Along	 each	 transect,	
observers	walked	 forward	at	 a	 constant	 rate	 (~1	m/min)	 such	 that	
the	observer	arrived	at	the	transect	end	after	30	min.	Prior	to	sur‐
veys,	each	observer	(n	=	2)	was	trained	in	distance	estimation	using	
dummy	transects	along	which	bees’	distances	were	physically	meas‐
ured	after	each	attempted	estimate	using	a	measuring	 tape.	Once	
all	observers	were	consistently	estimating	distances	within	±0.25	m,	
field	 surveys	were	 conducted	with	 a	2	m	 long	measuring	 stick	 for	
constant	reference.	While	walking	along	each	survey	transect,	 the	
observer	recorded	Bombus	spp.	detections	such	that	a	final	count	(#)	
was	generated	for	each	survey	coupled	with	the	distances	(±0.25	m)	
between	each	Bombus spp.	and	the	transect.	We	did	not	attempt	to	
identify	 species	or	 sex	 for	Bombus	 spp.	 detected	 in	 situ	 therefore	
counts	were	likely	multiple	species	and	sexes.	Survey	data	for	each	
point	included	a	Bombus	spp.	count	and	their	corresponding	detec‐
tion	 distances.	We	 discerned	 between	Bombus	 spp.	 and	Xylocopa 
virginica by	abdomen	pubescence	(Michener,	McGinley,	&	Danforth,	
1994).	Distances	were	recorded	as	the	perpendicular	distance	from	
the	transect	to	each	bee	and	noted	as	the	distance	at	which	the	bee	
was	first	detected.	While	walking	along	each	transect,	observers	at‐
tempted	to	keep	track	of	previously	detected	Bombus	spp.	to	avoid	
double‐counting	 individuals	that	might	be	moving	among	floral	re‐
sources	 near	 the	 transect.	We	 anecdotally	 observed	 this	 method	
largely	 avoided	 double‐counting,	 as	 Bombus	 spp.	 are	 generally	
large‐bodied,	conspicuous	insects	and	easily	audible	in	flight.	All	raw	
counts	and	detection	distances	constituted	our	“distance	transect”	
data	(a)	and	raw	counts	within	2	m	of	the	transect	constituted	our	
“transect	count”	data	(b).

F I G U R E  1  Survey	locations	within	
the	Pennsylvania	Wilds	where	we	
conducted	surveys	for	Bombus	spp.	within	
regenerating	timber	harvests
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We	 followed	 standard	 bee	 survey	 methods	 to	 avoid	 common	
causes	of	detection	 failure	 (Ward	et	al.,	2014);	Surveys	were	con‐
ducted	only	in	bright	light	conditions,	low	wind,	warm	days	(≥16°C),	
and	only	during	late	morning	and	afternoon	(10:00–17:00).	Though	
we	attempted	to	use	study	design	to	reduce	the	potential	impacts	of	
these	factors	on	Bombus spp.	detectability,	we	also	 included	them	
in	detection	modelling.	At	the	time	of	each	survey,	we	recorded:	(a)	
surveyor	ID;	(b)	cloud	cover;	(c)	time	of	day;	and	(d)	Beaufort	Wind	
Index.	 Local	 temperature	 data	 were	 downloaded	 from	 Weather	
Underground	 from	 the	 KUNV	 weather	 station	 in	 State	 College,	
Pennsylvania	 (Weather	Underground	 Inc.,	2018).	Cloud	cover	was	
estimated	in	the	field	to	the	nearest	25%	(0%–100%).	Beaufort	Wind	
Index	was	measured	on	an	incremental	scale	from	0	to	5	with	0	rep‐
resenting	no	wind	 at	 all	 (i.e.,	 smoke	would	 theoretically	 rise	with‐
out	drift)	and	5	representing	high	winds	such	that	entire	trees	sway	
in	the	wind	(Hau	&	Von	Renouard,	2006).	We	avoided	surveying	in	
wind	indices	>	3,	and	thus	considered	two	categories	of	wind:	0–1:	
“low”,	2–3:	“moderate”	in	our	analyses.	All	surveys	took	place	from	
10	to	25	July,	2017.

2.4 | Net counts

To	measure	Bombus	spp.	abundance	within	fixed‐radius	net	counts,	
we	 created	 15	m	 radius	 count	 surveys	 centred	 around	 each	 point	
location	 (the	centre	of	each	distance	transect).	Netted	bee	counts	
took	place	immediately	upon	the	conclusion	of	transect	surveys	(de‐
scribed	above).	Within	each	fixed‐radius	plot,	a	single	observer	spent	
30	min	seeking‐	and	attempting	to	capture	all	Bombus	spp.	detected	
with	a	hand	net.	We	chose	fixed‐radius	net	sampling	because	it	is	a	
standard	sampling	technique	for	native	bees	 (Persson	et	al.,	2015;	
Potts,	Vulliamy,	Dafni,	Ne’eman,	&	Willmer,	2003;	Roulston,	Smith,	&	
Brewster,	2007)	and	would	therefore	serve	as	a	basis	for	comparison	
to	our	abundance	estimates	generated	from	HDS.	For	each	Bombus 
spp.	detected,	the	observer	attempted	to	capture	each	bee	using	a	
hand	net	(collapsible	15”	diameter	net,	17”	handle,	Bioquip	Product	
#7115CP)	and,	once	captured,	all	bees	were	held	captive	for	the	re‐
mainder	of	the	survey.	For	each	captured	bee,	the	timer	was	stopped	
while	the	observer	placed	 it	 into	a	plastic	zipper	bag	and	resumed	
immediately	 thereafter.	 This	method	 prevented	 us	 from	 recaptur‐
ing	and	double‐counting	bees	within	the	same	plot.	After	30	min	of	
survey	 time	had	elapsed,	each	Bombus	 spp.	was	 removed	 from	 its	
bag	with	 forceps,	 photographed	 for	 another	project,	 and	 released	
unharmed.	In	the	few	occasions	where	Bombus	spp.	were	observed	
but	evaded	capture,	they	were	treated	as	all	other	Bombus	spp.	cap‐
tured	for	the	purposes	of	this	study	(i.e.,	included).

