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We develop an acceptance sampling approach for surveillance of the emerald ash borer (EAB), a harmful for-
est pest, in Winnipeg, Canada. We compare sampling strategies computed with two different management
objectives. The first objective maximizes the expected area with detected infestations and the second object-
ive minimizes the expected number of undetected infested trees in sites that were not inspected or where
inspection did not find an infestation. The choice of the management objective influences the survey strategy:
achieving the first objective involves selecting sites with high infestation rates proximal to the infested area,
whereas the second objective requires inspecting sites with both high infestation rates and high host dens-
ities. Adding uncertainty prescribes inspecting a larger area with lower sampling rates and extending the sur-
veys to farther distances from the infested locations. If a decision maker wants to minimize the worst-case
damage from failed detections, the optimal strategy is to survey more sites with high host densities at farther
distances, where EAB arrivals could cause significant damage if not detected quickly. Accounting for the
uncertainty addresses possible variation in infestation rates and helps develop a more diversified survey strat-
egy. The approach is generalizable and can support survey programmes for new pest incursions.

Introduction
Surveillance is a critical strategy in reducing the costs of control-
ling biological invasions. In particular, delimiting surveys serve
as a way to uncover the extent of the area invaded by a pest
and find established populations before they reach a size that is
difficult to eradicate (Ewel et al., 1999; Baker et al., 2009; Leung
et al., 2014; Holden et al., 2016). Thus, uncovering the full spatial
extent of the invaded area makes eradication and other rapid
response measures more effective (Leung et al., 2002; Lodge
et al., 2006; Rout et al., 2014; Epanchin-Niell and Liebhold,
2015).

Survey planning for invasive species may be assisted by
optimization-based tools (Mehta et al., 2007; Hauser and
McCarthy, 2009; Epanchin-Niell et al., 2012; Büyüktahtakın and
Haight, 2018). For example, recent work on optimal surveillance
strategies for invasions has focused on selection of surveys in
spatial (Hester and Cacho, 2012; Horie et al., 2013; Epanchin-
Niell et al., 2014; Yemshanov et al., 2015, 2017a) and temporal
(Epanchin-Niell et al., 2014; Moore and McCarthy, 2016)
domains. Additionally, several studies have explored optimal

survey strategies in combination with pest control activities
(Mehta et al., 2007; Hauser and McCarthy, 2009; Homans and
Horie, 2011; Epanchin-Niell et al., 2012; Rout et al., 2014;
Yemshanov et al., 2017b). Fewer optimization studies have con-
sidered particular types of surveillance, such as early detection
or delimiting surveys, but see examples in Guillera-Arroita et al.
(2014) and Surkov et al. (2009).

In many cases, delimiting surveys must cover large areas
after initial discovery in order to be effective. One of the most
common delimiting survey strategies involves maximizing the
expected area (or number of sites) with successful detections.
Information about the ability of the pest species to spread to
uninvaded areas may be unknown, so decision-makers must
rely on probabilistic expectations of where and when the pest
might enter these areas in order to predict the likely extent of
invasion at a point in time (see reviews in Venette et al. (2010)
and Yemshanov et al. (2009)).

Notably, spreading pest populations may damage valuable
host resources or impair other economic activities in these areas
if they go undetected. However, the probabilistic expectations
that managers commonly use to characterize invasion likelihood
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do not guarantee a proper account of possible negative out-
comes of surveillance actions, such as damage to host resources
when detection fails. Statistical quality control methods, such as
acceptance sampling (Wetherill and Chiu, 1975), provide better
means to account for potential deleterious outcomes of survey
decisions (Christensen and Gardner, 2000; Chen et al., 2018). For
instance, acceptance sampling has been widely used for quality
control in manufacturing, where inspectors accept or reject a lot
(i.e. a group of items) based on information obtained from a
sample of items inspected in the lot (Schilling and Neubauer,
2009). The technique also plays an important role in public and
food safety programmes (Koblinsky and Bertheau, 2005; Starbird,
2005; Whiting et al., 2006; Powell, 2014), human disease control
(Christensen and Gardner, 2000) and harmful pest entries with
agricultural and plant imports (Venette et al., 2002; Chen et al.,
2018).

