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Abstract
& Key message Red spruce (Picea rubens Sarg.) and American beech (Fagus grandifolia Ehrh.) nutritional imbalances
observed during 1998–2000 in response to nitrogen additions beginning in 1989 at Bear BrookWatershed inMaine, USA,
were reversed by 2013. However, nitrogen-containing metabolites continued to accumulate to detoxify ammonia. While
sugar maple (Acer saccharum Marsh.) was N-limited and benefitted from N+S additions, spruce and birch established
new homeostatic status via adjusting cellular metabolism.
& Context Increased deposition of atmospheric N leads to changes in forest productivity. Effects of added N+S on changes in
cellular metabolism will yield information on species-specific sensitivity to N+S.
& Aims To evaluate foliar metabolic changes in American beech (Fagus grandifolia Ehrh.), sugar maple (Acer saccharum
Marsh.), and red spruce (Picea rubens Sarg.) that were exposed to ammonium sulfate [(NH4)2SO4); ~ 28.8 kg S ha−1 yr−1 and
25.2 kg N ha−1 yr−1] additions at West Bear Watershed (WBW) starting in 1989 until the end of this experiment, while East Bear
Watershed served as a reference.
&Methods Foliage was collected in 1998–2000 and 2013. Sapwood plugs were also collected in 2013. All were analyzed for ions
and metabolites using HPLC and ICP.
& Results During 1998–2000, only N+S-treated beech and spruce foliage had a reduction in Ca and Mg. All species had
significantly higher content of N-rich metabolites. In 2013, ammonia detoxification continued in the absence of nutrient defi-
ciencies. Significant changes in growth promoting metabolites occurred only in maple throughout this study.
& Conclusion Metabolic changes indicated that sugar maple at this site was and still is N-limited, whereas red spruce and
American beech had to make metabolic adjustments in order to survive under chronic N+S inputs. We conclude that even in
the absence of knowledge about individual species tolerance limits for nutrients and critical N load for the site, monitoring with a
suite of metabolites that are centrally connected to both C and N pathways could be a very useful tool in assessing stress from
nutrient imbalance in various tree species.
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Abbreviations
FAAs free amino acids
BAI basal area increment
BBWM Bear Brook Watershed in Maine
EBW East Bear Watershed
PAs Polyamines
Put Putrescine
Spd Spermidine
Spm Spermine
WBW West Bear Watershed

1 Introduction

Increased deposition of atmospheric nitrogen (N) from anthro-
pogenic sources has been implicated in changes in forest eco-
system functions and productivity in parts of the northeastern
USA and Europe (Fernandez et al. 2010; Minocha et al. 2015;
Quinn et al. 2010; van Diepen et al. 2015; Vitousek et al.
1997). Acid deposition enters these ecosystems as clouds, gas-
es, rain, fog, and snow that contain N and sulfur (S) in the form
of nitric and sulfuric acids, respectively (Driscoll et al. 2003).
This leads to the acidification of soil and surface waters, and
increases the amount of plant available total N, both of which
can impact critical ecosystems functions. Depending upon the
initial soil N status, land use history, species composition, and
the rate and duration of N deposition to forests, effects may be
positive (Hogberg 2007; Lloyd 1999; Quinn et al. 2010) or
negative (Bauer et al. 2004; Fernandez et al. 2010; Minocha
et al. 2015 and references therein; Wallace et al. 2007).
Although most temperate forests are N-limited, chronic expo-
sure to N deposition could alter the ratio of essential nutrients
and ultimately drive these ecosystems towards N saturation,
leading to a multitude of harmful consequences for forest
health (Aber et al. 1998; Frey et al. 2014). Surplus N can also
occur under conditions when other nutrients are limiting and/or
when plants cannot utilize the available N because other envi-
ronmental conditions for growth are not optimum (Näsholm
et al. 2000). Availability of surplus N may influence competi-
tive relationships among different species within a forest (Elvir
et al. 2006; Quinn et al. 2010). At the cellular level, excess N
taken up by the leaves and roots is converted into amines and
amides with the simultaneous release of hydrogen ions or or-
ganic acids, and in the process soluble carbohydrates are con-
sumed (Nihlgard 1985). Toxic excess N-related wastes that
cannot be excreted during dry periods accumulate in the
leaves; premature leaf drop may be a mechanism to dispose
of this waste (van Diepen et al. 2015).

