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Abstract Carbon dioxide (CO2) emissions from Southeast Asia peatlands are contributing
substantially to global anthropogenic emissions to the atmosphere. Peatland emissions asso-
ciated with land-use change, and fires are closely related to changes in the water table level.
Remote sensing is a powerful tool that is potentially useful for estimating peat CO2 emissions
over large spatial and temporal scales. We related ground measurements of total soil respiration
and water table depth collected over 19 months in an Indonesian peatland to remotely sensed
gravity recovery and climate experiment (GRACE) terrestrial water storage anomoly (TWSA)
data. GRACE TWSA can be used to predict changes in water storage on land. We combined
ground observations from undrained forest and drained smallholder oil palm plantations on
peat in Central Kalimantan to produce a representation of the peatland landscape in one 0.5° ×
0.5° GRACE grid cell. In both ecosystem types, total soil respiration increased with increasing
water table depth. Across the landscape grid, monthly changes in water table depth were
significantly related to fluctuations in GRACE TWSA. GRACE TWSA explained 76% of
variation in water table depth and 75% of variation in total soil respiration measured on the
ground. By facilitating regular sampling across broad spatial scales that captures essential
variation in a major driver of soil respiration and peat fires, our approach could improve
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information available to decision makers to monitor changes in water table depth and peat CO2

emissions. This would enable measures better targeted in space and time to more effectively
mitigate CO2 emissions from tropical peat drainage and fires. Testing over larger regions is
needed to operationalize this exploratory approach.

Keywords Indonesia . Land use . Oil palm . Greenhouse gas emissions . Climate change

1 Introduction

Over the past several decades, the area of tropical peat swamp forest converted to other
uses has increased substantially. Oil palm (Elaeis) expansion is a major driver of peatland
conversion, accounting for 73% of industrial plantations on peat in Peninsular Malaysia,
Sumatra, and Borneo, while pulp wood plantations account for the remaining area under
industrial management (Miettinen et al. 2016). Smallholdings are equally important as
industrial plantations, covering 22% of peatlands in insular Southeast Asia versus 27% for
industrial plantations (Miettinen et al. 2016). Available estimates indicate that carbon
dioxide (CO2) emissions from converted peatlands in Southeast Asia contribute substan-
tially to global anthropogenic emissions to the atmosphere (Harris et al. 2012; Miettinen
et al. 2017). Peatland drainage and conversion increase CO2 emissions as a consequence
of decreased organic matter inputs and increased rates of decomposition of organic peat
soils (Hergoualc’h and Verchot 2014). Fires used for clearing lands and fertilization of
nutrient-poor peat soils also constitute a major source of emissions (Gaveau et al. 2014;
Miettinen et al. 2017). Fires in drained peatland occur frequently especially during dry
climatic conditions (Field et al. 2016).

To accurately estimate peat CO2 emissions and to understand how they may change in the
future, frequent measurements over months, seasons, and years are needed, as are measure-
ments that span the entire sequence of land-use change. In addition to understanding the
impacts of land-use change on emissions, we must assess how CO2 emissions in tropical
peatlands respond to climate change. The frequency and severity of El Niño events are
projected to increase in the future (Cai et al. 2014) and may influence emissions from both
converted and forested tropical peatlands. Studying seasonal and interannual changes in
temperature and moisture is essential to understand microbial responses to land use and
climate changes and can provide insight on peat emissions of CO2. Remote sensing can be
a powerful tool for predicting spatial and temporal variation in environmental conditions
influencing peat carbon (C) storage and loss.

