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Modeling Relations between Compacted and 
Uncompacted Crown Ratio for the Northern 
United States
James A. Westfall, Megan B.E. Westfall, and Kadonna C. Randolph

Tree crown ratio is useful in various applications such as prediction of tree mortality probabilities, growth potential, and fire behavior. Crown ratio is commonly assessed in two 
ways: (1) compacted crown ratio (CCR—lower branches visually moved upwards to fill missing foliage gaps) and (2) uncompacted crown ratio (UNCR—no missing foliage 
adjustment). The national forest inventory of the United States measures CCR on all trees, whereas only a subset of trees also are assessed for UNCR. Models for 27 species 
groups are presented to predict UNCR for the northern United States. The model formulation is consistent with those developed for other US regions while also accounting for 
the presence of repeated measurements and heterogeneous variance in a mixed-model framework. Ignoring random-effects parameters, the fit index values ranged from 
0.43 to 0.78, and root mean squared error spanned 0.08–0.15; considerable improvements in both goodness-of-fit statistics were realized via inclusion of the random effects. 
Comparison of UNCR predictions with models developed for the southern United States exhibited close agreement, whereas comparisons with models used in Forest Vegetation 
Simulator variants indicated poor association. The models provide additional analytical flexibility for using the breadth of northern region data in applications where UNCR is 
the appropriate crown characteristic.
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Tree crown size and condition are of considerable interest 
to foresters for a variety of reasons. Crown information 
is a key indicator of tree vitality and thus often serves as 

a primary predictor variable in tree growth and mortality models 
(Hilt and Teck 1989, Burkhart et al. 2008, Vospernik et al. 2010). 
Crown condition is also critical for prediction of forest-fire be-
havior (Ex et al. 2015, Hevia et al. 2018) and also plays a role in 
postdisturbance evaluations of weather, insect, and disease phe-
nomena (Morin et al. 2015, Chen et al. 2017). The amount of ec-
osystem services, e.g., carbon sequestration, air pollution removal, 
and energy efficiency, provided by a tree is directly correlated with 
crown characteristics (McPherson and Simpson 1999, Nowak et al. 
2014). However, the crown measurement protocol has a direct 
bearing on the usefulness of the information for a specific applica-
tion. CCR assessments entail visual “movement” of lower branches 
(as needed) to fill branch and foliage gaps farther up in the crown. 
Thus, CCR accounts for missing foliage and thus is a better indi-
cator of total amount of leaf area. The UNCR is based on the actual 

position of the lowest live branch, which describes the true ver-
tical crown presence. CCR measurements tend to be more suitable 
for applications such as growth models (Hann and Hanus 2002), 
whereas UNCR is better aligned to applications requiring the true 
height to crown-base ratio, such as fire behavior prediction (Alvarez 
et al. 2012) and tree taper modeling (Valentine and Gregoire 2001). 
Ideally, tree measurements would include both CCR and UNCR; 
however, that is rarely the case because of measurement time, sea-
sonality of foliage, and costs for fieldwork.

The lack of both CCR and UNCR measurements on each 
tree petitions for the ability to convert from one measure to an-
other. It is possible to directly predict either of these attributes 
from models using tree and stand attributes as predictor variables 
(Temesgen et al. 2005, Ducey 2009, Leites et al. 2009, Popoola 
and Adesoye 2012). However, no assurance of consistency is 
obtained, i.e., UNCR ≥ CCR. Thus, it is preferable to develop 
methods that provide more direct relations between the two meas-
ures to help ensure compatibility. In the United States, models 
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have been developed to predict UNCR from CCR for the Pacific 
Northwest (Monleon et  al. 2004), Interior West (Toney and 
Reeves 2009), and southern (Randolph 2010) regions. This is 
due, in large part, to CCR being measured on all trees in the 
forest inventory of the U.S, whereas only a small subset has the 
additional UNCR measurement (Schomaker et  al. 2007). As 
Randolph (2010) suggested, there is a need to produce similar 
models for the northern region to fully encompass the conter-
minous United States. Thus, the objectives of this study are to 
(1) develop models for the prediction of UNCR using CCR as a 
predictor variable, (2) account for heterogeneous error variance 
and lack of independence among observations during model cali-
bration, (3) assess how the model predictions compare to those of 
Forest Vegetation Simulator (FVS) variants covering the northern 
region, and (4) compare southern and northern region model 
predictions for species common to both areas.