Acidity associated with acid deposition mobilizes aluminum
(Al) which in turn competes with Ca and Mg at soil cation
exchange sites (Shortle and Smith 1988). This accelerates cat-
ion leaching which leads to reduced base cation availability
(Fernandez et al. 2003). If Ca and Mg are displaced from soil

at a faster rate than their replenishment through weathering or
atmospheric deposition, this can also add to base cation deple-
tion (Driscoll et al. 2003; Johnson and Fernandez 1992).
Insufficient Ca is known to predispose trees to disease and
pathogen infection, and can increase susceptibility to freezing
injury as seen in American beech (Fagus grandifolia Ehrh.),
red spruce (Picea rubens Sarg.), and sugar maple (Acer
saccharum Marsh (DeHayes et al. 1999; Hallett et al. 2006;
Long et al. 1997; Schaberg et al. 2011; Schaberg et al. 2001).
A combination of one or more of the abovementioned factors
leads to measureable changes in plant metabolism that could be
used as indicators of stress from change(s) in nutrient status
over time (Minocha et al. 2000, 2010, 2015).

In physiologically stressed trees, changes in metabolite con-
centrations often occur before any visual symptoms become
evident. Hence, measurement of these metabolic changes may
serve as indicators of overall health of a species of concern at
the time of sampling of forest stands. Common metabolites
such as cellular polyamines (PAs) [putrescine (Put) and
spermidine (Spd)] and amino acids (AAs) [arginine (Arg), γ-
aminobutyric acid (GABA), and glutamine (Gln)] play signifi-
cant roles in the growth and development of all living organ-
isms but can also act as metabolic sinks for excess N (Alcázar
et al. 2006; Ericsson et al. 1993). Organic acids, free PAs and
AAs have long been used as indicators of various kinds of biotic
and abiotic stress; e.g., Ca depletion, high N, high Al, heavy
metal toxicity (Minocha and Long 2004a; Minocha et al. 2010,
2015; Näsholm et al. 1997; Pinchot et al. 2017; Thangavel et al.
2007). Changes in N metabolism are intrinsically connected
with changes in C metabolism (Fig. 1). Changes in concentra-
tions of chlorophyll and cellular soluble proteins have also been
used to indicate environmental stress (Guy 1990; Lichtenthaler
and Rinderle 1988a; Lichtenthaler and Rinderle 1988b; Paridaa
and Das 2005; Parvaiz and Satyawati 2008).

Established in 1989, the present study is part of an ongoing
long-term experiment at the Bear Brook Watershed in Maine
(BBWM) to assess the effects of acid deposition and N+S
enrichment from ammonium sulfate additions on the response
and recovery of whole ecosystem on a decadal time scale. Soil
chemistry and stream chemistry have been previously de-
scribed for this study (Fernandez et al. 2010; SanClements
et al. 2010). Jefts et al. (2004) found that after 12 years of
treatment, continued accumulation of N at West Bear
Watershed (WBW) led to higher N cycling rates (higher net
N mineralization and nitrification) than in the reference East
Bear Watershed (EBW), which in turn resulted in higher an-
nual release of N into stream water in both mixed hardwood
and softwood stands. Other reports from this site have shown
that increased export of Ca and Mg into stream water was the
initial response in the N+S-treated WBW; this was the result
of anion adsorption (primarily SO4

2−), base cation desorption
(mainly Ca and Mg), and Al desorption and mobilization
(Fernandez et al. 2010). Elvir et al. (2005) showed reduced
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amounts of total Ca and Mg in the foliage of red spruce and
American beech from WBW compared to EBW.

The specific objectives of the present study were to 1) deter-
mine the effects of decades of (NH4)2SO4 additions on changes
in foliar and sapwood soluble inorganic nutrients and N-related
metabolites in American beech, sugar maple, and red spruce;
and 2) establish, for each species, if there is a relationship be-
tween the observed metabolic changes and tree vigor and pro-
ductivity reported by other researchers during this time. We
hypothesized that the effects of chronic N+S additions on solu-
ble nutrition and metabolites will not only be species-specific
but will also bemodulated/readjusted over time in order to attain
a different homeostatic or steady state. Cellular homeostasis as
stated here means the tendency of individual cells to regulate its
internal chemical processes in order to maintain its health and
functions under a given environment. On the other hand, an
organism’s homeostasis may require sacrificing functioning of
non-vital parts for the survival of vital parts, e.g., under nutrient
deficiency, leaves may turn yellow and die because their energy
is needed by stem and roots. We also hypothesized that these
changes will reflect a unique metabolic state for each species at
the time of sampling. The present study focuses mainly on the
effects of N+S additions on the N metabolism.