Water table depth and soil moisture are critical environmental parameters affecting soil C
storage and loss in tropical peat ecosystems (Hirano et al. 2007). Water table depth,
determined by rainfall, evapotranspiration, and discharge, influences soil moisture through-
out the soil column and controls to some extent soil respiration across tropical peatlands
(Hergoualc’h and Verchot 2014). The National Aeronautics and Space Program (NASA) of
the United States Gravity Recovery and Climate Experiment (GRACE) data provide
spaceborne observations of monthly changes in the Earth’s gravity field. Changes in gravity
measured by GRACE over land are caused by mass fluctuations attributed to changes in
water storage by terrestrial ecosystems over time. GRACE Terrestrial Water Storage
Anomaly (TWSA) data can be used to predict changes in water storage on land. GRACE
may provide a new tool for predicting spatio-temporal variations in water table depth and
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soil moisture and support the monitoring of variables contributing to peat CO2 losses, in
particular soil respiration. GRACE data have been used to estimate depletion of ground
water in aquifers around the world (Rodell et al. 2009; Famiglietti et al. 2011; Voss et al.
2013) but have never been tested for assessing changes in water storage in tropical
peatlands. Application of GRACE to assess trace gas fluxes from soils has largely been
limited to studies on methane (Bloom et al. 2010; Bloom et al. 2012).

In this study, we use GRACE TWSA data to predict changes in total respiration and
water table depth in peat soils. Our objective was to develop a new method for linking
soil respiration—a process that is difficult and expensive to measure in the field over
time and space—and water table depth, to readily available, spatially extensive, satellite-
based estimates of changes in soil water storage. Therefore, we tested for potentially
useful relationships among soil respiration, our parameter of interest, and water table
depth, a physical driver of soil respiration in tropical peatlands. Then we tested how
variations in soil respiration and water table depth on a broader landscape scale can be
inferred from GRACE TWSA (Fig. 1).

If soil respiration is related to soil moisture regime, including and influenced by
water table depth, and if water table depth is related to TWSA, then TWSA could be
used to predict total soil respiration in tropical peatlands. Since soil respiration is a
key component of the peat C budget (Hergoualc’h and Verchot 2014), successful
operationalization and application of our remote sensing approach at large spatial
scales could improve understanding of the influence of seasonal and interannual
variation in water storage on the C cycle.

Fig. 1 Conceptual model of links among total soil respiration, water table depth, GRACE TWSA and climate
drivers in an Indonesian peatland. Precipitation (a), evapotranspiration (b), and discharge (c) influence water
table depth (d). Water table depth increases under conditions of reduced precipitation during dry periods, and
total soil respiration increases (e). GRACE TWSA (f) indicates monthly changes in soil water storage ultimately
driven by variation in precipitation, evapotranspiration, and discharge
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2 Materials and methods

2.1 Site description

We collected ground measurements at permanent plots in peat forest and smallholder oil palm
plantations in Central Kalimantan Province, approximately 50 km from the city of Pangkalan
Bun, in and around Tanjung Puting National Park (− 2.82806, 111.813, Fig. 2a). The climate of
the region is humid tropical, with little variation in temperature throughout the year and high
annual rainfall. We used weather observations from Iskandar airport in Pangkalan Bun during
2004–2013 to describe climate at the study area. Mean annual temperature in Pangkalan Bun is
27.4 °C. Mean annual rainfall is 2058 mm, and September is typically the driest month (85 mm).

Three plots were established in forest and three in oil palm plantations for a total of six
plots. The plots were located 1–10 km apart, representing a range of peat depths, land-use
histories, and vegetation ages (Table 1). All plots fell within a roughly 10-km × 10-km area in
one GRACE grid cell, 0.5° × 0.5° or 55 km × 55 km (Fig. 2b). Forest plots were situated at
varying distances from river’s edge and thus differed in peat depth. Two of the plots (K-FOR-
2, K-FOR-3) were mature forest, whereas the plot closest to the river (K-FOR-1) was a 30-
year-old secondary forest, likely formerly used as an agroforestry garden (Novita 2016). Oil
palm plantations were planted in 2007 (K-OP-2007), 2009 (K-OP-2009), and 2011 (K-OP-
2011). Oil palm plots underwent multiple fires.

2.2 Monthly ground measurements

We collected measurements of total soil respiration and water table depth from plots once each
month from January 2014 through June 2015 and again in September 2015. Plots were measured
on consecutive days between the hours of 0800 and 1200 usually during the last week of the
month. We measured water table depth concomitantly with CO2 measurements. Daily precipita-
tion data for the area were obtained from Iskander Airport in Pangkalan Bun. Our measurements
covered 1 year with normal precipitation (2014) and one El Niño year (2015).