2.5 | Habitat surveys

We	surveyed	regenerating	vegetation	structure	within	 timber	har‐
vest	units	from	15	June	to	15	July	2017.	Vegetation	surveys	shared	
their	centroid	with	Bombus	spp.	surveys.	Vegetation	data	quantified	
habitat	structure	of	woody	stems	and	herbaceous	understory,	rather	
than	 plant	 composition.	 All	 vegetation	 data	 were	 collected	 along	

three	50	m	radial	transects,	each	oriented	at	0°,	120°	and	240°	from	
point	 centre.	Along	 each	 transect,	we	 recorded	plant	 strata	 at	 10	
“stops”	(10	m	apart;	n	=	30/net	count	location).	Vegetation	strata	re‐
corded	at	each	stop	consisted	of	the	presence/absence	of	sapling,	
shrub,	 forb	and	grass/sedge.	Saplings	were	young	trees	<10	cm	 (in	
diameter	breast	height).	This	sampling	regime	gave	us	adequate	res‐
olution	to	assess	vegetation	structure	(15	stops/site)	while	remain‐
ing	of	 comparable	 scale	 to	our	bee	 sampling	 transects	 (33	m).	We	
found	vegetation	structure	to	be	highly	correlated	across	scales	as	
large	as	100	m	and	therefore	believe	our	50	m	vegetation	plots	rep‐
resented	site	conditions	reasonably	well.	Shrubs	were	woody	plants	
with	multiple	primary	stems	(in	contrast	to	single‐stemmed	saplings).	
Forbs	were	broad‐leafed	dicotyledonous	plants	(e.g.,	Solidago	spp.).	
The	 plant	 category	 “grass”	 included	 any	 monocotyledonous	 plant	
(grasses,	sedges,	etc.).	We	recorded	plant	strata	with	an	ocular	tube	
such	that	only	strata	that	 intersected	with	crosshairs	 in	the	ocular	
tube	 were	 considered	 present	 (James	 &	 Shugart,	 1970).	 While	 a	
single	stop	could	include	multiple	strata	types,	each	stratum	could	
only	be	represented	once	per	stop	and	thus	each	site	could	have	a	
maximum	of	n	=	15	occurrences	for	each	stratum.	We	analyzed	plant	
strata	 values	 as	 percentages.	 Prior	 to	 all	 analyses,	 we	 calculated	
Spearman’s	rho	(ρ)	for	all	pairs	of	covariates	to	be	modelled.	Because	
none	were	strongly	correlated	(Spearman’s	ρ < 0.60),	no	covariates	
were	redundant	and	all	were	suitable	for	modelling.

2.6 | Hierarchical distance models

We	analyzed	distance	transect	data	(bee	counts	and	distances)	using	
HDS	 models	 implemented	 in	 the	 R	 package	 “unmarked”	 (Fiske	 &	
Chandler,	2011;	R	Core	&	Team,	2018).	The	package	unmarked	fits	
linear	models	in	a	maximum	likelihood	framework	and	can	be	com‐
bined	 with	 an	 Information‐Theoretic	 approach	 (Anderson,	 2007)	
for	the	purpose	of	model	selection	(e.g.,	using	Akaike’s	Information	
Criterion;	AIC;	Burnham	&	Anderson,	2002).	Hierarchical	distance	
models	 allowed	 us	 to	 create	 and	 rank	 candidate	 models,	 each	 of	
which	 contained	 independent	 model	 components	 for	 detection	
probability	 (p)	 and	 expected	 animal	 abundance	 (density;	 λ).	 HDS	
models	assume	(a)	subjects	are	accurately	identified	(e.g.,	no	false‐
presences);	(b)	that	all	subjects	on	the	transect	(distance	=	0	m)	are	
detected	perfectly	(p	=	1.0);	(c)	subjects	are	detected	at	their	original	
location	(i.e.,	movement	 is	not	 influenced	by	the	observer);	 (d)	dis‐
tances	are	accurately	measured;	and	(e)	detection	of	each	individual	
is	 independent	of	the	detection	of	all	other	individuals	(Thomas	et	
al.,	2010).	Bumblebees	appear	to	constitute	good	candidates	for	dis‐
tance	sampling	as	they	can	be	easily	identified	(to	genus)	in	the	field	
(Michener	et	al.,	1994),	are	easily	approached	by	observers	(Ward	et	
al.,	2014)	and	remain	relatively	still	during	pollination	such	that	accu‐
rate	distance	estimations	could	be	made	for	each	worker.	Although	
distances	 were	 measured	 in	 the	 field	 directly,	 we	 binned	 detec‐
tions	 as	 recommended	 by	 Buckland	 et	 al.,	 (2005):	 0–1,	 1–2,	 2–3,	
3–4	and	4–5	m.	Moreover,	to	prepare	distance‐based	transect	data,	
we	 truncated	 the	 outer	 10%	of	 our	 data	 such	 that	 analyses	were	
conducted	using	only	 the	 closest	 90%	of	Bombus	 spp.	 detections,	
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as	recommended	for	distance	analyses	by	Buckland	et	al.	(2005).	By	
truncating	 the	data	 in	 this	way,	all	detections	were	<5	m	from	the	
observer.