2 Materials and methods

2.1 Site description

The BBWM is located in eastern Maine (44° 52′ 15″ N, 68°
06′ 25″W) approximately 60 km from the Atlantic Ocean. It is

located on the southeast slope of Lead Mountain (maximum
elevation 475 m). The BBWM is the site of a long-term paired
watershed manipulation study designed to investigate the ef-
fects of N and S deposition. It is comprised of two contiguous
forested watersheds, WBW (10.3 ha) and EBW (11.0 ha).
Both watersheds have similar hydrological, topographical,
soil, and vegetative characteristics making them ideal for
long-term comparative studies. East Bear Watershed is the
untreated reference site while WBW has been treated bi-
monthly with granular ammonium sulfate [(NH4)2SO4); ~
28.8 kg S ha−1 yr−1 and 25.2 kg N ha−1 yr−1] applied aeri-
ally beginning in November, 1989, and throughout the du-
ration of the study reported here. Both watersheds received
~ 8.4 kg N ha−1 yr−1 of combined ambient wet plus dry
deposition at the beginning of the study (Norton et al.
1999). Since the beginning of this study in 1989, reduc-
tions in ambient N and S deposition levels (https://cfpub.
epa.gov/roe/indicator.cfm?i=1#6; https://cfpub.epa.gov/
roe/indicator.cfm?i=1#5) have been observed in the
northeastern USA. However, both watersheds would have
been equally affected, which means that these reductions
did not differentially affect WBW. Lower elevations are
dominated by hardwood stands (~ 40–60 years old)
including American beech, yellow birch (Betula
alleghaniensis Britt.), red maple (Acer rubrum L.), and
sugar maple. Softwood stands (~ 80–100 years old)
including red spruce, and to a lesser degree, balsam fir
(Abies balsamea (L.) Mill), are the dominant species at
higher elevations (DeWalle et al. 1999). Soils are mainly
coarse, loamy, mixed, frigid typic Haplothords formed
from compact basal till (Rustad et al. 1993).
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2.2 Foliar and sapwood sample collections

In August of 1998, healthy-looking foliage from mid to upper
canopy branches of randomly selected dominant or co-
dominant trees (20 trees/species) was collected using a shot-
gun. Samples were collected for sugar maple and American
beech at mid-elevation and red spruce [current year (CY) and
one-year-old (1Y)] at high elevation from each watershed.
The same trees were sampled again in August of 1999 and
2000. In August of 2013, because the trees at this site had been
relabeled by another research group, a different set of random-
ly selected trees (15 trees/species) were sampled from the
same locations. Ten of these 15 trees were also sampled for
sapwood in 2013. Minimal American beech mortality was
reported from 2000 to 2002 in either watershed (Elvir et al.
2010). However, by 2013, beech bark disease was more evi-
dent at this site and thus a potential stressor for this species.

For each foliar sample, a pool of approximately 500 mg
fresh weight (FW) of foliage was collected from a single
branch from each tree. Needle samples were cut with scissors
into 1–2 mm pieces, and 4 mm disks were punched from
hardwood leaves with a paper punch while carefully exclud-
ing major veins. The clippings were mixed and a sub-sample
(~ 200 mg FW) was placed in a pre-weighed 2 ml microfuge
tube and 1 ml of 5% perchloric acid (PCA) was added to each
sample. The rest was saved for chlorophyll and protein anal-
yses. For sapwood, three or four ~ 1.5-cm plugs of wood, each
extracted from a different face of a tree using a Haglöf incre-
ment hammer, were clipped into ~ 0.5 cm segments that were
placed in a pre-weighed 2-ml microfuge tube and 1 ml of 5%
PCAwas added (Minocha et al. 2015). All samples were im-
mediately placed on ice for transport to the laboratory and
stored at − 20 °C until further analysis. The tubes that had
PCA added to tissue sample were weighed, thawed, and re-
frozen 3 times (each thawing for at least an hour and each
freezing event for 4 h or more) as described in details in
Minocha et al. (1994) and then centrifuged at 13,000×g for
10 min. The resulting supernatants was used for analyses of
PCA-extractable (free) PAs and AAs, and soluble inorganic
elements. For each analysis, all extracts were analyzed indi-
vidually without pooling.

2.3 Soluble inorganic ions

The quantitation of soluble inorganic ions of Ca, Mg, Mn,
K, Al, and P (defined as the fraction of total ions within
cells that is extractable in 5% PCA) was conducted using a
simultaneous axial inductively coupled plasma emission
spectrophotometer (Vista CCD, Varian, Palo Alto, CA,
USA) and Vista Pro software (version 4.0). Supernatants
of 3× frozen and thawed samples in PCA were diluted
(foliage 100×, sapwood plugs 50×) with distilled deionized
water for estimation of soluble ions.