Methods and Material
Data

The data used in this study were collected by the Forest 
Inventory and Analysis (FIA) program within the US Forest 
Service. The data were collected in the 24 states served by the 
Northern Research Station FIA unit (Figure 1), which represents 
the geographic area currently lacking models for conversion from 
compacted to CCR. The annualized forest inventory implemented 
by FIA is conducted by measuring a portion of the plots each 
year with all plots being measured over a period of 5–7  years. 
This process is repeated temporally, such that each plot gets 
remeasured every 5–7 years. FIA uses a quasisystematic sampling 
design having a sampling intensity of approximately 1 plot per 
5,937 acres (2,428 hectares) (Reams et al. 2005). The field data 
were collected using a 0.166-acre (0.067-hectare) cluster plot de-
sign, where each plot is composed of four circular subplots having 
a 24-ft (7.32-m) radius with one subplot located at plot center 
and the remaining three subplots centered at azimuths 120, 240, 
and 360° and distance of 120 ft (36.58 m) from the plot center 
(Bechtold and Scott 2005). Each subplot contains a circular 
microplot with 6.8-ft (2.07-m) radius established 12 ft (3.66 m) 
at azimuth 90° from the subplot center. In forested areas, trees 
having a diameter at breast height (dbh) of ≥5.0 in. (12.70 cm) 
are measured on subplots; trees with a dbh of ≥1.0 in. (2.54 cm) 
and <5.0 in. (12.70  cm) are measured on the microplots. 
A myriad of tree- and condition-based data is obtained on each 
plot (US Forest Service 2018a). Condition-level (similar to stand-
level) variables include forest type, stand size class, regeneration 
status, land owner group, reserve status, land use, and tree density. 
Separate forest conditions within a plot are delineated when any 
one of these variables is not uniform throughout the plot area. 
Individual tree measurements include species, dbh, total height, 
and CCR. Additional tree measurements that include UNCR are 
taken on a subset of plots (US Forest Service 2018b), resulting in 
both CCR and UNCR data being available for these trees. This 
subset serves as the data for this study. To facilitate handling of 
the large number of tree species encountered across the study area, 
species groups containing species of similar characteristics were 
used. These groupings largely match those used by the northern 
FIA program (Burrill et al. 2017). A general summary of the data 
is given in Table 1.

Analysis
Based on findings from other research that suggest the logistic 

model performs well in crown ratio modeling (Soares and Tomé 
2001, Fu et  al. 2015) and to maintain consistency with the for-
mulation for other regions of the United States, the general model 
form specified was

◊�UNCR =
1

1+ exp ( f (Xβ))
� (1)

where Xβ = linear combination of predictor variables and associated 
estimated model parameters.

Initial investigations of predictor variables included compacted 
crown ratio (CCR), natural logarithm of dbh (Ldbh), total tree 
height (HT), and basal area per acre of live trees (BALIVE). 
Although each of the parameter estimates corresponding to these 
variables was statistically significant (α  =  0.05), evaluation of 
their predictive power indicated that removal of both HT and 
BALIVE resulted in an increase of approximately 0.005 in root 
mean squared error (RMSE) (defined in Equation 5) with a cor-
responding decrease of about 0.002 in the fit index (see Equation 
7). This outcome suggests that little practical predictive power was 
afforded using HT and BALIVE information in addition to that 
provided by CCR and Ldbh. This is consistent with the findings 
of previous work (Monleon et al. 2004, Randolph 2010). Thus, in 
an attempt to be both parsimonious and consistent with the afore-
mentioned models covering other regions of the United States, the 
model chosen was:

◊�UNCRhikj =
1

1+ exp(β0 + β1CCRhikj + β2Ldbhhikj))
+ εhikj

� (2)
where subscripts h = measurement year for plot i, i = plot, k = con-
dition nested in plot i, j  =  tree nested in condition k, β0–β2 are 
estimated parameters, and εhikj denotes the random error. In this 
analysis, conditions were treated as the primary areal unit, as it is 
common that a plot only has one condition, and when multiple 
conditions are present, they often each contribute new information 
because of dissimilar stand characteristics.

Management and Policy Implications

Management and policy decisions are often made in the context of ex-
pected outcomes derived from applications such as stand-development and 
fire-prediction models. The models developed in this study may facilitate 
better management and policy decisions in two ways: (1) allowing the use of 
uncompacted crown ratio (UNCR) for data where only compacted crown ratio 
(CCR) was measured, and (2) improving growth and fire projection systems 
with more accurate models. In regard to (1), if CCR is used in systems where 
UNCR is expected, predictions of stand development and the probability of 
crown fire will likely be erroneous, which may lead to poor decisions. The 
context of (2) is that the broad spatial scale of the data used in this study may 
provide more accurate predictions than existing models developed from a 
smaller range of species, stand conditions, and geographic extent. Thus, there 
may be opportunities to update systems with models that perform more reli-
ably, although further evaluation would be necessary. As this study completes 
the availability of UNCR prediction models for the conterminous US, their im-
plementation can be beneficial at a broad range of spatial domains, thus 
promoting better decisionmaking from local to national levels.
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Having specified the model form, issues of heteroscedasticity 
and lack of independence among observations also need to be 
addressed. Examination of residuals resulting from fitting model 
(model 2)  indicated a violation of the homogeneous variance as-
sumption. Similar to the finding of Soares and Tomé (2001), the 
variance increased as predicted values decreased. Further investiga-
tion suggested a nonlinear increase in variance as CCR and Ldbh 
decreased. Considering the observed relations, the distribution of 
the random errors was specified as:

εhikj ≈ N
(
0, σ2

e
)
≈ N

(
0, exp(λ0 + λ1CCRhikj + λ2Ldbhhikj)