In acceptance sampling, an inspection plan defines the sam-
ple size, the inspection method and the acceptance threshold
that sets the decision rule to accept the lot only if the number
of defective items in the sample is equal to or less than the
threshold. Sampling schemes may be designed to minimize the
costs of inspection (Baker et al., 1993; Lattimore et al., 1996) or
maintain an acceptable level of risk of overlooking a defective
item (Starbird, 2005; Whiting et al., 2006; Yamamura et al.,
2016). Often, sampling efforts are constrained by limited budget
and personnel (Powell, 2014; Yamamura et al., 2016) and take
place in circumstances where many items have to be inspected
in a short time. For example, the Canadian Border Security
Agency and Canadian Food Inspection Agency regularly conduct
inspections of live plant imports from damaging pests at ports
of entry (CFIA, 2015; CBSA, 2017).

In this paper, we adapt the acceptance sampling approach
to the problem of developing a geographic delimiting survey for
an urban forest pest. Our approach is to define the problem as
one that is equivalent to the problem of determining an optimal
acceptance sampling plan for multiple lots of one commodity
that are inspected simultaneously and that is subject to a bud-
get constraint on sampling cost. To do this, we first divide the
survey area into a spatial grid of survey sites and consider each
site analogous to a lot with items that can be sampled for
inspections. The items in this case are the suitable host trees in
each site that can be inspected for visible signs of infestation by
the pest. A sample of these trees is inspected and if one or
more trees is found to contain the pest, the site is declared as
infested. Inspecting trees for pests is subject to detection errors
which are equivalent to inspection errors in acceptance sam-
pling. However, detection errors for pest sampling methods are
usually given as detection rates (i.e. how often is an infested
tree successfully detected by a given method). Therefore, we
consider the detection rate of each tree inspection method to
be analogous to 1 - inspection error in finding the defective
items in a sampled lot.

We compare acceptance sampling strategies computed with
two different management objectives. The first objective reflects
the common surveillance strategy where a manager attempts
to minimize the expected number of survey sites with
undetected infestations. The second objective reflects a differ-
ent surveillance strategy where the manager attempts to min-
imize the expected number of infested trees remaining within
the survey area that are either in survey sites that were not

surveyed or in survey sites where inspections did not detect an
infestation. Conceptually, this second objective is analogous to
minimizing the cost of damage caused by defective items in
accepted lots that escape detection during the inspection pro-
cess. To accomplish the second objective, we apply the formula
presented in Chen et al. (2018) to estimate the expected slip-
page in each survey site, which is defined as the expected num-
ber of infested trees in each survey site conditional on the
survey failing to detect an infestation, given the number of host
trees, the pest detection rate and the infestation rate for a sur-
vey site. We propose a linear programming model that allocates
the surveillance actions to fulfil the second objective. We then
compare the results obtained for the second objective with
those from the first objective (i.e. minimizing the expected area
with undetected infestations). We then extend the linear pro-
gramming formulation to find optimal survey strategies when
the likelihood of a pest infesting an area is uncertain. We formu-
late a robust optimization problem (Kouvelis and Yu, 1997)
where we represent these uncertain likelihoods of infestation as
random variables with a large set of discrete infestation scen-
arios. We also examine the impact of decision-making percep-
tions of uncertainty on optimal survey strategies, such as
ambiguity-averse behaviour that aspires to avoid worst-case
outcomes of survey actions (i.e. failed detections).