2.4 Polyamines and amino acids

Polyamines (1998–2000) Perchloric acid extracts were
dansylated and quantified according to the procedure de-
scribed in Minocha et al. (1990). A PerkinElmer (Norwalk,
CT, USA) HPLC system consisting of Series 200 pump,
autosampler, and LC 240 fluorescence detector with a 20-μl
loop (10 μl injection volume) was used for quantification. A
pecosphere − 3 × 3 CRC18, 3 μm, 33 × 4.6 mm I.D. analytical
column was used for the separation of PAs. Excitation and
emission wavelengths were set at 340 and 510 nm, respective-
ly. A Gilson (Middleton, WI, USA) 712 HPLC system con-
troller (version 1.2) was used to integrate the data.

Amino acids (1999–2000) Amino acids data were collected
starting in 1999 using PCA extracts that were dansylated
and quantified according to the procedure described in
Minocha and Long (2004b) with a PerkinElmer pecosphere
reduced activity RP C18, 3 μm, 100 × 4.6 mm analytical
column.

Simultaneous polyamine and amino acid processing and
quantification (2013) Both PAs and AAs were simultaneously
dansylated and quantified within a single run using the meth-
od described in Minocha and Long (2004b). The dansylation
reaction was terminated in these samples using L-asparagine
(50 μL of 20 mg ml−1 in water) rather than Alanine (Ala),
described in the original method. A new series 200
PerkinElmer HPLC system fitted with a Phenomenex
(Torrance, CA, USA) Synergi™ Hydro-RP, 4 μm, 100 ×
4.6 mm I.D. analytical column; a C18 Securityguard™,
5 μm, 4 × 3 mm I.D. cartridge guard column; and a
PerkinElmer C18 Scavenger, 10 μm, 33 × 4.6 mm I.D. car-
tridge column was used. Excitation and emission wavelengths
were set at 340 and 515 nm respectively. Data were integrated
using TotalChrom HPLC software package (Perkin-Elmer,
version 6.2.1).

2.5 Total chlorophyll and soluble proteins

For chlorophyll (Chl) analysis, 1 ml of 95% ethanol was
added to ~ 10 mg of thawed foliage. Samples were incubated
in the dark in a 65 °C water bath for 16 h, centrifuged
(13,000×g for 5 min), and the supernatants scanned for absor-
bance ranging from 350 to 710 nm using a spectrophotometer
(Hitachi, Tokyo, Japan). Chlorophyll was quantitated accord-
ing to Minocha et al. (2009).

For soluble proteins, either 0.25 ml (red spruce) or 0.5 ml
(hardwoods) of extraction buffer (100 mM Tris-HCl, 20 mM
MgCl2, 10 mM NaHCO3, 1 mM EDTA, and 10% (v/v) glyc-
erol, pH 8.0) was added to 50 mg of thawed foliage. Samples
were then frozen and thawed three times and the supernatant
was used for protein analysis according to Bradford (1976).
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2.6 Statistical analyses

Statistical analyses were conducted separately for each
species to evaluate significant differences between the
treated (WBW) and reference (EBW) watersheds. The
data for each variable were analyzed using repeated
measures ANOVA with one main factor: treatment with
two levels (reference and N-treated) and one repeated
measure factor for year of sampling (1998–2000).
Tukey’s test was used for treatment comparisons.
Pearson correlation coefficients were used to assess the
significance of correlations among the various parame-
ters studied. Statistical analyses were done using
SYSTAT (version 10.2) (SYSTAT, Richmond, CA,
USA) and Microsoft Excel (version 2003); P ≤ 0.05 (*)
indicates significant treatment differences within each
species. Dataset (not peer reviewed) for this manuscript
are available in the Forest Service Research Data
Archive (Minocha et al. 2018).

3 Results

In line with earlier reports on the effects of annual
variations in site conditions (e.g., duration of growing
season, extreme environmental events, and insect and/or
pathogen invasions) on tree biology (Minocha et al.
2010, 2015), the present study revealed species-specific
inter-annual variations in soluble nutrients and metabo-
lites (Suppl. Tables 1 and 2). Collecting repeat observa-
tions over 3 years on the same trees and conducting
repeat measure statistical analyses on these data enabled
us to observe clear effects of N+S additions on nutri-
tional and metabolic changes that occurred over and
above those occurring due to inter-annual climatic vari-
ations (e.g., drought, disease and/or insect defoliation).
In addition, another set of data were collected in 2013
to evaluate the longer-term (i.e., over two decades) im-
pact of chronic N+S-additions on these parameters in
foliage and sapwood.