)
� (3)
where N(0, σ2

e) indicates a normal distribution with mean 0 and 
variance σ2

e, and λ0–λ2 are estimated parameters.
The data structure suggests tree attributes within a condition are 

correlated, particularly because of being in a common environment, 

e.g., crown closure influences sunlight penetration and the support 
of crown base height. As noted earlier, plots are revisited at regular 
intervals such that repeated measurements of the same conditions 
over time are also present in the data. Both circumstances indi-
cate a lack of independence among observations. Proper statistical 
treatment of correlated observations is necessary to avoid bias in 
estimates of variance (West et  al. 1984). In nonlinear regression 
applications, many researchers address correlated observations via 
specification of a mixed-effects model (Gregoire and Schabenberger 
1996). Introduction of random-effects parameters has been success-
fully used in models of tree taper (Yang et al. 2009, Westfall and 
Scott 2010), tree height (Sharma and Parton 2007, Vargas-Larreta 
et  al. 2009), and tree growth (Budhathoki et  al. 2008, Rohner 
et  al. 2018). Thus, a mixed model approach was used to address 
correlated observations in this study. Preliminary analyses indicated 
the best fit of the model to the data was obtained by associating 

Figure 1. Twenty-four state study area in the northern region of the United States with percent of forest land category by state.

Table 1. Sample size (n) and summary statistics for dbh (inches), UNCR, and CCR for 27 species groups in the northern region.

dbh UNCR CCR

n Min. Mean Max. IQR Min. Mean Max. IQR Min. Mean Max. IQR

2,110 1.0 9.3 26.4 5.4 0.04 0.42 0.99 0.20 0.02 0.31 0.90 0.18
1,979 1.0 8.7 21.8 4.3 0.05 0.45 0.99 0.30 0.01 0.31 0.99 0.20
6,406 1.0 10.0 39.8 6.9 0.01 0.52 0.99 0.30 0.01 0.37 0.99 0.20
1,722 1.0 7.4 19.2 3.1 0.05 0.52 0.99 0.30 0.05 0.39 0.99 0.18

31,755 1.0 5.2 23.9 4.9 0.01 0.61 0.99 0.35 0.01 0.45 0.99 0.30
6,588 1.0 9.0 37.0 5.4 0.03 0.67 0.99 0.32 0.02 0.47 0.99 0.25

16,289 1.0 7.6 28.1 3.8 0.01 0.63 0.99 0.31 0.01 0.44 0.99 0.22
3,856 1.0 8.7 32.2 3.7 0.02 0.53 0.99 0.29 0.02 0.41 0.99 0.20
9,500 1.0 10.1 43.6 6.5 0.02 0.60 0.99 0.30 0.01 0.41 0.95 0.15
5,992 1.0 11.4 41.8 7.7 0.03 0.52 0.99 0.20 0.01 0.38 0.87 0.15
4,003 1.0 9.5 36.4 5.4 0.01 0.52 0.99 0.20 0.01 0.35 0.85 0.10
6,539 1.0 10.7 34.0 7.3 0.01 0.54 0.99 0.25 0.01 0.38 0.99 0.15
6,462 1.0 8.1 28.4 5.0 0.05 0.61 0.99 0.30 0.04 0.42 0.90 0.20
4,432 1.0 8.0 32.4 5.0 0.10 0.58 0.99 0.25 0.01 0.42 0.89 0.15

17,831 1.0 8.2 43.2 5.1 0.01 0.58 0.99 0.25 0.01 0.41 0.96 0.12
28,463 1.0 7.8 38.4 4.6 0.01 0.52 0.99 0.21 0.01 0.37 0.90 0.15

7,551 1.0 6.5 38.0 6.0 0.01 0.67 0.99 0.35 0.01 0.45 0.95 0.20
858 1.0 8.5 31.3 5.4 0.05 0.50 0.99 0.23 0.01 0.36 0.91 0.15

1,789 1.0 6.5 26.4 4.5 0.01 0.60 0.99 0.30 0.01 0.40 0.99 0.20
10,648 1.0 7.5 40.3 4.5 0.01 0.49 0.99 0.25 0.01 0.35 0.99 0.15
14,078 1.0 7.4 61.5 4.9 0.01 0.42 0.99 0.17 0.01 0.33 0.90 0.15

3,122 1.0 9.3 33.5 5.7 0.05 0.53 0.99 0.25 0.01 0.38 0.90 0.15
2,447 1.0 11.0 39.1 7.8 0.05 0.49 0.99 0.23 0.05 0.35 0.90 0.10
1,621 1.0 9.9 33.4 6.4 0.05 0.53 0.99 0.25 0.05 0.37 0.85 0.15

24,135 1.0 7.3 51.6 4.0 0.01 0.53 0.99 0.26 0.01 0.36 0.99 0.20
6,233 1.0 6.6 31.2 5.1 0.01 0.54 0.99 0.30 0.01 0.36 0.99 0.20
8,445 1.0 4.0 29.0 4.4 0.01 0.58 0.99 0.35 0.01 0.38 0.95 0.15

Note: CCR, compacted crown ratio; dbh, diameter at breast height; IQR, interquartile range; UNCR, uncompacted crown ratio. IQR is the difference between 75th and 
25th percentiles of the distribution of values.
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the random-effect parameters with the intercept term (β0). Saud 
et  al. (2016) also found this placement to perform better than 
alternatives in mixed models for the crown ratio of shortleaf pine in 
the southern United States. The final model formulation used for 
analysis was:

◊�UNCRhikj =
1

1+ exp(β0 + θhik + φik
+β1CCRhikj + β2Ldbhhikj)

+ εhikj

� (4)

θhik ≈ N
(
0,σ2

θ

)

φik ≈ N
(
0,σ2

φ

)

where θhik  and φik are random-effect parameters assumed to be 
normally distributed having mean = 0 with variances σ2

θ and σ2
ϕ,  

respectively. θhik  represents multiple measurements of the same 
condition, whereas φik corresponds to similarities among trees 
within a condition.