Distance	 models	 provide	 robust	 estimates	 of	 abundance	 by	
adjusting	 animal	 counts	 by	 the	 probability	 of	 detection	 for	 given	
distances	 (Buckland	 et	 al.,	 2005).	 This	 is	 accomplished	 by	 fitting	
detection	distance	data	 to	 a	 “detection	 function”	 that	 describes	 a	
decay	in	detection	probability	as	subjects	are	further	from	the	ob‐
server	 (Buckland	et	al.,	2005;	Kéry	&	Royle,	2015).	To	evaluate	an	
appropriate	detection	function,	we	evaluated	models,	each	fit	using	
one	of	the	following	detection	functions:	(a)	exponential;	(b)	hazard	
rate;	or	(c)	half‐normal	(Buckland	et	al.,	2005).	This	was	done	prior	to	
all	covariate	modelling.	Each	detection	function	is	used	to	estimate	
the	average	probability	of	detection	which	is	then	used	to	adjust	raw	
counts	such	that	density	predictions	can	be	made	(Buckland	et	al.,	
2005).	Once	the	most	appropriate	detection	function	was	selected	
based	on	AICc	rank,	it	was	used	to	model	detection	probability	and	
density	in	consecutive	models.	We	modelled	detection	probability	in	
two	tiers:	detection	tier	1	(survey	covariates	on	detection)	and	de‐
tection	tier	2	(habitat	covariates	on	detection).	Because	our	sample	
size	was	modest,	we	used	only	single‐covariate	detection	models	to	
avoid	overfitting	HDS	models.	Detection	tier	1	included	univariate	
models	 for	 (a)	 time	of	 day;	 (b)	 surveyor;	 (c)	 temperature;	 (d)	 cloud	
cover;	(e)	wind	index;	and	(f)	a	null	(intercept‐only)	model.	Detection	
tier	 2	 (fit	 independently	 of	 detection	 tier	 1)	 included	 univariate	
models	for	(a)	sapling	cover;	(b)	shrub	cover;	(c)	forb	cover;	(d)	grass	
cover;	and	(e)	a	null	model.	Within	both	model	tiers,	we	used	a	global	
habitat	model	(i.e.,	sapling	+	shrub	+	forb	+	grass)	for	density	to	en‐
sure	 that	variation	 in	density	was	 reasonably	well	 explained	while	
assessing	detection	probability.	We	considered	covariates	to	be	in‐
formative	if	they	were	both	>2.0	AICc	less	than	the	null	model	and	
had	β	coefficient	95%	confidence	intervals	that	did	not	include	zero.	
Using	 the	 informative	 covariates	 from	detection	 tiers	1	and	2,	we	
constructed	a	set	of	density	models	(habitat	covariates	on	density)	
that	accounted	for	 imperfect	detection:	 (a)	sapling	cover;	 (b)	shrub	
cover;	 (c)	 forb	cover;	 (d)	grass	cover;	and	 (e)	a	null	model.	The	null	
model	contained	only	intercept	terms	and	the	informative	parame‐
ters	for	detection.	Prior	to	modelling,	all	continuous	covariates	were	
standardized	using	the	scale	function	in	base	R.	Model	ranking	was	
done	using	 the	 “aictab”	 function	of	 the	package	 “AICcmodavg.”	All	
models	were	fit	assuming	a	Poisson	distribution	in	“gdistsamp”	and	
model	fit	was	assessed	by	calculating	a	variance	inflation	factor	(ĉ\
hat{c}\hat{c}\hat{c})	using	the	unmarked	function	“fitstats”	 (Kéry	&	
Royle,	2015).	We	considered	all	models	<2.0	AICc	to	be	competing	
and	equally	supported	by	the	data	(Burnham	&	Anderson,	2002).

2.7 | Poisson generalized linear models

We	used	a	Poisson	generalized	 linear	models	 in	R	 (using	 the	 “glm”	
function)	to	model	Bombus spp.	abundance	along	fixed‐radius	tran‐
sects	and	net	counts.	This	allowed	us	to	compare	habitat‐abundance	
relationships	generated	from	HDS	models	to	those	generated	from	
methods	that	do	not	account	for	detection	probability.	As	with	our	