We demonstrate the approach using the example of a deli-
miting survey programme for emerald ash borer (EAB), Agrilus
planipennis Fairmaire (Coleoptera:Buprestidae), in Winnipeg,
Manitoba, Canada, where the pest was first discovered in
December 2017 (GoC, 2017). The EAB is native to eastern Asia
and poses a major threat to North American ash (Fraxinus)
trees, all of which are susceptible to attack. Since its initial intro-
duction in Michigan, the insect has caused catastrophic damage
in eastern North America (Poland and McCullough, 2006; Kovacs
et al., 2010, 2014). Our problem describes a practical case of
delimiting surveys that regulatory authorities undertake on a
regular basis to uncover the spread of harmful invasive pests
that could damage urban and natural forest resources (Reaser
et al., 2008).

Methods
We developed a spatial optimization model for surveillance in which we
depict uncertainty about the presence of an invader with a set of prob-
abilistic scenarios (see Table 1 for definitions of symbolic notation).
Consider an area of J sites that may be infested with a pest. Each site j, j
∈ J, has Nj host trees that may be infested. The manager chooses an
inspection intensity m, m ∈ M for each site j, representing a sample size
of njm trees to inspect for infestation. One of the inspection intensities
assumes no inspections (i.e. njm = 0). For each site and inspection inten-
sity, we define a binary decision variable xjm, where xjm = 1 if inspection
intensity m is selected for site j and xjm = 0 otherwise. Only one inspec-
tion intensity is allowed for each site. We define ej as the detection rate
(i.e. the probability that an inspection of a tree in site j detects an infest-
ation if it is present). In our case, trees infested with EAB can be
detected by sampling branches and inspecting the material for EAB gal-
leries or installing a sticky trap on a tree that attracts emerging adults
(see a description of the tree inspection techniques in section ‘Case
study’). Inspection of a tree at a site j has cost gj and the total inspec-
tion cost is constrained by an upper budget limit B.

Let γj be the infestation rate of trees in site j, which denotes the likeli-
hood that a tree in site j is infested. We assume that knowledge of the
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infestation rates γj for all j ∈ J is uncertain. Based on prior knowledge of
infestation rates across sites, we define S scenarios of infestation rates.
Each scenario s ∈ S is a vector of infestation rates γjs, for all sites j, j ∈ J,
where each element γjs depicts the infestation rate of site j.

PROBLEM 1: Minimizing the expected area of undetected infestations

Consider a survey problem where a manager chooses the number of
trees njm to inspect in each site. If one or more trees in the sample is
found to be infested, the site is declared as infested. The survey sites
have equal area, so the number of selected sites indicates the area sur-
veyed. The objective is to maximize the expected number of sites that
are found to be infested in area J across a set of infestation rate scen-
arios S, subject to constraints on the inspection budget B, i.e.:
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Constraint (2) sets the inspection budget limit and constraint (3) spe-
cifies that only one sample size njm can be chosen for inspections at
each site j. For computational convenience, we reformulate the objective
(1) to minimize the expected area of undetected infestations, i.e.:
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PROBLEM 2: Minimizing expected slippage

In the context of acceptance sampling to inspect shipments of
imported plants, Chen et al. (2018) defined expected slippage as the
expected number of infested plants in an accepted shipment of live
plant imports given shipment size, sample size, infestation rate, and
detection rate. In this problem, we define a variable for slippage, Ejms, as
the expected number of infested trees in site j, sample intensity m, and
infestation rate scenario s, given that no trees were found to be infested.
Slippage is a function of the number of trees in the site, the number of
trees inspected, the infestation rate and the detection rate:
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The first term on the right-hand side (P) is the probability that no
infested trees were found. Inside the brackets of the second term, D1 is
the expected number of infested trees in the population that were not
inspected and D2 is the expected number of infested trees in the
inspected population, conditional on the fact that no infested trees were
found. Note that when no trees are inspected in site j, njm = 0 and Ejms

= γjsNj.
Using Equation (5) for expected slippage, we formulate the problem

to select a survey intensity for each site to minimize expected slippage
across all sites and all scenarios of infestation rates:
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s.t.:
constraints (2) and (3).

Table 1 Summary of the model parameters and decision variables.