Because of the large number of species and small sample sizes 
for rarer species, model 4 was fitted separately to 27 species groups 
(Table 1). Model goodness of fit was assessed via RMSE, mean ab-
solute error (MAE), and a fit index corresponding to R2 in linear 
regression (FI):

RMSE =

Ã
∑

(UNCRhikj −◊�UNCRhikj)
2

n
� (5)

MAE =

∑ ∣∣∣UNCRhikj −◊�UNCRhikj

∣∣∣
n

� (6)

FI = 1−
∑

(UNCRhikj −◊�UNCRhikj)
2

∑
(UNCRhikj −UNCR)

2� (7)

where ◊�UNCRhikj is the model prediction, UNCRhikj is the 
observed UNCR, UNCR  is the mean observed UNCR, and n is 
the number of observations. The model fit statistics were calculated 
including the estimated random effects as well as assuming a likely 
operational scenario where the random effects were ignored (or 
equivalently assuming their expected value of zero).

Model validation exercises are often conducted to avoid 
overfitting and to assess the decline in predictive performance when 
applied to new observations. In this case, overfitting is unlikely be-
cause of the large sample sizes (Table 1) and the inclusion of only 
two predictor variables in the model. Further, some concerns have 
been expressed that model validation methods provide little new 
information and may sometimes provide misleading results (Kozak 
and Kozak 2003, Tedeschi 2006). Nonetheless, model performance 
was examined via Monte Carlo cross-validation (Shao 1993) by 
randomly dividing the data into 75 percent fitting/25 percent val-
idation sets. For computational efficiency, regression analyses of 
model 2 were conducted using the fitting data, with RMSE and 
MAE assessed using the validation data. After repeating this process 
100 times, the mean and standard deviation of RMSE and MAE 
were calculated. The final models given in Equation 4 were fitted to 
all available data as described in Table 1.

In addition to assessing the performance of the models de-
veloped for the northern region, it is also of interest to compare 
predictions of UNCR with those from other published sources. 
The Forest Vegetation Simulator (FVS) is a multifaceted growth 
and yield system applicable across the United States (Dixon 2002). 
Coverage of the northern region is accomplished primarily through 
three variants applicable to the northeast (Dixon and Keyser 
2008a), lake states (Dixon and Keyser 2008b), and central states 
(Dixon and Keyser 2008c). Prediction of UNCR for all of these 
variants is based on the models from Holdaway (1986), which uses 
dbh and stand basal area (per acre) as predictors. The results re-
ported by Holdaway are used for most species groups in FVS, but 
users should consult the aforementioned documentation for each 
variant to find the specific coefficients being implemented. The 
FVS methodology was applied to the data used in this study to 
compare predictions of UNCR.

Similarly, comparisons with the models developed for the 
southern region were desired for species common to both regions. 
The model coefficients and species group assignments presented 
in Randolph (2010) were used to obtain predicted values for the 
common species occurring in this study. Note that although the 
model formulation shown in model 2 is identical for the northern 
and southern applications, the data set on which the southern 
region models were built was limited to trees ≥5.0 in. dbh. The pri-
mary statistics of interest in these comparisons were the mean and 
standard deviation of the differences, as well as the assessment of 
statistical and practical significance of those differences.

Results and Discussion
Despite being applied across 27 species groups, the results of 

the regression analyses were consistent in that nearly all estimated 
parameters were statistically significant at the 95 percent confi-
dence level (Table 2). The exceptions were λ1 for jack pine (group 
4)  and σ2

θ for tupelo and blackgum (group 19). For jack pine, 
the nonsignificant λ1 suggests residual variation for this model is 
largely unaffected by the magnitude of CCR. The nonsignificant 
σ2

θ for the tupelo and blackgum group signified little modification 
to the estimated fixed-effect parameter β0 was needed to account 
for condition-to-condition variability. It should be noted that the 
σ2

φ parameter was statistically significant for all groups, indicating 
a nontrivial effect of the temporally repeated measurements of 
the same conditions. The only other anomaly in the estimated 
parameters occurred among red pine (group 8), where λ2 was pos-
itively valued in comparison with being negatively valued for all 
other groups. Red pine differs from the other groups in that the 
residual variance increases with increasing Ldbh (Figure 2). This 
phenomenon may be partially due to most red pine in the region 
being in monoculture plantations, which may alter competition 
dynamics and resultant growth patterns as compared to naturally 
established forests.