Our ground sampling approach was designed to account for spatial heterogeneity in soil
respiration and environmental conditions while capturing temporal heterogeneity. Sixteen
months before the beginning of this study, we inserted sets of two polyvinyl chloride (PVC)
collars to 5-cm depth at six locations per plot. In forest plots, we installed one collar on a

Fig. 2 Research sites and sampling design. Location of the three plots in the undrained forest site and three plots
in the nearby drained smallholder oil palm site (a) in Central Kalimantan, Indonesia (inset, a). Oil palm (triangle)
and forest (circle) sampling sites were located in an approximately 10 km by 10 km area within the 0.5° GRACE
grid cell (b)
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hummock and one collar in the adjacent hollow at locations roughly 10 m apart. In oil palm
plots, we installed one collar at the base of a palm (near) and one collar at mid-distance
between two adjacent rows of palm (far), at locations 7–9 m apart (the distance between palms
determined by the planting density; Swails et al. 2017). Total soil respiration was measured by
the dynamic closed chamber method (Pumpanen et al. 2009) with a portable infrared gas
analyzer/EGM-4 (environmental gas monitor) connected to a soil respiration chamber (SRC-1)
(PP System, Amesbury, USA) placed on the permanent PVC collar. Water table depth was
measured in a dipwell permanently installed next to each CO2 collar. The dipwells were
perforated PVC pipe (2.5-cm diameter) inserted to 2-m depth below the peat surface.

With the goal of creating a single monthly value of soil respiration and water table depth
against which to compare remotely sensed data, we combined data in a way appropriate to the
scale of the measurements. First, we calculated plot-level weighted averages of total soil
respiration and water table depth measurements. The weighting was based on the spatial extent
of conditions within the plot (hummock/hollow and near/far). In forest plots, we measured the
length of hummocks and hollows along two perpendicular 50-m transects and divided the total
length of hummocks by the total length of hollows to calculate the ratio of hummock to hollow
area in each forest plot. In oil palm plots, we assume that measurements at collars near palms
are representative of the area within a 2-m radius of the base of the palms. This is the zone
where smallholders apply fertilizers and root density (Comeau et al. 2016; Khalid et al. 1999)
and activity (Nelson et al. 2006) are usually highest. In forest plots, the ratios of hummock to
hollow area were 48:52 (K-FOR-1), 52:48 (K-FOR-2), and 63:37 (K-FOR-3). In oil palm
plots, the ratios of the area within a 2-m radius of palms (near) to the area outside of this radius
(far) were 25:75 (OP-2011), 27:73 (OP-2009), and 37:63 (OP-2007). For each plot, we
multiplied the mean value of hummock/near measurements by the hummock/near ratio and
the mean value of hollow/far measurement by the hollow/far ratio. Then, we summed the two
numbers to yield a single value for each plot. To calculate mean monthly values, we pooled the
weighted averages from each plot in each month to yield a single value for each land use (three
plots, n = 3 per land use). Detailed soil respiration rates for each plot are reported elsewhere
(Swails et al. in preparation).

Finally, we combined data from the two land uses to estimate a single value of soil
respiration and water table depth for comparison with GRACE TWSA and precipitation. We
multiplied the mean respiration rate by the proportional coverage of the two land uses in our
0.5° × 0.5° GRACE grid cell. We estimated the proportional coverage of oil palm and forest by
overlaying a 0.05° × 0.05° grid on the GRACE cell boundaries in Google Earth (Fig. 2b). The
proportional coverage of forest (60%) and oil palm (30%) in each of the .05° × .05° cells was
determined by visual inspection. We inspected each of the 100 cells individually and tallied the

Table 1 Characteristics of the sample plots in Central Kalimantan, Indonesia (after Swails et al. 2017)