Symbol Parameter/variable name Description

Sets
J Potential 1-km2 survey sites in the managed

area j
j ∈ J, J = 472

S Infestation scenarios s. Each scenario s
defines a plausible pattern of infestation
likelihoods, γjs in the managed area J

s ∈ S. S = 2000

M Survey sampling levels m for a site j. Each
level m specifies sampling njm trees at a
site j

m ∈ M

Parameters
B Survey budget constraint B > 0
Nj Number of host trees at a site j Nj ≥ 0
γjs Likelihood of that a tree is infested in a site j

in a scenario s (γjsNj – expected number of
infested trees at a site j in a scenario s)

γjs ∈ [0; 1]

ej Probability of that inspections of an infested
tree at a site j detect the signs of
infestation

ej ∈ [0; 1]

P Probability of that inspections fail to detect
one or more infested trees at a survey site

P ∈ [0;1]

gj Cost of surveying a tree at a site j gj > 0
njm Number of trees inspected at a site j at a

survey sampling level m. The sampling level
njm = 0 assumes no survey at a site j

njm ∈ [0; Nj]

Ejms Expected number of infested trees in a site j
conditional on an inspection of njm trees at
a sampling level m does not find the
infested trees in a scenario s

Ejms ∈ [0; γjsNj]

Q Expected slippage upper bound constraint Q > 0
D1 Expected number of infested trees at a

surveyed site among those that were not
inspected

D1 ∈ [0; γjsNj]

D2 Expected number of infested trees among
those inspected, conditional on the fact
that the survey fails the signs of infestation

D2 ∈ [0; γjsNj]

α Confidence level that defines the damage
value that can be exceeded only in (1 –

α)*100% of worst pest entry scenarios

0.95

Decision variables
xjm Binary selection of a survey at a site j at a

sampling level m (i.e. inspecting njm trees)
xjm ∈ {0,1}

ws Problem 1 auxiliary variable for a linearized
formulation of minimizing the CVaR

ws ≥ 0

vs Problem 2 auxiliary variable for a linearized
formulation of minimizing the CVaR

vs ≥ 0

ζ Problem 1 auxiliary variable for a linearized
formulation of minimizing the CVaR

ζ ∈ ℜ

ξ Problem 2 auxiliary variable for a linearized
formulation of minimizing the CVaR

ξ ∈ ℜ
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Note that the expected slippage formula (5) can be also be used to
formulate a constraint for problem 1, which sets an upper bound Q on
expected slippage:
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In both problems 1 and 2, the objective value is an average across
infestation rate scenarios s which implies that the inspector believes a
priori that all infestation rate scenarios are equally likely.

Minimizing the expected worst-case outcomes of survey
actions
Variation in the infestation rates in the surveyed sites causes the value
of the objective function to vary among the different infestation scen-
arios. As depicted in Equations (4) and (6), the objective functions z1 and
z2 minimize the expected outcome of the survey actions across all
infestation scenarios but do not consider the distribution of outcomes.
The right-hand tail of the distribution of outcomes contains the worst
cases: for example, a large area of undetected infestations or a large
number of infested trees remaining undetected. When faced with the
possibility of a worst-case outcome, a risk-averse decision-maker may
want to minimize the likelihood of its occurrence. This behaviour repre-
sents a general case of ambiguity aversion (Gilboa and Schmeidler,
1989) and has been widely acknowledged as a factor that influences
environmental decision-making (Tulloch et al., 2015) and management
of biological invasions (Finnoff et al., 2007; Sims and Finnof, 2013;
Springborn, 2014). An ambiguity-averse manager evaluates potential
actions in terms of the minimum potential benefit that might emerge
from selecting these actions. If the prior information about potential
outcomes of invasion is lacking or vague, an ambiguity-averse strategy
at least ensures the best of the expected worst possible outcomes.