The models provided a range of goodness of fit to the data across 
the species groups encountered in the northern United States 
(Table 3). With the random-effects parameters set to zero, RMSE 
spanned 0.08–0.15, with a mean across all species groups of 0.12; 
MAE varied between 0.06 and 0.12 with an overall mean of 0.09; 
FI exhibited a maximum of 0.78 for loblolly and shortleaf pines 
(group 1), a minimum of 0.43 for tupelo and blackgum (group 
19), and a mean of 0.58. The model fit statistics from this study are 
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very similar to those reported for other regions of the United States 
(Monleon et al. 2004, Toney and Reeves 2009, Randolph 2010). 
The inclusion of the random effects substantially reduced RMSE 
(RMSE* range 0.04–0.09; mean 0.07) and increased FI (FI* range 
0.60–0.86; mean 0.73) (Table 3). MAE statistics were similar re-
gardless of whether the random effects were included. This outcome 
suggests the use of random effects tends to reduce the largest pre-
diction errors (both positive and negative); however, there is little 
influence on the central tendency of the absolute error distribution.

The models do not enforce the biological definition UNCR ≥ CCR. 
Other studies (Monleon et al. 2004, Randolph 2010) noted a small 
number of trees with ◊�UNCR ≤ CCR. In this analysis, 0.07 percent 
of trees demonstrated this undesirable property. As expected, the 

preponderance (~70 percent) was found in cases where CCR ≥ 0.95, 
and this is where the largest discrepancies occurred (mean difference 
0.03). Nearly 20 percent of the problematic predictions were associ-
ated with CCR ≤ 0.40, but the errors were smaller (mean difference 
0.01). Overall, the anomaly occurred in 14 of the 27 groups with 
nearly 40 percent occurring in the spruce and balsam fir group (group 
5). The other US studies avoided the issue for trees with high CCR by 
invoking ◊�UNCR = CCR when CCR > 0.90; however, as Toney and 
Reeves (2009) point out, this approach has some bias. The recom-
mendation from this study is to only require ◊�UNCR = CCR when 
◊�UNCR < CCR to minimize bias for trees with CCR > 0.90 and also 
rectify any incongruous predictions that occur when CCR ≤ 0.90.

Table 2. Estimated parameters for model (4) with residual variance from (3) fitted to 27 species groups.

Group Name β0 β1 β2 λ0 λ1 λ2 σ2θ σ2φ

1 Loblolly and shortleaf pines 1.5425 –4.7368 0.1180 –3.6039 –0.6926 –0.7982 0.0192 0.0158
2 Other yellow pines 1.5031 –5.2376 0.1598 –2.5491 –1.3664 –0.8323 0.0393 0.0653
3 Eastern white pine 1.4942 –4.9138 0.0910 –3.6567 –1.5194 –0.3673 0.0448 0.0655
4 Jack pine 1.5125 –4.6564 0.0927 –4.6561 –0.0789 –0.1951 0.0859 0.0491
5 Spruce and balsam fir 1.3848 –4.9635 0.1195 –3.1131 –3.0714 –0.2244 0.0682 0.0660
6 Eastern hemlock 0.9869 –4.5940 0.1291 –2.5121 –3.7954 –0.2527 0.0673 0.0718
7 Other eastern softwoods 0.9622 –4.3375 0.1404 –2.4476 –3.3929 –0.4010 0.0862 0.0638
8 Red pine 1.4917 –5.2445 0.1846 –4.5910 –1.5932 0.1414 0.0788 0.0600
9 Select white oaks 0.8512 –4.2605 0.2092 –2.1939 –3.3562 –0.4895 0.0515 0.0675

10 Select red oaks 1.1379 –4.2314 0.1596 –2.5797 –2.3027 –0.7060 0.0228 0.0313
11 Other white oaks 0.9781 –4.4068 0.2235 –2.1834 –2.3846 –0.7511 0.0440 0.0410
12 Other red oaks 1.1222 –4.5126 0.1818 –2.3615 –2.8695 –0.5821 0.0290 0.0446
13 Hickory 0.8390 –4.3864 0.2558 –2.1709 –3.6006 –0.4735 0.0426 0.0459
14 Yellow birch 1.1200 –4.3840 0.1983 –2.2853 –3.4640 –0.6530 0.0204 0.0299
15 Hard maple 0.8211 –4.3175 0.2821 –2.1212 –3.0500 –0.7175 0.0406 0.0411
16 Soft maple 1.2410 –4.4017 0.1460 –2.9254 –2.4377 –0.5536 0.0286 0.0387
17 Beech 0.6889 –4.6325 0.3158 –1.9183 –4.2863 –0.4281 0.0896 0.0589
18 Sweetgum 1.2353 –4.3476 0.1618 –2.0122 –2.0042 –0.7278 0.0145 0.0000
19 Tupelo and blackgum 0.9228 –4.2780 0.1915 –2.3048 –3.4414 –0.4559 0.0155 0.0736
20 Ash 1.2976 –4.3743 0.1380 –2.8216 –2.7972 –0.5343 0.0386 0.0318
21 Cottonwood and aspen 1.6683 –4.4202 0.0402 –5.0822 –0.8311 –0.1950 0.0202 0.0314
22 Basswood 1.1765 –4.3006 0.1541 –2.9967 –1.7926 –0.5606 0.0473 0.0410
23 Yellow poplar 1.2729 –4.6294 0.1705 –3.3724 –1.0944 –0.5818 0.0170 0.0348
24 Black walnut 1.3850 –4.8044 0.1026 –3.2260 –1.6267 –0.3739 0.0602 0.0204
25 Other eastern soft hardwoods 1.1027 –4.6201 0.2342 –2.7022 –2.1610 –0.5749 0.0727 0.0420
26 Other eastern hard hardwoods 1.0988 –4.7961 0.2523 –2.6434 –2.4076 –0.6239 0.0694 0.0345
27 Eastern noncommercial hardwoods 1.0502 –4.2587 0.1661 –2.7280 –3.3206 –0.3108 0.0886 0.0728