Code Land use Location Clearance year Plantation age Fires Distance
to river

Peat depth

K-FOR-1 Forest − 2.82360 111.813 Pre-1982 – Multiple 0.5 km 27 cm
K-FOR-2 Forest − 2.82220 111.807 – – – 1 km 155 cm
K-FOR-3 Forest − 2.83080 111.802 – – – 2 km 290 cm
K-OP-2011 Oil palm − 2.82310 111.810 1989 4 year Multiple 3.5 km 20 cm
K-OP-2009 Oil palm − 2.82170 111.803 2005 6 year Multiple 3.5 km 47 cm
K-OP-2007 Oil palm − 2.82060 111.801 2005 8 year Multiple 3.5 km 47 cm
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coverage by land use in each cell. The actual factors used in weighting (forest, 2/3 and oil
palm, 1/3) spread the residual effect of the area in water, urban areas, or other crops (10%)
proportionally across the two land uses. We weighted data for water table depth in the same
manner to generate a single landscape-scale value representative of the 0.5° × 0.5° GRACE
grid cell. We related these weighted average monthly values for the landscape—derived from
measurements in oil palm and forest—to GRACE TWSA and precipitation.

2.3 GRACE data acquisition

We extracted GRACE TWSA values for our study site from one 0.5° × 0.5° grid cell (−
2.75000 111.750, Fig. 2b) in JPL-RL05 GRACE monthly mass grids (Watkins et al. 2015;
Wiese 2015). The JPL-RL05 dataset uses a-priori constraints in space and time to estimate
global, monthly gravity fields in terms of equal area 3° spherical cap mass concentration
functions. The Earth’s gravity field is determined by the Earth’s mass and varies with location
on the Earth’s surface as well as time. A coastal resolution improvement (CRI) filter is applied
in post-processing to separate land and ocean portions of mass. The mass grids, updated
monthly, provide surface mass changes relative to a baseline average over January 2004 to
December 2009 with a spatial sampling of 0.5° (approximately 55 km at the equator), i.e., a
0.5° global grid of monthly mass change values. After oceanic and atmospheric effects are
removed, monthly and interannual variations in the mass changes are mostly accounted for by
changes in terrestrial water storage. The vertical extent of these changes can be considered as a
thin layer of water concentrated at the Earth’s surface, measured in units of centimeters
equivalent water thickness. The TWSA values are expressed in centimeters liquid water
equivalent (LWE). Negative and positive TWSA values indicate negative and positive devi-
ations, respectively, in water storage compared to a time-averaged baseline. Scaled uncertainty
estimates are also provided on a 0.5° global grid in the JPL-RL05 product.

About 1 month of satellite measurements is required to generate the GRACE monthly mass
change data, although occasionally, values represent less than a month of observations.
Nevertheless, the temporal resolution of GRACE TWSA is fixed at 1 month. The mass
changes reported for a given month during the sampling period were usually estimated as
the average of measurements collected from day 16 of the previous month to day 16 of the
present month. We matched these data with the observations of soil respiration and water table
depth closest in time, most often taken at the end of the month, within a week or two of the
GRACE value determined by integrating over the last half of the previous month and the first
half of the current month.

Rather than the January 2004–December 2009 baseline, we used a January 2014–Septem-
ber 2015 baseline to match the time of our study. To calculate TWSA relative to 2014–2015,
we calculated an average of TWSA values over our study period relative to the Jan 2004–
Dec 2009 baseline and subtracted that value from the TWSA value for each month. TWSA
data were not available for the months of February, July, and December 2014 and June 2015
due to satellite battery management.