3.1 Foliar soluble (5% PCA extractable) ions

Significantly lower concentrations of cellular Ca were
observed in the foliage of American beech and one-
year-old red spruce needles at WBW compared to
EBW during 1998–2000 (Fig. 2A). However, by 2013,
no changes in Ca concentrations were observed in fo-
liage and sapwood of all three species (Fig. 2B and C).
Magnesium was also lower in the leaves of N+S-treated
American Beech and one-year-old red spruce needles
during 1998–2000 (Fig. 2D). However, in 2013, Mg
concentrations were significantly higher in one-year-

old red spruce needles and in its sapwood (Fig. 2E
and F). In general, soluble K data did not show any
specific trends over time (Fig. 2G, H, and I). American
beech foliage from WBW had higher P during 1998–
2000 (Fig. 2J). By 2013, with the exception of higher
concentrations of P in sugar maple sapwood, no other
changes were evident in the foliage or sapwood of oth-
er species with N+S-amendments at WBW (Fig. 2K and
L). Aluminum was significantly higher in one-year-old
red spruce needles at WBW in comparison with EBW
at all times and in all tissues tested (Fig. 2M, N, and
O). Manganese was significantly higher in the foliage
of the two hardwoods species, American beech and
sugar maple at WBW during 1998–2000 (Fig. 2P).
However, in 2013, no difference was observed in Mn
concentrations of the foliage or sapwood of either spe-
cies (Fig. 2Q and R).

3.2 Foliar free polyamines and amino acids

With the exception of current-year red spruce needles,
Put was significantly higher in the foliage of all species
at WBW compared to EBW during 1998–2000
(Fig. 3A). By 2013, Put was still elevated in the foliage
of American beech and in current-year red spruce
needles without any change in sugar maple and one-
year-old red spruce needles (Fig. 3B). One time sam-
pling of sapwood in 2013 revealed no differences in Put
concentrations among treatments (Fig. 3C).

Nitrogen additions at WBW significantly increased Spd
concentrations in the foliage of sugar maple at all times tested
(Fig. 3D and E); no changes in Spd were observed in sapwood
of all three species (Fig. 3F).

Glutamic acid (Glu) was higher at all times tested in
the foliage and sapwood of sugar maple at WBW
(Fig. 4A, B, and C). In 2013, Glu was higher in
American beech foliage at WBW (Fig. 4B). During
1999–2000, Pro was higher in all three species except
for current-year red spruce needles (Fig. 4D). In 2013,
this trend continued only for sugar maple foliage and
sapwood (Fig. 4E and F). Fertilization with N+S in-
creased GABA in all three species during 1999–2000
(Fig. 4G). In 2013, GABA remained high in American
beech sapwood and in both tissues of sugar maple (Fig.
4H and I).

Due to changes in the HPLC system, some AAs could
only be quantified either during 1999–2000 or 2013.
Foliar aspartic acid (Asp, 1998–2000 only) was signifi-
cantly higher in N+S-treated sugar maples (Fig. 4J).
Alanine (Ala, 2013 only) was higher in foliage and sap-
wood of sugar maple and foliage of American beech (Fig.
4K and L).
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3.3 Total chlorophyll and soluble proteins (2013)

In 2013, the concentration of total chlorophyll was significant-
ly higher in sugar maple leaves and one-year-old red spruce
needles at WBW (Fig. 5). Soluble proteins were significantly
lower only in sugar maple (Fig. 6).

4 Discussion

Long-term whole ecosystem scale experiments provide an
opportunity to examine the response of cellular metabolites
over time with a goal to identify a suite of select stress-
induced indicator metabolites. Most of these indicator me-
tabolites have specific functions in normal growth and de-
velopment of plants under ambient conditions. However,