One approach to minimizing the damage that could be caused by a
worst-case outcome is the minmax problem (Kouvelis and Yu, 1997),
which minimizes the maximum of the distribution of damages. The min-
max formulation minimizes the damage of the worst outcome but it
may not minimize the expected value of the right tail of the damage
distribution. Instead, we use percentile-based metrics which offer better
control of the expected tail value, such as value-at-risk (Studer, 1997;
Jorion, 2006) and conditional tail expectation (CTE) or conditional value-
at-risk, (CVaR). Percentile metrics have been widely used to assess
extreme losses in finance (e.g. Acerbi and Tasche, 2002; Inui and Kijima,
2005).

In our delimiting survey problem, value-at-risk (VaRα) is defined, with
a confidence level α, α ∈ [0;1], as the objective function value that is
exceeded in (1 – α) × 100 per cent of the scenarios. For a random vari-
able, the conditional value at risk, with a confidence level α, (CVaRα, or
CTEα) is the conditional mean of the objective function values exceeding
VaRα. For this analysis, we use the conditional value at risk to depict the
ambiguity-averse strategy of avoiding the expected worst-case outcome
in delimiting survey problems 1 and 2, i.e.:
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The objective functions z1′ and z2′ are linear with respect to decision
variables xjm, hence we used a linear formulation of the CVaR

minimization problem for discrete distributions from Rockafellar and
Uryasev (2000, 2002). For a discrete set of S scenarios with equal prob-
ability of occurrence 1/S, the CVaRα, at a confidence level α, can be
approximated with an equivalent set of S + 1 auxiliary decision variables
and S + 1 inequality constraints. Problem 1 can be rewritten as:
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expected number of undetected infested sites in a scenario s; In
Equation (14), term ∑ ∑ ( )= = x Ej

J
m
M

jm jms1 1 is the expected slippage in a
scenario s; ζ,ξ, vs and ws are auxiliary decision variables; and ζ and ξ are
members of a set of real numbers.

Case study: delimiting surveys of emerald ash borer (EAB)
infestation in Winnipeg, MB
We used the problem formulations that minimized the expected area of
undetected infestations and the expected slippage to develop optimal
strategies for delimiting surveys of the emerald ash borer (EAB) in
Winnipeg, Manitoba, Canada. The insect poses a major threat to North
American ash species (Haack et al., 2002; Herms and McCullough, 2014)
and has already caused major damage to both urban and natural for-
ests in the eastern US and Canada (Kovacs et al., 2010; McKenney et al.,
2012). Long-distance EAB spread has been associated with human
activities, primarily with commercial and passenger vehicles that could
potentially move firewood or other infested materials (Haack et al.,
2006, 2010; Kovacs et al., 2010; Koch et al., 2011; Yemshanov et al.,
2015). There is also evidence that the pest can hitchhike on vehicles
(Buck and Marshall, 2008). It is difficult to detect new infestations of
EAB because the initial attack of the insect occurs at the tops of trees
and damage does not become apparent for 2–5 years in some cases,
thus new detections usually indicate the presence of already established
populations (McCullough et al., 2006; Ryall et al. 2011).

With a detection rate close to 0.7, sampling branches and then peel-
ing their bark to inspect for EAB galleries is the most reliable method to
detect EAB, especially during early stages of an outbreak when trees
may appear asymptomatic (Ryall et al., 2011; Turgeon et al., 2015). In
Canada and the United States, the method has been successfully
applied in delimiting surveys following the initial detections of EAB
infestation to define the putatively infested area (Ryall, unpublished). To
implement the method, a surveyor uses a saw mounted to an
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extendable pole to cut two branches from the mid-crown of a suspect
tree. A 75 cm section of each branch is then removed and the bark
removed to expose any developing EAB larvae.