Note: All parameter estimates were statistically significant at the 95% confidence level with P value < .0001, except statistically significant estimates having larger p-values 
(.05 < P < .0001) shown in italics and nonsignificant estimates (P > .05) given in bold.

Figure 2. Change in residual error variance (σ2
e) as a function of CCR and Ldbh (in.) using model 3 for red pine in contrast to all other 

species groups (as exemplified by eastern white pine).
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The results from the Monte Carlo cross-validation showed no 
indication of overfitting and essentially no loss in predictive ability 
when fitted models were applied to the validation data. The mean 
of the RMSE and MAE (Table 4) were nearly identical to the values 
shown for the same model fitted to the entire data (Table 3). Also, 
the standard deviations of RMSE and MAE indicated very con-
sistent outcomes for each of the 100 random splits of the data. 
Thus, there is little concern that substantial erosion in predictive 
accuracy would be encountered when applying the model to new 
observations obtained within the northern region.

Comparison with FVS and Southern Region Models
Differences in predicted UNCR between the FVS implementa-

tion of Holdaway (1986) models and those developed in this study 
were relatively large and consistent in direction. Essentially, the 
models from this study tended to predict a larger UNCR than FVS 
provides (Table 5). The range of mean differences across all species 
groups was approximately 0.02–0.40 for the central states variant, 
0.06–0.31 for the lake states, and –0.10–0.29 for the northeast. 
Further investigation revealed a clear association between the pre-
diction differences and tree size for trees having dbh ≤ 12 in., where 
the largest differences were found for the smallest trees in the data 
(Figure 3). For trees of size 12 < dbh ≤ 20 in., the correlation be-
tween prediction differences and tree size essentially dissipated, but 
there still existed a consistent mean difference of about 0.08 in. 
Trees having dbh > 20 in. exhibited substantial variability in model 
prediction differences, such that no particular pattern could be 
ascertained. Initially, it was suspected that perhaps the Holdaway 
(1986) model was being extrapolated beyond the range of the orig-
inal fitting data; however, the paper suggests sufficient representa-
tion of small-diameter trees and stands of low basal area. Another 
consideration was that the geographic range of the data used by 
Holdaway only included the lake states of Wisconsin, Minnesota, 

and Michigan. There was a small, but discernible, effect of FVS 
variant, where the largest differences were in the lake states, with 
central states and northeast having smaller differences (Figure 3).

A number of species found in the northern region also occur 
in the southern United States. Thus, a comparison with the sim-
ilarly constructed models developed for the southern region 
(Randolph 2010) is warranted for species common to both studies. 
An assessment of prediction differences between the southern 
and northern models by tree size indicated the northern models 
predicted slightly larger values for smaller trees (up to 7 in. dbh); 
whereas for trees having dbh > 7 in., the northern models consist-
ently predicted approximately 0.01 less than the southern models 
(Figure 3). Twenty of the 27 species groups in this study contained 
species that were also encountered in the southern region (Table 
5). The mean differences ranged from –0.030 to 0.057. Four 
groups with absolute value differences greater than 0.03 are worth 
noting: other yellow pines (group 2), eastern white pine (group 
3), soft maple (group 16), and other eastern hard hardwoods 
(group 26). Randolph (2010) placed all Pinus species into a single 
group (PISP), whereas Pinus species common to both regions 
were spread across groups 1–3 of this study. The mean differences 
for these groups were 0.018, 0.045, and 0.057, respectively. The 
increase in the mean differences across these groups corresponds 
to the decreasing frequency of the species in PISP. That is, in the 
southern region study, PISP was composed of 75.7 percent lob-
lolly and shortleaf pine, 4.6 percent pitch and Virginia pine, and 
1.5 percent eastern white pine, with the remaining balance (18.2 
percent) filled by six other species (unpublished data). Thus, the 
discrepancies found for these softwood species are not surprising 
given the compositional differences in species occurrence and ag-
gregation between the two studies.

A similar scenario is likely in play for the soft maple group, al-
though the evidence is less straightforward. For the southern region, 

Table 3. RMSE, MAE, and FI for 27 species groups without and with (* designation) inclusion of random effects for prediction.