HDS	models,	 Poisson	 regression	models	 allowed	 us	 to	model	 bee	
counts	as	a	function	of	habitat	covariates:	(a)	sapling	cover;	(b)	shrub	
cover;	 (c)	 forb	cover;	 (d)	grass	cover;	 and	 (e)	 a	null	 (intercept‐only)	
model.	We	modelled	 our	 fixed‐radius	 transect	 counts	 by	 truncat‐
ing	 all	HDS‐transect	 data	by	2	m	of	 the	 transect	 line	 and	 treating	
the	data	as	a	raw	count	(Hanley,	Awbi,	&	Franco,	2014;	Scheper	et	
al.,	 2015),	 which	 is	 a	 standard	 technique	 when	 conducting	 visual	
encounter	 surveys.	 Net	 count	 data	 were	 modelled	 in	 a	 compara‐
ble	manner	 such	 that	 raw	 counts	were	modelled	 as	 a	 function	 of	
habitat	 covariates.	We	did	 not	 account	 for	 imperfect	 detection	 in	
either	 of	 these	 models	 but	 rather	 modelled	 Bombus	 spp.	 count/
area	 interpreted	as	a	density.	We	again	used	an	 information‐theo‐
retic	approach	(Anderson,	2007)	with	model	ranking	based	on	AICc 
considering	models	<	2.0	AICc	to	be	equally	supported	by	the	data	
(Burnham	&	Anderson,	2002).	We	also	used	single‐covariate	models	
to	avoid	overly	complex	models	and	the	inclusion	of	uninformative	
parameters	within	top	models	(Arnold,	2010).

3  | RESULTS

We	detected	194	individual	Bombus spp.	within	5	m,	of	which	136	
were	within	2	m	of	 the	 transect	 line.	During	aerial	net	counts,	we	
captured	n = 201 Bombus	spp.	workers.	Of	the	bees	captured	during	
aerial	 net	 counts,	over	50%	were	B. impatiens,	with	 the	 remainder	
being	a	mixed	community	of	less	common	species	like	B. bimaculatus 
and B. vagans.

3.1 | Detection probability

Of	three	detection	function	models	we	ran,	the	best‐ranked	model	
included	an	exponential	detection	function	where	detection	prob‐
ability	>	5	m	from	the	transect	was	≈0	(Figure	2).	Using	an	exponen‐
tial	detection	 function,	we	 found	that	detection	probability	varied	
as	 a	 function	of	 time	 since	10:00	 (the	earliest	possible	 start	 time)	

F I G U R E  2  Frequency	of	detections	(grey	bars;	right	axis)	
for	Bombus	spp.	within	regenerating	timber	harvests.	Detection	
probability	(left	axis)	declined	as	a	function	of	distance	from	
transect	and	was	fit	to	an	exponential	detection	function	(black	
line).	Bombus	spp.	were	only	rarely	detected	further	than	5	m	from	
the	transect	line
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and	observer	ID	suggesting	that	the	latest	surveys	of	each	day	had	
the	 lowest	detection	probability	 and	 that	observers	were	unequal	
in	 their	 ability	 to	 detect	Bombus	 spp.	 (Table	 1;	 Figure	 3a).	 Among	
models	 investigating	 the	 relationship	 between	 habitat	 covariates	
and Bombus spp.	 detection,	 the	 model	 that	 included	 grass	 cover	
(%)	was	the	only	supported	model	and	suggested	that	Bombus	spp.	
were	more	readily	detected	at	sites	with	more	grass	cover	(Table	1;	
Figure	3b).	All	other	covariates	modelled	in	tiers	1	and	2	were	>2.0	
AICc	 less	 than	 the	 null	model	 and	 the	β	 95%	 confidence	 intervals	
overlapped	zero.

3.2 | Habitat modelling

Models	 from	 all	 three	 analyses	 yielded	 discernable	 habitat	 asso‐
ciations	with	Bombus	 spp.	abundance	 (Table	2;	Figure	4).	All	 three	
analyses	 indicated	 that	Bombus	 spp.	 abundance	during	 the	 survey	
period	was	 negatively	 associated	with	 per	 cent	 sapling	 cover	 and	
not	associated	with	forb	cover	 (Table	2;	Figure	4).	The	 importance	
of	shrub	cover	and	grass	cover	as	predictors	of	Bombus	spp.	counts	
and	estimated	abundance	varied	across	methods	(Table	2);	HDS	and	
transect	counts	revealed	support	for	shrub	cover	as	an	informative	
covariate	being	>2.0	AICc	 less	 than	 the	null	 and	having	parameter	

95%	confidence	 intervals	 that	did	not	overlap	zero	 (Table	2).	Only	
net	 counts	 suggested	 that	 grass	 cover	 was	 positively	 associated	
with	Bombus spp.	abundance	while	HDS	suggested	that	grass	cover	
was	instead	correlated	positively	with	detection	probability	but	not	
abundance	 (Table	 2;	 Figure	 4).	 In	 contrast,	 our	 net	 count	 analysis	
suggested	no	effect	of	shrub	cover	on	bee	counts,	with	the	“shrub”	
model	 ranked	 lower	 than	 the	null	model	and	 the	 shrub	parameter	
95%	confidence	intervals	overlapping	zero	(Table	2).	Our	top‐ranked	
HDS	model	(“sapling”)	showed	evidence	of	minor	overdispersion	(ĉ\
hat{c}\hat{c}\hat{c}	=	1.33)	while	most	other	models	did	not	appear	
overdispersed	 (ĉ\hat{c}\hat{c}\hat{c}	<	1.0;	 with	 a	 mean	 ĉ\hat{c}\
hat{c}\hat{c}	=	1.01	across	models	 in	our	final	HDS	model	set).	We	
considered	 this	 an	 acceptable	 level	 of	 overdispersion	 and	 did	 not	
use	 a	 variance	 inflation	 factor	 to	 adjust	 our	 parameter	 estimates	
(Burnham	&	Anderson,	2002).