Another more widely deployed method for EAB survey and detection is
the use of sticky traps hung in ash trees that are baited with plant volatiles
or plant volatiles and EAB pheromones (Ryall, 2015). In this method, a sur-
veyor uses an extensible pole to hang a single trap at the outer edge of
the crown of an ash tree. This trap is baited with slow-release capsules
containing either plant volatiles or plant volatiles and EAB pheromones.
Adult EAB attracted to the trap are caught in the sticky coating. The sur-
veyor then returns to the trap at some later point, removes it from the tree
and counts any EAB that have been trapped. In general, trapping with
sticky traps is less expensive on a per-tree basis, but yields lower detection
rates (Ryall et al., 2013). Evidence from using sticky traps in previous EAB
surveys suggests that the traps tend to capture local insects that are living
in or very nearby the ‘trap’ tree. Possibly, this is because EAB, whilst is an
active flier, does not usually disperse far if the tree in which it is feeding is
a sufficient host (for oviposition, larval development, etc.).

EAB was first detected in Winnipeg, Manitoba in December 2017
infesting a single green ash tree in the Archwood neighbourhood (GoC,
2017) (Figure 1a). After this initial discovery, the City of Winnipeg and
the Province of Manitoba established a delimiting survey programme to
determine the full spatial extent of the EAB infestation. The city was
divided into 1 × 1 km survey sites, within some of which, some trees
were sampled using the branch sampling method in January and
February of 2018 to detect overwintering larvae. In the spring and sum-
mer of 2018 additional sites were sampled using sticky traps baited
with plant volatiles and the EAB pheromone to detect flying adult bee-
tles. The branch sampling method was primarily used in the neighbour-
hood immediately surrounding the initial detection, while the traps were
deployed throughout the city. Below we briefly describe the parameters
used in our optimization models (Table 1).

Likelihoods of EAB spread in urban environment
Our model required an estimate of the expected likelihoods of EAB
spreading to locations where the pest has yet to be detected. We
assumed that the likelihood of EAB spreading to a new site decreases
with distance from a known-infested site. Modelling distance-dependent
spread is a common approach to predict spread rates and spatial pat-
terns of biological invasions (Melbourne and Hastings, 2009; Leung et al.,
2010) and EAB in particular (BenDor et al., 2006; Kovacs et al., 2010;
Prasad et al., 2010; Orlova-Bienkowskaja and Bienkowski, 2018). Since
information about the particular behaviour of EAB in Winnipeg was lack-
ing, we estimated the likelihood of spread over distance using historical
observations of EAB infestation in Minneapolis–St. Paul (Twin Cities),
Minnesota, USA (Fahrner et al., 2017; Osthus, 2017). The EAB outbreak in
the Twin Cities is the closest, urban EAB infestation to Winnipeg and so
was assumed to act as a reasonable proxy for spread in Winnipeg.
Preliminary assessments of the age of recently detected EAB infesta-
tions in Winnipeg suggested that the pest entered the area six years
ago. Therefore, we used records of EAB from the Twin Cities that docu-
mented infestations identified as 6 years old or younger starting from
the oldest infestation.

The EAB data for the Twin Cities are a map of infested trees each
with an age of infestation. For each infested tree, we estimated the dis-
tance from the tree to the known centre of the Twin Cities infestation,
which was assumed to be the group of trees with the oldest infesta-
tions. We estimated the locations of other non-infested ash trees from
municipal tree inventories (City of Minneapolis, 2017; TreeKeeper, 2018)
and an urban tree database for St. Paul (used in Koch et al., 2018). We
then divided the known-infested area into a grid of 1 × 1 km sites, and
for each site, counted the number of infested and uninfested ash trees.

The spatial resolution of the survey grid was based on the size adopted
by city of Winnipeg. To account for spatial uncertainty in our estimates
of ash density we repeated the calculations four times after shifting the
1 × 1 km grid over the known-infested area by ±500 m in each direction.
We have also estimated the proportion of infested ash trees in each site
and then, using the total host density estimates and the detection rate
values, defined the likelihood of EAB infestation in that site. When esti-
mating the likelihood of infestation in a site we also factored in EAB
detection rates based on information gathered during previous survey
campaigns in the area (Fahrner et al., 2017; Venette, unpubl. data). We
then grouped the sites into 1-km distance classes from the infestation
centre and estimated a distribution of EAB infestation likelihoods for
each 1-km distance class.