Group Name RMSE MAE FI RMSE* MAE* FI*

1 Loblolly and shortleaf pines 0.08 0.06 0.78 0.05 0.07 0.85
2 Other yellow pines 0.12 0.09 0.66 0.07 0.10 0.79
3 Eastern white pine 0.11 0.08 0.75 0.06 0.08 0.86
4 Jack pine 0.11 0.08 0.73 0.06 0.08 0.86
5 Spruce and balsam fir 0.12 0.09 0.70 0.07 0.10 0.81
6 Eastern hemlock 0.12 0.10 0.59 0.07 0.10 0.75
7 Other eastern softwoods 0.13 0.10 0.60 0.08 0.10 0.75
8 Red pine 0.11 0.09 0.73 0.06 0.08 0.84
9 Select white oaks 0.13 0.10 0.44 0.07 0.10 0.68

10 Select red oaks 0.10 0.08 0.54 0.06 0.08 0.70
11 Other white oaks 0.13 0.10 0.45 0.07 0.10 0.64
12 Other red oaks 0.12 0.09 0.51 0.07 0.09 0.69
13 Hickory 0.13 0.10 0.50 0.08 0.10 0.68
14 Yellow birch 0.11 0.08 0.59 0.06 0.09 0.72
15 Hard maple 0.12 0.10 0.48 0.07 0.10 0.63
16 Soft maple 0.11 0.08 0.54 0.06 0.09 0.69
17 Beech 0.14 0.11 0.54 0.08 0.11 0.69
18 Sweetgum 0.12 0.09 0.57 0.08 0.12 0.60
19 Tupelo and blackgum 0.14 0.11 0.43 0.09 0.11 0.61
20 Ash 0.12 0.08 0.56 0.07 0.09 0.70
21 Cottonwood and aspen 0.08 0.06 0.74 0.04 0.06 0.86
22 Basswood 0.12 0.09 0.55 0.06 0.09 0.74
23 Yellow poplar 0.10 0.08 0.61 0.06 0.08 0.75
24 Black walnut 0.12 0.09 0.59 0.07 0.09 0.74
25 Other eastern soft hardwoods 0.14 0.10 0.53 0.08 0.11 0.72
26 Other eastern hard hardwoods 0.13 0.10 0.57 0.08 0.11 0.73
27 Eastern noncommercial hardwoods 0.15 0.12 0.44 0.08 0.11 0.70

Note: FI, fit index; MAE, mean absolute error; RMSE, root mean squared error.
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Randolph (2010) combined all Acer species into a single group 
(ACSP), whereas this study created separate groups for hard maple 
(primarily sugar maple [Acer saccharum Marsh.]) and soft maple 

(essentially red maple [Acer rubrum L.]). The mean differences 
were small for hard maple (0.003), but relatively large for soft 
maple (–0.030). The ACSP group was predominantly red maple 

Table 4. Mean and standard deviation of RMSE and MAE from the Monte Carlo cross-validation analysis for 27 species groups.

RMSE MAE

Group Name Mean SD Mean SD

1 Loblolly and shortleaf pines 0.08 0.004 0.06 0.002
2 Other yellow pines 0.12 0.007 0.09 0.003
3 Eastern white pine 0.11 0.003 0.08 0.001
4 Jack pine 0.11 0.005 0.08 0.003
5 Spruce and balsam fir 0.12 0.001 0.09 0.001
6 Eastern hemlock 0.12 0.002 0.09 0.002
7 Other eastern softwoods 0.13 0.002 0.10 0.001
8 Red pine 0.11 0.003 0.08 0.002
9 Select white oaks 0.13 0.002 0.10 0.002

10 Select red oaks 0.10 0.003 0.08 0.001
11 Other white oaks 0.13 0.003 0.10 0.002
12 Other red oaks 0.12 0.003 0.09 0.002
13 Hickory 0.13 0.002 0.10 0.002
14 Yellow birch 0.11 0.003 0.08 0.002
15 Hard maple 0.12 0.001 0.09 0.001
16 Soft maple 0.11 0.001 0.08 0.001
17 Beech 0.14 0.002 0.11 0.002
18 Sweetgum 0.12 0.009 0.09 0.004
19 Tupelo and blackgum 0.14 0.005 0.11 0.003
20 Ash 0.12 0.003 0.08 0.001
21 Cottonwood and aspen 0.07 0.002 0.05 0.001
22 Basswood 0.11 0.003 0.09 0.002
23 Yellow poplar 0.10 0.004 0.07 0.002
24 Black walnut 0.12 0.006 0.09 0.003
25 Other eastern soft hardwoods 0.14 0.002 0.10 0.001
26 Other eastern hard hardwoods 0.13 0.003 0.10 0.002
27 Eastern noncommercial hardwoods 0.15 0.003 0.12 0.002

Note: MAE, mean absolute error; RMSE, root mean squared error.

Table 5. Mean difference (D) and standard deviation of differences (σD) between model predictions from this study (Table 2) compared to 
Forest Vegetation Simulator variants (central states, lake states, and northeast) and Randolph (2010).