2.4 Calculations and statistical analysis

All statistical analyses were completed using R (v 3.2.5). We used ordinary least squares
(OLS) linear regression to test for relationships among total soil respiration, water table
depth, GRACE TWSA, and monthly precipitation calculated as cumulative rainfall over the
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30 days prior to sampling. To test for a relationship between soil respiration and water table
depth in forest and oil palm, we related mean monthly soil respiration to water table depth
in each land use (n = 19). Finally, we related weighted average water table depth and
weighted average soil respiration to GRACE TWSA (n = 16 for both regressions). We also
related mean monthly water table depth and soil respiration in forest and oil palm as well
as weighted average water depth and soil respiration to monthly precipitation. At 0.033, the
ratio of area represented by the dependent variable (roughly 10 km × 10 km covered by
ground measurement plots = 100 km2) to the area represented by the independent variable
(roughly 55 km × 55 km for a 0.5° × 0.5° GRACE grid cell at the equator = 3025 km2) is
small but not unprecedented. For example, Spruce et al. (2011) validate a 250-m × 250-m
MODIS product using 30-m × 30-m Landsat scenes, for a dependent:independent area ratio
of 0.014. There are many additional highly cited examples in the literature where Landsat
is used as reference data for assessing a MODIS product (see for example Chen et al.
2005; Vina et al. 2008; Painter et al. 2009).

We used data transformation as necessary to adequately model the functional form of
dependent variables, e.g., we added 12 to GRACE TWSA to eliminate negative TWSAvalues
to model the relationship between combined total soil respiration and GRACE TWSA as a
logarithmic function. To assess the normality assumption of OLS regression, we used normal-
ity probability plots with a 95% confidence envelope produced using a parametric bootstrap.
Durbin-Watson test was used to test for autocorrelation. To test for heteroscedasticity, we used
a score test of the hypothesis of constant error variance against the alternative that the error
variance changes with the level of the fitted values. We identified outliers for examination
using Bonferroni adjusted p value for the largest absolute studentized residual. Data points
with high leverage were identified using the hat statistic p/n, where p is the number of
parameters estimated and n is the sample size. We examined observations with hat values
greater than three times the average hat value. We used Cook’s D to identify influential
observation.

3 Results

3.1 Variation in total soil respiration, water table depth, TWSA, and rainfall

Precipitation, TWSA, water table depth, and total soil respiration showed clear seasonal
variation in both oil palm and forest sites. Monthly precipitation was ≤ 100 mm during
the months of July–October 2014 and June–September 2015. Precipitation reached a
maximum of 424 mm in the month of March 2014 (Fig. 3a) and a minimum in August
2015 (13 mm). Monthly TWSA ranged from 10.8 cm in March 2015 to − 11.1 cm in
September 2015 (Fig. 3b), with considerable interseasonal variation (Fig. 4). In both forest
and oil palm, the water table was highest in April 2015 (− 2.3 ± 3.5 and − 13.7 ± 3.8 cm,
respectively) and lowest in September 2015 (− 167.9 ± 6.5 and − 227.3 ± 9.0 cm, respec-
tively). Total soil respiration was lowest in April 2014 in the forest (0.36 ±
0.04 g CO2 m−2 h−1) and April 2015 in the plantations (0.54 ± 0.07 g CO2 m−2 h−1).
It was highest in September 2015 at the beginning of the most intense El Niño Southern
Oscillation (ENSO) event in recent history, characterized by extremely low rainfall in
Indonesia, in both forest (1.54 ± 0.23 g CO2 m−2 h−1) and oil palm (1.07 ±
0.14 g CO2 m−2 h−1).
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3.2 Relationships among total soil respiration, water table depth, and TWSA

Total soil respiration increased with the natural log of concurrently measured water table depth
in both forest (Fig. 5a) and oil palm (Fig. 5b). As the water table dropped further below the soil
surface, soil respiration increased, in both oil palm and forest. The strong effect of ENSO-
induced drying and associated drop in the water table is evident in data from September 2015.
Extremely low rainfall during the two preceding months led to low water table levels in forest
and oil palm in September 2015 during the El Niño event. The data point corresponding to
measurements collected in September 2015 in forest plots (water table of − 167.9 cm, soil
respiration of 1.54 g m−2 h−1) was an outlier (Bonferroni adjusted p = 0.03) with marginally
significant influence on the relationship between water table depth and soil respiration in forest
(Cook’s D = 2.5).

The relationships between TWSA and water table depth, and between TWSA and soil
respiration, were also logarithmic in the independent variable. As water level approached the
surface, TWSA increased (Fig. 6a). Total soil respiration declinedwith increasing TWSA (Fig. 6b).