3.3 | Density estimation

In	addition	to	examining	abundance	as	a	function	of	habitat	among	
the	 three	 methods,	 we	 compared	 their	 estimated	 mean	 densities	
of	 foraging	Bombus spp.	 based	on	 intercept‐only	 abundance	mod‐
els	(including	detection	covariates	for	HDS).	Estimated	Bombus	spp.	

Model name K AICc ΔAICc AICc Wt. β estimate (95%CI)

Survey	covariates	on	detection	probability

p	(observer) 7 348.93 0.00 0.78 0.58	(0.21	to	0.95)

p	(time) 7 351.56 2.64 0.21 −0.23	(−0.38	to	−0.08)

p (.) 6 358.29 9.36 0.01 ‐

p	(wind) 7 359.87 10.94 0.00 −0.16	(−0.44	to	0.13)

p	(temp.) 7 360.64 11.72 0.00 −0.05	(−0.19	to	0.09)

Site	covariates	on	detection	probability

p	(grass) 7 352.67 0.00 0.85 0.35	(0.07	to	0.63)

p	(forb) 7 358.27 5.61 0.05 0.17	(−0.04	to	0.37)

p	(.) 6 358.29 5.62 0.05 ‐

p	(shrub) 7 359.65 6.99 0.03 −0.13	(−0.35	to	0.09)

p (sapling) 7 360.48 7.82 0.02 0.10	(−0.16	to	0.36)

Note.	Models	are	ranked	 in	descending	order	of	Akaike’s	 Information	Criterion	adjusted	for	small	
sample	size	(AICc).	Survey	covariates	included	time	since	survey	start	time	(continuous;	“time”);	tem‐
perature	(continuous);	cloud	cover	(%	overcast;	continuous),	observer	(categorical),	and	wind	index	
(categorical).	Site	covariates	included	per	cent	cover	as	measured	by	50	m	radius	vegetation	surveys	
for	vegetation	structure:	saplings,	shrubs,	 forbs	and	grass.	Both	candidate	model	sets	are	ranked	
against	a	null:	intercept‐only	model.	Below,	we	report	number	of	model	parameters	(k),	ΔAICc,	AICc 
weight	(AICc	Wt.)	and	β	parameter	estimates	(95%	confidence	interval).

TA B L E  1  Hierarchical	distance	models	
of	detection	probability	as	a	function	of	
survey	covariates	(Tier	1;	top)	and	site	
covariates	(Tier	2;	bottom)

F I G U R E  3  Models	of	Bombus	spp.	
detection	probability	as	a	function	of	
survey	time	(left),	per	cent	grass	cover	
(centre),	and	observer	(right)	while	also	
being	most	detectable	closest	to	the	
transect	(all)
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forager	 density	 within	 timber	 harvests	 was	 highest	 for	 the	 HDS	
models	(192	foraging	workers/ha;	95%	CI:	153–240)	and	lowest	for	
net	counts	(21	foraging	workers/ha;	95%	CI:	19–23	Figure	5);	an	89%	
difference	between	 the	 two	methods.	Transect	 counts	yielded	 in‐
termediate	 estimates	 of	 density	 (40	 foraging	workers/ha;	 95%	CI:	
34–47),	and	were	80%	lower	than	density	estimates	from	HDS.	Site‐
specific	 HDS	 modelled	 densities	 and	 netting	 count	 raw	 densities	
were	correlated	 (Pearson’s	 r = 0.31; p	=	0.03).	 though	 the	 relation‐
ship	was	not	1:1	(Figure	5).

4  | DISCUSSION

Our	study	provides	the	first	empirical	evidence	that	detection	prob‐
abilities	of	Bombus spp.	vary	in	ways	that	can	affect	abundance	esti‐
mates	and	inferences	about	habitat	relationships.	Observation	error	
caused	 by	 imperfect	 detection	 is	 one	 of	 the	 central	 challenges	 of	
ecological	monitoring	programs	(Thompson,	2002;	Yoccoz,	Nichols,	
&	Boulinier,	 2001)	but	has	 yet	 to	be	widely	 applied	 to	monitoring	
of	many	 invertebrates,	 including	pollinators	 (but	 see	Bendel	et	al.,	
2018;	Loffland	et	al.,	2017;	Mackenzie,	2003;	Van	Strien,	Termaat,	
Groenendijk,	Mensing,	&	Kery,	 2010).	Methods	 like	 distance	 sam‐
pling,	while	offering	a	potential	 solution	 to	 this	 challenge,	 are	 still	
under‐utilized	 in	 entomological	 research.	 Meanwhile,	 distance	

sampling	and	similar	methods	have	been	a	staple	of	vertebrate	wild‐
life	research	for	decades	(Buckland	et	al.,	2005;	Burnham,	Anderson,	
&	Laake,	1980;	Seber,	1986;	Thomas	et	al.,	2002),	and	have	been	ex‐
panded	to	estimate	population	size,	habitat‐specific	abundance	for	
individual	species	and	communities	(Sillett,	Chandler,	Royle,	Kéry,	&	
Morrison,	2012;	Sollmann,	Gardner,	Williams,	Gilbert,	&	Veit,	2016).	
Although	our	study	is	not	the	first	estimate	and	account	for	detec‐
tion	probability	of	bumblebees	(Loffland	et	al.,	2017),	no	study	be‐
fore	ours	has	described	factors	associated	with	detection	probability	
and	done	so	in	a	HDS	framework.