Central states Lake states Northeast Randolph

Group Name D σD D σD D σD D σD

1 Loblolly and shortleaf pines 0.025 0.096 – – 0.126 0.162 0.018 0.015
2 Other yellow pines 0.106 0.144 0.134 0.153 –0.017 0.159 0.045 0.025
3 Eastern white pine 0.221 0.110 0.147 0.176 0.142 0.165 0.057 0.016
4 Jack pine – – 0.096 0.152 –0.097 0.064 – –
5 Spruce and balsam fir – – 0.226 0.177 0.192 0.177 – –
6 Eastern hemlock – – 0.289 0.123 0.232 0.146 – –
7 Other eastern softwoods 0.059 0.155 0.190 0.146 0.188 0.161 – –
8 Red pine – – 0.206 0.164 –0.012 0.156 – –
9 Select white oaks 0.088 0.124 0.191 0.131 0.200 0.121 0.028 0.008

10 Select red oaks 0.042 0.111 0.146 0.124 0.078 0.111 –0.016 0.004
11 Other white oaks 0.046 0.118 – – 0.129 0.124 0.003 0.010
12 Other red oaks 0.058 0.123 0.134 0.131 0.123 0.126 0.008 0.021
13 Hickory 0.138 0.133 0.223 0.134 0.196 0.141 0.028 0.035
14 Yellow birch – – 0.146 0.135 0.126 0.132 0.010 0.032
15 Hard maple 0.168 0.137 0.135 0.132 0.129 0.127 0.003 0.031
16 Soft maple 0.155 0.135 0.129 0.130 0.058 0.129 –0.030 0.017
17 Beech 0.405 0.161 0.231 0.175 0.287 0.176 –0.027 0.006
18 Sweetgum 0.165 0.126 – – 0.158 0.149 –0.008 0.012
19 Tupelo and blackgum 0.220 0.141 0.272 0.057 0.242 0.136 0.017 0.011
20 Ash 0.094 0.117 0.183 0.140 0.114 0.147 0.025 0.006
21 Cottonwood and aspen 0.071 0.136 0.064 0.122 0.037 0.114 – –
22 Basswood 0.199 0.120 0.143 0.135 0.116 0.125 – –
23 Yellow poplar 0.137 0.128 – – 0.109 0.137 0.012 0.021
24 Black walnut 0.156 0.128 0.212 0.145 0.114 0.133 –0.015 0.014
25 Other eastern soft hardwoods 0.141 0.142 0.176 0.153 0.121 0.146 0.011 0.047
26 Other eastern hard hardwoods 0.134 0.134 0.098 0.157 0.134 0.179 0.035 0.041
27 Eastern noncommercial hardwoods 0.130 0.156 0.308 0.138 0.222 0.144 0.019 0.026

Note: With the exception of red pine (group 8) in the northeast variant, all differences were statistically different from zero at the 95 percent confidence level.
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(68.8 percent) so the reason for the relatively large difference be-
tween ACSP and the soft maple group is unclear. It may be due in 
part to less common Acer species, e.g., boxelder (Acer negundo L.), 
which were grouped with the maples in the southern study but with 
other groups, e.g., other eastern soft hardwoods, in this study. Of 
further note is that although both CCR and Ldbh were significant 
predictors of UNCR for the ACSP group in the southern region, 
Ldbh was not a significant predictor of UNCR for red maple (nor 
sugar maple) when the species was modeled individually (unpub-
lished data). Therefore, the differences among the results for the 
northern and southern regions are likely due to the dissimilar aggre-
gation of species.

Likewise, the prediction difference of 0.035 for the other eastern 
hard hardwoods group (group 26) was probably due to the inclu-
sion of species that were modeled individually in the southern study 
but grouped together in this study, e.g., birch (Betula spp.), flow-
ering dogwood (Cornus florida L.), common persimmon (Diospyros 
virginiana L.), and black locust (Robinia pseudoacacia L.). The 
extent of practical significance resulting from using one regional 
model over the other for this group, as well as for the pine and 
maple groups, depends on the specific application of the results, 
e.g., the sensitivity to crown parameters within systems that project 
stand development or fire behavior, but is likely to be minimal. 
More generally, it should also be noted that the statistically signifi-
cant differences between the southern and northern models may be 
of little pragmatic concern given the relatively small magnitude of 
the prediction differences (Table 5).

Conclusion
The presentation of models for the northern region completes 

the geographic coverage of the conterminous United States for pre-
diction of UNCR using CCR and the ubiquitously measured dbh.

Because of the importance of UNCR in various applications, 
these models should prove useful to analysts conducting assessments 
in the northern region and larger landscape-scale explorations 
when combined with other regional models. In cases where spe-
cies occur in more than one region, e.g., northern and southern, 
there appears to be little difference in prediction because of model 
source; nevertheless, analysts should proceed with some caution if 
applying models outside the intended geographic range. This situa-
tion is likely to be encountered when using data from plots having 

nationally consistent spatial coverage. Other applications of the 
models include updating UNCR predictions in growth and yield 
models (e.g., FVS) and fire behavior simulators. Of course, the 
effects on overall performance need to be carefully examined, as 
unanticipated outcomes can occur within systems that rely on nu-
merous inter-related models.

There is considerable merit in having both CCR and UNCR 
values available, as usually one is preferable depending on the 
analytical purpose. Typically, only one ratio is assessed because 
of resource limitations or the unanticipated future need for 
both ratios. Given the wide range of conditions observed on the 
forest inventory plots, the models presented here have applica-
tion across the Northern United States and are recommended 
for use when data collection does not include UNCR or mod-
eling efforts are not feasible for local inventories conducted in 
the region. Further, similar modeling efforts should be pursued 
for in other countries to provide users with crown information 
suited to their needs.
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