Fig. 3 Monthly precipitation (a), GRACE TWSA (b), mean water table depth (c), and mean total soil respiration
in forest (solid circle) and oil palm (open circle) plots (d). Values in b represent the change in remotely sensed
water storage at the sampling sites in centimeters liquid water equivalent. Error bars in b represent the scaled
uncertainty associated with the 3° mascon estimate (Wiese et al. 2016). Error bars in c and d represent standard
error of the mean (n = 3)

January 2014 September 2014

January 2015 September 2015

-12< -8 -4 0 4 8 >12
Fig. 4 Gridded GRACE TWSA across southern Central Kalimantan, Indonesia during wet months (precipita-
tion > 100 mm) in January 2014 and 2015 and dry months (precipitation ≤ 100 mm) in September 2014 and
2015. September 2015 was the beginning of a very intense El Niño Southern Oscillation across Indonesia. Colors
represent the change in water thickness (units = cm liquid water equivalent) relative to a January 2004 to
December 2009 average baseline. The grid cell covering our study site is marked with a star. Dotted lines
indicate − 2 latitude and 112 longitude

R
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3.3 Precipitation as a predictor variable of soil respiration and water table depth

Precipitation explained variation in water table depth and soil respiration in forest and oil palm, as
well as variation in the weighted average water table depth and soil respiration values.Water table
depth decreased with increasing cumulative precipitation over the 30 days prior to sampling in
forest (Fig. 7a) and oil palm (Fig. 7b), but precipitation explained more variation in water table in
forest (R2 = 0.75) than oil palm (R2 = 0.66). Soil respiration also decreased with increasing
precipitation in both forest (Fig. 7c) and oil palm (Fig. 7d). Precipitation explained over two
times more variation in soil respiration in forest (R2 = 0.73) than oil palm (R2 = 0.31).

Precipitation explained 74 and 76% of variation in weighted average water table depth
(Fig. 8a) and soil respiration (Fig. 8b), respectively.

Fig. 5 Mean total soil respiration as a function of mean water table depth (presented as a positive difference from
the surface) in forest (a) and oil palm (b) from January 2014 through September 2015 (n = 19 months)

Fig. 6 Weighted average water table depth (presented as a positive difference from the surface) (a) and weighted
average soil respiration (b) as a function of GRACE TWSA from January 2014 through September 2015 (n =
16 months). Note that TWSA is presented as anomaly values plus 12, to eliminate negative TWSA values.
Smaller TWSAvalues indicate lower soil water storage (deeper water table) and larger values indicate higher soil
water storage (shallow water table)
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4 Discussion

4.1 Linking total soil respiration and water table depth to GRACE observations

GRACE TWSA was well in phase with precipitation and water table depth (Fig. 3). Water
table depth, influenced by precipitation (Hirano et al. 2007), is a reasonably good predictor of
total soil respiration in our test site (Fig. 5 and Swails et al. in preparation) and other tropical
peatlands sites (Hirano et al. 2009; Jauhiainen et al. 2008). However, at larger spatial scales,
the relationship between peat soil respiration and water table depth loses strength (Hergoualc’h
and Verchot 2014). Additional work is needed to investigate other proxies and develop new
approaches allowing broader scale evaluations of total soil respiration. Soil moisture is another
critical variable influencing soil respiration and particularly important in drained peatlands
(Marwanto and Agus 2014; Comeau et al. 2016; Hergoualc’h et al. 2017). Because GRACE
TWSA tracks soil water storage, which includes water table depth and soil moisture, GRACE

Fig. 7 Mean water table depth (presented as a positive difference from the surface) (a and b) and soil respiration
(c and d) as a function of cumulative precipitation during the 30 days prior to the sampling date in forest (a and c)
and oil palm (b and d) from January 2014 through September 2015 (n = 19 months)
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data could be a useful tool to assess soil respiration, an important C flux from tropical peat
soils. GRACE TWSA data as a tool for monitoring water table depth might also serve as a fire-
alert system. Indeed, we found a significant relationship between total soil respiration and
water table depth (Fig. 5), between water table depth and GRACE TWSA (Fig. 6a), and
between total soil respiration and GRACE TWSA (Fig. 6b) in our test site. GRACE TWSA
was sensitive to extreme dry down during the 2015 El Niño event. Increased water table depth
and higher soil respiration in forest and oil palm during the 2015 El Niño event were associated
with more negative GRACE TWSA values. The most negative GRACE TWSA value was
associated with the lowest water table depth and highest soil respiration measurements in
September 2015.