We	found	that	distance	sampling	transects	were	both	a	simple	
and	effective	survey	method	for	estimating	density	and	habitat	re‐
lationships	 (Buckland	 et	 al.,	 2005).	 Hierarchical	 distance	 sampling	
models	are	one	of	the	few	available	methods	that	allow	researchers	
to	model	 detection‐adjusted	 abundance	with	only	 a	 single	 visit	 to	
each	site	(Buckland	et	al.,	2005;	Kéry	&	Royle,	2015;	MacKenzie	et	
al.,	 2005).	The	method	uses	only	non‐lethal	 sampling,	unlike	 trap‐
ping/netting	methods	(Tepedino	et	al.,	2015)	which	is	especially	de‐
sirable	when	 sampling	 for	 species	of	 conservation	 concern,	 or	 for	
common	species	 in	 areas	where	capture‐based	 sampling	 is	not	 al‐
lowed.	Additionally,	HDS	models	are	also	useful	because	the	output	
is	an	easily	 interpreted	latent	state:	density	with	units	 in	“animals/
area”.	 In	 our	 study,	 HDS	 models	 generated	 estimates	 of	 foraging	
Bombus spp.	worker	density.

Model name K AICc ΔAICc AICc Wt. β estimate (95%CI)

Hierarchical	distance	sampling

λ	(sapling) 6 337.69 0.00 0.98 −0.30	(−0.45	to	−0.14)

λ	(shrub) 6 345.83 8.13 0.02 0.21	(0.05	to	0.37)

λ	(.) 5 350.2 12.51 0.00 –

λ	(grass) 6 350.41 12.71 0.00 −0.17	(−0.38	to	0.05)

λ	(forb) 6 352.82 15.13 0.00 −0.01	(−0.16	to	0.14)

Transect	counts

λ	(sapling) 2 277.63 0.00 0.96 −1.44	(−2.20	to	−0.69)

λ	(shrub) 2 284.48 6.85 0.03 0.85	(0.25	to	1.44)

λ	(grass) 2 289.8 12.17 0.00 −0.93	(−2.14	to	0.28)

λ	(.) 1 290.07 12.44 0.00 ‐

λ	(forb) 2 292.16 14.54 0.00 0.133	(−0.74	to	1.01)

Net	counts

λ	(sapling) 2 360.71 0.00 1.00 −1.63	(−2.26	to	−1.01)

λ	(grass) 2 384.38 23.67 0.00 0.85	(0.03	to	1.67)

λ	(shrub) 2 385.65 24.94 0.00 0.41	(−0.09	to	0.90)

λ	(.) 1 386.08 25.37 0.00 –

λ	(forb) 2 387.09 26.38 0.00 0.39	(−0.31	to	1.09)

Note.	Models	are	ranked	 in	descending	order	of	Akaike’s	 Information	Criterion	adjusted	for	small	
sample	size	(AICc).	Distance	transect	data	included	Bombus	spp.	detected	from	0	to	5	m	along	66	m	
transects.	Transect	counts	 included	Bombus spp.	detected	 from	0–2	m	along	66	m	 transects.	net	
count	data	were	counts	of	Bombus spp.	within	15	m	radius	plots.	Site	covariates	included	per	cent	
cover	 as	measured	 by	 50	m	 radius	 vegetation	 surveys	 for	 vegetation	 structure:	 saplings,	 shrubs,	
forbs,	and	grass.	Below	we	report	number	of	model	parameters	(k),	AICc,	Δ	AICc,	AICc weight	(AICc 
Wt.)	and	each	covariate	β	parameter	estimate	and	β	parameter	estimates	(95%	confidence	interval).

TA B L E  2  Habitat	models	derived	from	
hierarchical	distance	models	(top),	
fixed‐width	transect	models	(centre)	and	
linear	models	of	net	count	data	(bottom),	
all	fit	using	a	Poisson	distribution
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Despite	being	among	the	largest	and	most	conspicuous	of	North	
American	 bees	 (Michener	 et	 al.,	 1994),	 we	 found	 that	 detection	
probability	 of	 Bombus	 spp.	 was	 imperfect	 and	 declined	 markedly	
with	distance	from	the	survey	transect,	with	almost	no	detections	
beyond	5	m.	Detection	probabilities	in	our	study	were	influenced	by	
survey‐specific	(e.g.,	time	of	day)	and	site‐specific	(e.g.,	grass	cover)	
variables,	with	detection	probability	highest	in	the	morning	in	mid‐
summer	and	in	habitats	with	abundant	grass	cover.	Within	regener‐
ating	timber	harvests	in	our	study	area,	“grass”	cover	was	typically	
low‐growing	 monocotyledons	 like	 Carex pennsylvanica.	 Abundant	
low‐growing	 sedge	 allowed	 observers	 to	 view	 Bombus	 spp.	 from	
greater	distances	than	when	sites	were	dominated	by	tall	saplings,	
shrubs	 or	 forbs	 (e.g.,	Solidago).	 Consequently,	 studies	within	 habi‐
tats	dominated	by	low	grass	or	other	short	vegetation	might	find	de‐
tection	probability	for	Bombus	spp.	to	be	reliable	at	distances	>5	m.	
Although	we	are	uncertain	as	to	why	Bombus	spp.	were	less	detect‐
able	during	surveys	conducted	later	in	the	afternoon,	one	plausible	
explanation	is	that	longer	shadows	cast	by	late	afternoon	light	made	

Bombus	spp.	more	difficult	to	detect	when	foraging	in	 low	vegeta‐
tion.	Additional	work	exploring	the	drivers	associated	with	Bombus 
spp.	detection	would	prove	valuable	to	monitoring	regimes	aimed	at	
surveying	bumblebees.