under stress from a single or multiple sources cells make
appropriate adjustments in the concentrations of these me-
tabolites in order to recover from stress and could thus
become a useful tool for monitoring stress from nutrient
imbalance. While some of these metabolites initiate a cas-
cade of s ignal ing pathways , e .g . , absc is ic ac id
(Vishwakarma et al. 2017), others participate in signal
transduction and activate each other, e.g., hydrogen perox-
ide and PAs (Gupta et al. 2016). These early detectable
changes in indicator metabolites act as a warning signal
for upcoming potential disruptions in both C and N cycling
in cells (Bhatnagar et al. 2001; Handa et al. 2018;
Majumdar et al. 2016; Minocha et al. 2014; Mohapatra
et al. 2009). During periods of stress, these metabolites
rebalance, and the plants attain a homeostatic state that is
often different from that maintained under normal growth
conditions. This defense strategy comes at a price in terms
of its effect on growth rates. These metabolic changes are
partially or fully reversible depending upon whether the
stress is removed from one or all factors as was observed
at two Ca-supplemented sites (Minocha et al. 2010; Wargo
et al. 2002). If unfavorable conditions persist, even these
responses may not be sufficient for survival; this is what
was observed at Harvard Forest, MA, USA, where red pine
and red maple trees sustained high mortality when exposed
to 2–6 times higher NH4 as compared to BBWM (Minocha
et al. 2015).
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4.1 Effects of chronic N+S supplementation on soluble
nutrients and metabolites were species-specific
and changed with length of treatment

Putrescine accumulation in plants in response to various types
of environmental stress has been extensively reviewed
(Alcázar et al. 2006; Masson et al. 2017; Minocha et al.
2014; Wuddineh et al. 2018). Nitrogen addition/deposition–
induced deficiency in total or soluble (analyzed from the same

dilute acid extract used for soluble/free metabolite analyses)
foliar Ca is known to modulate polyamine metabolism in the
foliage of several tree species (Minocha et al. 2010; Minocha
et al. 1997, 2015; Schaberg et al. 2011; Wargo et al. 2002). In
these studies, only under Ca deficient conditions, an inverse
relationship was observed between the cellular contents of Put
and Ca, leading to the suggestion that Put may serve as a
substitute for Ca regardless of plant/soil N status. At
BBWM, decreases observed in foliar soluble Ca and Mg in

0

100

200

300

400

500

600

AB SM RS-CY RS-1Y

gl
o

m
n(

dic
A

ci
mat

ul
G

-1
)

W
F

Foliage 1999-2000

Glu

*
**

a

0

100

200

300

400

500

AB SM RS

Wood Plugs 2013

*
Gluc

0

100

200

300

400

500

600

AB SM RS-CY RS-1Y

Foliage 2013

Ref (East Bear)
N (West Bear)*

*b Glu

0

30

60

90

120

AB SM RS-CY RS-1Y

gl
o

m
n(

e
nil

or
P

-1
)

W
F

Pro

*

*

*

d

0

30

60

90

120

AB SM RS-CY RS-1Y

*

e Pro

0

5

10

15

20

25

30

AB SM RS

*f Pro

0

200

400

600

800

1000

AB SM RS-CY RS-1Y

gl
o

m
n(

a
ba

G
-1

)
W

F

Gaba

**

*

*

g

0

100

200

300

400

500

AB SM RS

*

*i Gaba

0

200

400

600

800

1000

AB SM RS-CY RS-1Y

Species

*

h Gaba

0

50

100

150

200

250

300

AB SM RS-CY RS-1Y

gl
o

m
n(

dic
A

citra
ps

A
-1

)
W

F

Foliage 1999-2000

*

Aspj

0

150

300

450

600

750

900

AB SM RS-CY RS-1Y

A
la

n
in

e
(n

m
o

l g
-1

F
W

)

Species

Foliage 2013

Ref (East Bear)

N (West Bear)
*

* Alak

0

20

40

60

80

100

120

AB SM RS

A
la

n
in

e
(n

m
o

l g
-1

F
W

)

Wood Plugs 2013

* Alal
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American beech and red spruce foliage from 1998 to 2000 are
in line with earlier reports on total Ca and Mg by Elvir et al.
(2005). A simultaneous increase in concentrations of these
ions in soil solution and stream water indicated that soil
leaching was the main cause of their decline in foliage
(Fatemi et al. 2012; Fernandez et al. 2003). An increase in
Put in these species may be at least partially associated with
the observed decrease in soluble Ca during 1998–2000; the
remainder could be attributed to the conversion of toxic-free
ammonia into N-rich metabolites including Put. Alternatively,

the increase in Put in all three species was solely a result of the
detoxification of ammonia assuming the decrease seen in Ca
and Mg for American beech and red spruce was within the
tolerance range for deficiencies in Ca and Mg for each of the
two species. Regardless of the cellular Ca sufficiency level,
trees accumulate N metabolites to detoxify excess ammonia
(Minocha et al. 2000, 2015), which explains why Put was still
elevated in 2013 for American beech and red spruce even
when there were no longer differences in foliar Ca indicating
that these species had reached a new homeostatic state.