Understanding the hydrological processes driving variation in soil water storage is
important for interpreting relationships among precipitation, GRACE TWSA, and water
storage in tropical peatlands. GRACE TWSA is related to changes in water storage, which
is a function of not only precipitation but also evapotranspiration and discharge, which
were not accounted for in our study. Relating total soil respiration to water table depth on
the ground to GRACE TWSA is constrained by many factors. For example, TWSA
reported for March 2014 was strongly negative. Despite extremely high rainfall in the
latter half of March 2014, because the period followed two relatively dry months, TWSA
remained negative for April, and it did not become positive again until May 2014. These
data indicate that ground water reservoirs required several months of rainfall to recharge
after the relatively dry conditions in January and February 2014. Careful consideration of
antecedent conditions (wet to dry versus dry to wet transitions) and time lags is necessary
for determining a predictive relationship between soil respiration, hydroclimatic drivers on
the ground, and GRACE TWSA.

Another constraint on estimating relationships among critical hydroclimatic parameters and
soil respiration is the dearth of meteorological data. The precipitation recorded at Iskander
Airport in Pangkalan Bun may not have been representative of the climatic conditions
represented in the GRACE grid cell, which covers an area of approximately 3025 km2. The
spatial resolution of the current product, at 0.5°, is fairly coarse.

Fig. 8 Weighted average water table depth (presented as a positive difference from the surface) (a) and weighted
average soil respiration (b) as a function of cumulative precipitation during the 30 days prior to sampling from
January 2014 through September 2015 (n = 16 months)
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Finally, missing days in the GRACE data record due to instrument issues may have
influenced the accuracy of TWSA observations. Estimation of a good gravity field solution
requires accumulation of satellite-to-satellite tracking data for about 1 month, and there were
many days missing from the record. Beginning in 2011, the GRACE mission shut down
battery power for consecutive weeks approximately every 6 weeks to extend satellite lifetime.
The anticipated GRACE follow-on mission will extend the GRACE time series with minimal
data gaps while significantly improving on the accuracy and spatial resolution of the original
mission (Fletchner et al. 2014).

4.2 A new way to assess a critical CO2 flux from tropical peatlands

Smaller TWSA, indicating drier conditions, was associated with greater landscape-scale soil
respiration in our test site, one GRACE grid cell, comprised of roughly one third oil palm
and two thirds intact peat swamp forest (Fig. 6b). Using relationships among precipitation,
GRACE TWSA, and total soil respiration, soil water storage, an important driver of
respiration in tropical peat soils, could be related to seasonal and interannual climatic
variation. This method of assessing soil water status with GRACE TWSA would better
characterize spatial and temporal variability in total soil respiration in tropical peatlands
compared to some other potential approaches using satellites. For example, the Soil
Moisture Active Passive (SMAP) mission L4-C product for monitoring terrestrial ecosys-
tem—atmosphere CO2 exchange using L-band microwave observations of soil moisture
achieves 9-km resolution (Jones et al. 2016), compared to 0.5° resolution with GRACE
JPL-RL05. However, SMAP, while useful for assessing soil moisture status in other parts
of the world (Piepmeier et al. 2017), cannot be used in densely vegetated tropical peatlands.
GRACE is uniquely appropriate for application in tropical peatlands in that it is able to
Bsee through^ dense vegetation, unlike SMAP. Furthermore, soil respiration in tropical
peatlands depends on water table depth in addition to soil moisture. Therefore GRACE
TWSA, as an integrated measure of groundwater and soil moisture, is particularly useful.
Satellite-based rainfall data, such as the Global Precipitation Mission (GPM), can be used
in the tropics to model soil water storage and achieves higher spatial resolution than
GRACE (e.g., 10 km × 10 km for GPM). However, satellite-based rainfall products may
underestimate rainfall in Southeast Asia during dry months (Vernimmen et al. 2012). Also,
rainfall remains one step removed from soil water status, which is the ultimate determinant
of soil respiration.