Though	our	study	is	not	a	comprehensive	habitat	assessment	for	
Bombus	spp.	within	regenerating	timber	harvests	of	eastern	forests,	
our	results	provide	a	glimpse	into	the	habitat	dynamics	of	bumble‐
bees	in	regenerating	forests	during	mid‐summer.	Our	findings	that	
Bombus spp.	were	positively	associated	with	shrubs	and	negatively	
associated	with	saplings	can	be	explained	primarily	by	flower	phe‐
nology	 during	 our	 survey	 window.	 Regenerating	 saplings	 within	
the	 timber	 harvests	 we	 monitored	 were	 largely	 oaks,	 hickories,	
black	cherry	 (Prunus serotina)	and	red	maple	 (Acer rubrum;	Wherry	
et	al.,	1979).	These	species	do	not	 flower	as	small	saplings	and	do	
so	in	early	spring	as	mature	trees	(i.e.,	outside	the	sampling	period;	
Wherry	et	al.,	1979).	In	contrast,	several	species	of	shrub	were	flow‐
ering	during	sampling	including	black	huckleberry	(Gaylussacia bac‐
cata),	and	hillside	blueberry.	In	contrast,	most	forbs	(e.g.,	goldenrod;	

F I G U R E  4  Modelled	habitat	
associations	between	Bombus	spp.	and	
structural	vegetation	features	within	
regenerating	timber	harvests	as	predicted	
by	hierarchical	distance	models	(top),	
fixed‐width	(4	m)	transect	counts	(centre)	
and	net	counts	(bottom).	Variables	shown	
are	sapling	cover	(left),	shrub	cover	
(centre)	and	grass	cover	(right).	Solid	
lines	represent	model	predictions	with	
dashed	lines	as	95%	confidence	intervals.	
Relationships	marked	with	an	asterisk	
were	those	with	model	support	(i.e.,	more	
informative	than	a	null	model	and	β	95%	
CI	non‐overlapping	zero)

F I G U R E  5  Left:	Bombus	spp.	
predicted	mean	density	for	models	of	
net	counts	(“nc”),	transect	counts	(“tc”),	
and	hierarchical	distance	sampling	
models	(“hds”).	Right:	Predicted	density	
(workers/ha)	generated	from	our	top‐
ranked	hierarchical	distance	model	(p 
[observer	+	time	+	grass],	λ	[sapling])	
regressed	against	count	data	from	Bombus 
spp.	net	counts
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Solidago	spp.,	snakeroot;	Ageratina spp.)	had	not	begun	flowering	yet.	
Future	work	should	explore	how	Bombus	spp.	may	track	resources	
across	a	growing	season	to	persist	within	eastern	forest	ecosystems.

Monitoring	programs	 for	Bombus	 spp.	 and	other	native	polli‐
nators	can	be	improved	by	incorporating	study	design	and	model‐
based	 approaches	 for	 minimizing	 detection	 error.	 Although	 we	
included	several	design‐based	solutions	for	minimizing	detection	
error	(e.g.,	restricting	survey	times,	only	surveying	in	fair	weather;	
Ward	 et	 al.,	 2014),	 detection	 probability	 remained	 imperfect	
and	 varied	 due	 to	 time	 of	 day,	 observer	 and	 vegetation	 cover.	
Consequently,	methods	that	ignored	detection	probability	gener‐
ated	 density	 estimates	 80%–89%	 lower	 than	 HDS.	 Past	 studies	
have	shown	the	importance	of	using	design‐based	approaches	to	
minimize	 false	 negatives	when	 sampling	 bees	 (Buchanan,	Gibbs,	
Komondy,	&	Szendrei,	2017).	Our	study	demonstrates	the	value	of	
using	both	design‐	and	model‐based	approaches	for	reducing	sam‐
pling	errors	caused	by	imperfect	detection.	Other	study	systems	
with	 thick	 vegetation	 cover,	 such	 as	 prairies	 and	 forested	 wet‐
lands,	or	obstructive	objects,	such	as	urban	environments,	are	also	
likely	 to	 underestimate	 bee	 abundance	 even	 if	 multiple	 design‐
based	approaches	are	used.	While	traditional	sampling	techniques	
that	 do	 not	 account	 for	 detection	 have	 numerous	 applications,	
our	study	highlights	the	importance	of	incorporating	model‐based	
approaches	for	accounting	for	detection	probability	within	native	
bee	surveys,	particularly	when	attempting	to	estimate	bee	abun‐
dance	or	density.