Whereas Put is known to modulate stress in most trees, Spd
is a plant growth regulator and is synthesized from Put (Fig.
1). Relative to Put, Spd concentrations are generally more
tightly regulated within cells and thus fluctuate within a very
tight range even under conditions of Ca deficiency or N satu-
ration (Minocha et al. 2010, 2015). The observed lack of
change in Spd in red spruce and American beech is consistent
with the previously reported observations by our group.

Of the three species, sugar maple was the first to show a
short-lived decline in foliar Ca in 1993 in response to N+S
additions; Ca levels recovered by 1998 (Elvir et al. 2010). An
increase in Put and Spd without an accompanying change in
Ca or Mg (seen during 1998–2000) in sugar maple at WBW
was interpreted as a positive response to the need to store
excess N present in the foliage as reported by Elvir et al.
(2005). In 2013, higher levels of Spd and total chlorophyll,
and a decrease in total soluble proteins again suggest better
growth conditions for sugar maple. Sugar maple had probably
been growing under N-limited conditions at BBWM, and thus
benefited from N+S additions. Our data are supported by
trends in basal area increment and photosynthesis measure-
ments reported by Elvir et al. (2010).

Nitrogen and S addition to soil causes themobilization ofMn
and Al, both of which can be toxic to plants as they induce
deficiencies in Ca and Mg, and decrease photosynthesis and
yield (Millaleo et al. 2010; Shortle and Smith 1988). An increase
in foliar Al, seen only in case of red spruce at WBW, was
probably not in the toxic range because no Al-induced Ca defi-
ciency was observed in 2013. In support of these observations,
Elvir et al. (2010) also did not observe any significant changes in
red spruce basal area increment analyzed in 2003 and 2006.
Earlier it had been reported that a decline in sugar maple growth
at the Alleghany Plateau (PA, USA) was associated with an
increase in Mn (Long et al. 1997; Wargo et al. 2002). At least
fourfold higher concentrations of soluble Mn were report-
ed in unlimed as compared to limed plots, and this increase
was associated with a decrease in soluble Ca accompanied
by an increase in Put, and sugar maple decline (Wargo
et al. 2002). At BBWM, while soluble Mn accumulated
in the foliage of both N-treated hardwoods in 1998–2000,
these differences did not persist in either species in 2013.
Elvir et al. (2005) reported an increase in foliar total Mn in
hardwoods for 1998–2000 that was no longer there in
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2002. However, the observation that sugar maple showed
no Ca deficiency or other stress symptoms at WBW indi-
cates that there were no apparent toxic negative effects of
the increase in Mn on growth during 1998–2000. Neither
the tolerance limits nor the effects of a short-term increase
in Mn on the growth of American beech are known.

The increase in foliar N is known to cause shifts in the
internal distribution (partitioning) of N within a leaf thus lead-
ing to changes in the concentration of several free AAs, espe-
cially Arg, under N saturation conditions (Bauer et al. 2004;
Ericsson et al. 1993, 1995; Näsholm et al. 1997). Similar to
nutrients and PAs, AAs also accumulate in a species-specific
manner under the same growth conditions (Huhn and Schulz
1996; Minocha et al. 2010, 2013).

Ammonium fromN fertilization/deposition first gets incor-
porated into Glu which along with Asp, is the precursor for
most other AAs that are needed for protein synthesis and
many other secondary metabolites; syntheses of both PAS
and AAs require TCA cycle intermediates (Fig. 1). Elevated
levels of Asp (analyzed only in 1999–2000) and Glu in the
foliage and sapwood of sugar maple indicated a major shift in
both C and N metabolism in response to N+S addition.

Both GABA and Pro are known to accumulate in response
to an increase in cold, drought, salinity, hypoxia, and a de-
crease in pH; all of which also cause Put accumulation
(Minocha et al. 2014; Sharma and Verslues 2010 and
references therein). An overproduction of Pro in plants has
been shown to impart stress tolerance via a multitude of path-
ways ranging from acting as an osmolyte to maintain cell
turgor or osmotic balance, to acting as a signal molecule under
drought conditions (Hayat et al. 2012). At BBWM, an in-
crease in foliar GABA and Pro was seen in N-treated trees
of all species after the initial decade of treatments; but by
2013, these changes persisted only in sugar maple. Like Pro,
GABA also plays significant roles in maintaining N and C
balance in plants, in addition to its protective role in stress
(Bouche and Fromm 2004). A recent report suggested that
Pro, Ala, Arg, GABA, and succinate are involved in N
salvage/recycling and redistribution and their accumula-
tion indicates a disequilibrium in C and N in green
microalga Chlorella (Chen et al. 2017). At Harvard
Forest also, an accumulation of the abovementioned sal-
vage AAs were also observed in foliage and sapwood of
pine and oak in response to chronic N additions (Minocha
et al. 2015). Species-specific accumulation of Pro, Ala,
GABA, and Glu, during 1998–2000, indicated the storage
of nontoxic usable forms of cellular N that helps reestab-
lish C and N equilibrium by using carbon from photosyn-
thesis and glycolysis as suggested by Chen et al. (2017).
Altogether, such data show that the storage of excess N in
the form of a few salvaged AAs is a phenomenon not ex-
clusive to any one species or kingdom. The lack of accu-
mulation of these AAs or nutrient deficiencies in red