The strength of relationships between the weighted average water table depth and soil
respiration and precipitation is similar to those of relationships between water table depth and
soil respiration and TWSA. This indicates that in our study area, precipitation was an equally
good predictor as TWSA for assessing landscape soil respiration and water table depth
variation. Notwithstanding, in oil palm where water table level is controlled by drainage,
precipitation was not a good predictor of soil respiration (Fig. 7d). GRACE TWSA could
therefore be useful for predicting soil respiration in landscapes dominated by oil palm on peat.
Further testing of this application across larger spatial scales is needed, with additional ground
measurements properly designed to systematically test results presented here before they may
be generalized. This case study represents an early exploration of the potential of GRACE
TWSA as a tool for assessing total soil respiration and soil moisture regime. It should lead to
further investigation of how GRACE data can be used in a broader land-use change and
climatic change context.
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Several issues complicate the application of GRACEdata for assessment of net CO2 emissions
from tropical peatlands to the atmosphere. Total soil respiration includes both heterotrophic and
autotrophic contributions, but only heterotrophic respiration is directly linked to peat decompo-
sition. The literature indicates that anywhere from 50 to 90% of the flux is likely due to
heterotrophic respiration (Comeau et al. 2016; Hergoualc’h et al. 2017). Furthermore, peat C
storage or loss results from the balance of C entering the peat—litterfall, root mortality, and
exudates, and C leaving the peat—heterotrophic respiration, dissolved organic carbon, methane,
and fire, if any. Also, GRACEdata are coarse, and grid level TWSA represents the contribution of
changes in water storage in both undrained peat forest and drained oil palm. As we have done
here, using land cover data, GRACE grid level data could be weighted to represent coverage by
forest and oil palm to better predict soil respiration and water table depth with TWSA observa-
tions. Finally, total soil respiration within a specific land use in tropical peatlands responds to
multiple factors in addition to soil water storage, such as temperature, soil organic matter quality,
and nutrients. For instance, higher peat substrate quality in forest than oil palm may have
contributed to the stronger response of soil respiration to increased water table depth in forest
than oil palm during the El Niño event in September 2015 (Swails et al. 2017). Ultimately, a
multi-factor model could be developed linking remotely sensed measures with ground measure-
ments for large-scale assessments of soil respiration in tropical peatlands.

More work is needed to operationalize the application of GRACE TWSA for assessing CO2

emissions from tropical peatlands. Additional ground measurements of soil respiration and
physical drivers are needed to increase the spatial extent of in-situ observations and scale the
relationship with coarse resolution GRACE data. The current sample size is very small, and the
plot locations do not represent any randomized selection. While a small, non-randomized
sample is adequate for this exploratory study, for rigorous inference, a well-defined probability
sampling design would be necessary. Next, characterization of error and uncertainty of annual
emission estimates at various scales from the plot to the plantation, district, province, and island
is needed. This will enable the identification of an optimal sampling strategy for monitoring
CO2 emissions from peat using limited ground-based measurements and remotely sensed data.
Additional work is needed to account for other critical C fluxes. Nonetheless, GRACE data
show great promise for providing an alternative approach for understanding the role of tropical
peatlands in the global C cycle and the combined influence of land-use change and climate
variability on peat C emissions. Broad scale monitoring of water table depth and soil respiration
concomitantly in peatlands would also benefit peat restoration efforts. With further develop-
ment and systematic testing of results presented here, this new application could provide useful
information to decisionmakers to monitor changes in water table depth and peat CO2 emissions
in remote and inaccessible areas with limited measurements on the ground. This would enable
measures, such as peat drainage limits and burning bans, to be better targeted in space and time
to more effectively mitigate CO2 emissions from tropical peat drainage and fires, which are
important source of global anthropogenic GHG emissions to the atmosphere.
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