Although	our	 results	 suggest	 that	HDS	 represents	a	promising	
tool	for	monitoring	bumblebees,	researchers	wishing	to	employ	the	
method	 should	 recognize	 its	 associated	 limitations.	 For	 example,	
distance	models	assume	that	all	animals	on	the	transect	line	are	de‐
tected	perfectly.	Although	it	is	likely	this	assumption	was	met	with	a	
large	insect	like	Bombus	spp.,	this	assumption	might	be	violated	with	
smaller	insects.	Moreover,	subjects	are	assumed	to	be	uniformly	dis‐
tributed	in	a	manner	unaffected	by	the	observer.	While	it	is	possible	
that	Bombus	spp.	were	frightened	by	observers,	we	took	care	to	note	
the	 location	of	 first	 detection	 for	Bombus	 spp.	 apparently	 flushed	
and	their	loud	flight	made	close	detections	almost	certain.	We	note	
that	 this	method	would	not	work	well	 for	 species‐level	 identifica‐
tion	because	observations	are	made	from	a	distance	and	some	bee	
genera	are	exceedingly	difficult	to	identify,	even	with	a	microscope	
(Michener	 et	 al.,	 1994).	Misidentification	 of	 species	would	 consti‐
tute	a	false	positive	which	would	violate	an	assumption	of	distance	
sampling.

Another	consideration	of	this	study	design,	and	many	methods	
of	abundance	estimation,	is	that	animals	may	violate	the	closure	as‐
sumption.	In	the	case	of	Bombus	spp.,	this	likely	occurred	as	foragers	
flew	 in‐	 and	 out‐	 of	 the	 effective	 survey	 area	 (~5	m	 from	 the	 ob‐
server	for	HDS).	While	this	may	constitute	a	problem	for	some	study	
objectives	and	methods,	we	have	no	reason	to	believe	that	Bombus 
spp.	movement	was	nonrandom	with	respect	to	the	observer	and	an	
accurate	density	could	therefore	still	be	made	when	passive	counting	
was	used.	Closure	violation	may	be	a	more	important	problem	when	
attempting	 to	calculate	density	 from	a	netting	plot	where	animals	

may	enter	the	plot	and	be	unable	to	leave	as	they	are	captured	and	
held	until	 the	survey	has	finished.	 In	such	cases,	movement	would	
be	biased	by	individuals	immigrating	into	the	monitored	plot	but	un‐
able	to	emigrate	and	movement	would	be	biased	towards	the	plot.	
Although	 net‐based	 sampling	 is	 often	 preferable	 for	 investigating	
species‐specific	 habitat	 relationships,	 the	 potential	 for	 movement	
bias	 highlights	 the	 need	 for	 cautious	 interpretation	 of	 net‐based	
density	estimates	for	bees.	Similarly,	researchers	should	consider	the	
potential	for	double‐counting	subjects.	Although	Bombus	spp.	in	our	
study	were	apparently	few	enough	and	slow	enough	to	avoid	most	
double‐counting,	this	may	be	a	more	important	problem	to	consider	
for	more	abundant	insects	with	reduced	detectability	(e.g.,	Halictids).

We	also	advise	caution	with	 interpretation	of	habitat	relation‐
ships	reported	here	as	our	study	should	be	 interpreted	as	a	small	
“snapshot”	 in	 time,	 and	 lacking	 species‐specific	 habitat	 relation‐
ships	(Olesen,	Bascompte,	Elberling,	&	Jordano,	2008).	Full‐season	
habitat	 associations	 are	 temporally	 dynamic	 for	Bombus	 spp.	 and	
vary	across	species	(Goulson,	1999;	Jha	&	Kremen,	2013).	Relative	
floral	 resource	availability	of	different	species	changes	across	the	
season	and	future	studies	employing	these	methods	at	regular	in‐
tervals	 from	 early	 spring	when	 queens	 first	 emerge	 through	 late	
autumn	would	 prove	 valuable.	 In	 fact,	 examination	 of	 queen	 bee	
densities	 would	 likely	 prove	 a	 better	 assessment	 of	 population	
density	and	habitat	quality	than	worker	density;	when	monitoring	
or	researching	colonial	organisms	such	as	bumblebees,	estimating	
the	true	number	of	reproducing	colonies	is	of	more	value	than	es‐
timating	 the	 number	 of	 foraging	workers,	 as	we	 have	 done	 here.	
Conducting	HDS	during	the	spring	and	early	summer,	when	queens	
are	 the	only	 active	bumble	bee	 foragers,	may	prove	 a	useful	 and	
non‐lethal	approach	to	estimating	 the	abundance	of	 reproductive	
individuals,	and	the	expected	number	summer	colonies	for	a	given	
area.	 However,	 sampling	 queens	 would	 likely	 require	 additional	
sampling	sites	or	repeat	visit	because	counts	would	be	much	lower	
and	HDS	models	may	have	trouble	converging	with	relatively	few	
sampling	 locations.	 Caution	 should	 also	 be	 exercised	 with	 inter‐
pretation	 of	Bombus spp.	 density	 estimates	 reported	 here	 as	 our	
densities	likely	consist	of	multiple	species	of	Bombus modelled and 
reported	as	one.	We	also	recommend	future	studies	explore	how	
non‐Bombus	genera	(or	morphospecies,	functional	groups)	perform	
as	the	focus	of	HDS	models.	Although	HDS	 is	not	without	 limita‐
tion,	we	believe	our	study	highlights	the	utility	of	HDS	models	for	
estimating	densities	and	elucidating	habitat	associations	of	bumble	
bees	when	individuals	are	detected	imperfectly.
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