spruce by 2013 under same conditions could mean that C
and N metabolism had reached a new homeostatic state.

In sapwood compared to foliage, the concentrations of nu-
trients and metabolites were generally several folds lower and
treatment differences were relatively few. It is worth pointing
out all AAs accumulated mostly in sugar maple sapwood. It
can thus be argued that most excess N is assimilated into
various metabolites in the foliar tissue by using photosynthetic
energy, which thenmove towards the main stem in the sap and
get diluted along the way.

In the present study, large sample size per treatment and
repeat observations from the same trees from 1998 to 2000
possibly significantly reduced any errors introduced from
microsite variability among sampled trees within each water-
shed and any erroneous observations possibly caused by un-
usual climate of a single year.

4.2 Dynamic nature of foliar responses

The lack of information on the tolerance limits for nutri-
tional requirements for each species makes it difficult to
determine whether any of these species suffered from nu-
trient deficiencies during 1998–2000 at BBWM. Linder
(1995) reported that the optimal nutrient concentration is
generally considered more valid when calculated as a por-
tion of N present in Norway spruce foliar tissue. Species-
specific nutritional requirements (Finzi et al. 1998) factor
into the observed differences in metabolic response of each
species to N additions. However, in the absence of infor-
mation on critical N loads for each species and for the
BBWM site, metabolite indicators in conjunction with sol-
uble ions, all of which quantified from the same extracts
using a simple freeze-thaw method (Minocha et al. 1994),
could be quite helpful in assessment of stress from nutrient
imbalance in trees. As we know, epigenetic changes
(changes in gene expressions without a change in DNA
sequence) can cause variations at the individual tree level
within a species as well as among species in response to
changes in the environment (Bräutigam et al. 2013). The
ability to modulate metabolic responses to a continuously
changing environment gives trees the needed plasticity for
survival from short- and long-term stress. Raj et al. (2011)
showed that in poplar, previous environmental history has
a lasting impact on a tree’s capacity to respond to a current
environmental stimulus. Taken together, these factors in
combination may contribute to the species-specific modu-
lation of metabolic responses to chronic N+S over time as
observed at BBWM. Initially, all species make short-term
adjustments to N+S treatment by upregulating N metabo-
lism to detoxify their immediate environment from free
ammonia. Additional N-rich metabolites could either be
used for growth and/or stored as specific AAs to be used
later to balance cellular C or N (as seen with sugar maple);
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and each species adjusts accordingly to a new homeostatic
state. At BBWM, the data indicate that sugar maple was N-
limited and used the added N+S to modulate both C and N
metabolism. Although red spruce and American beech re-
covered from initial nutrient deficiencies, both species con-
tinued to expend energy to detoxify tissues exposed to
ammonia. Beech at this site may be responding to cumu-
lative stress from both N+S additions and beech bark
disease.

5 Conclusions

Nutritional imbalances observed during 1998–2000 in red
spruce and American beech in response to N+S additions
at the Bear Brook Watershed in Maine were no longer
evident by 2013. Nitrogen-containing metabolites accumu-
lated in a species-specific manner in both the leaves and
the sapwood, perhaps to detoxify excess ammonia. While
sugar maple was N-limited and metabolically benefitted
from continued N+S additions, spruce and birch were
not N-limited and adjusted to a new homeostatic state
over time via storing excess N as polyamines and specific
amino acids. Based on this study and previous similar
research (Minocha et al. 2015), we conclude that even in
the absence of knowledge about individual species toler-
ance limits for nutrients and critical N loads for the site,
metabolic monitoring using a suite of biochemical param-
eters could become a very useful tool in assessing stress
from nutrient imbalances. Biological processes are dynam-
ic and local environmental changes or experimentally ap-
plied treatments will continue to modulate the tree re-
sponses with time.
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