We used the distance-dependent distributions of infestation likeli-
hoods from the Twin Cities to generate infestation scenarios in Winnipeg.
As with the Twin Cities, we divided Winnipeg into a grid of 1 × 1-km
potential survey sites. For each 1-km2 site j, we estimated the distance to
the infested site and, based on that distance, sampled the distribution of
infestation likelihood values from the Twin Cities for the corresponding
distance class to generate the likelihood of infestation in a particular
scenario, s. Using this method we generated a set of 2000 infestation
scenarios, which we used as inputs to find optimal solutions to problems
1 and 2. For each site, we also estimated a mean likelihood of infestation
from the 2000-scenario set (Figure 1a). The mean values were used as a
hypothetical single-scenario case where the rates of EAB spread, and thus
the likelihood of infestation, are perceived to be known.

We solved problems 1 and 2 for both the single-scenario case, and
the 2000-scenario case in order to see what effect uncertainty had on
the results. To solve the single-scenario case we took independent draws
from the distribution of infestation likelihoods, solved a single-scenario
model for each sample of infestation likelihoods and then averaged the
objective function values. Second, we found the optimal solution using
the formulation that included 2000 invasion scenarios.

We have also estimated the trade-off between the problem 1 and 2
objectives. We used the problem 1 formulation with the constraint (7)
that sets an upper bound Q on the expected slippage value. We evalu-
ated the solutions with different Q values and plotted the trade-off
between problem 1 and 2 objectives as a curve (also known as efficiency
frontier) in dimensions of the area of undetected infestations and
expected slippage.

Estimating the survey costs, detection rates and host tree
densities
We estimated the number of ash trees at each survey site in Winnipeg
from a municipal inventory of public and private trees (City of Winnipeg,
2018; H. Daudet, City of Winnipeg, Urban For. Br., pers. comm.), which
provided information about tree species, ownership and size (Figure 1b).
Following the pest survey protocols currently implemented in Winnipeg,
inspections only target trees that are between 20 and 60 cm diameter
at breast height (dbh). We also used tree size class to adjust the cost of
surveying the sites, and so assumed that inspecting trees larger than
60 cm dbh would require doubling the sampling effort to achieve the
same detection rate. Trees smaller than 20 cm dbh are not included in
Winnipeg surveys and are also too small to be sampled using either
sampling method, and so were ignored.

We used evidence from previous survey campaigns in Canada
(Hopkin et al., 2004; Ryall et al., 2011, 2013; Turgeon et al., 2015) to
determine the likelihood of finding signs of EAB using branch samples
and sticky traps. The detection rate for branch sampling was set to 0.7,
based on a typical sample of two mid-crown branches from a medium-
sized tree (Ryall et al., 2013). The likelihood of a single sticky trap detect-

Forestry

284



ing the presence of an EAB population was set to 0.5. The specified
detection rates were determined for urban EAB populations in southern
Ontario, Canada, but should be applicable for Winnipeg given its tree
size distribution was typical of other urban areas in Canada. However,
we recognize that the effective detection rates may vary depending on
tree vigour, the size of the local EAB population, or other unspecified fac-
tors. Therefore, we tested alterations whereby the detection rate for
each method was adjusted by ±25 per cent, as well as various detection
rate combinations for branch sampling and trapping.

In our objective function formulation, the likelihood of EAB detection
was estimated on a per survey site basis (i.e. the likelihood of detecting
at least one infested tree in a site). For sites with trapping as the inspec-
tion method, this treats the effective area of the placed trap(s) as
equivalent to the size of the survey site (i.e. 1 km2). Experience gained
from previous EAB survey campaigns indicates that traps mostly detect
insects emerged from the trees in which they are placed or other nearby
ash trees. This is because the green ash volatiles and chemicals used to
attract EAB are not as strong and long-lasting as sex pheromones for
other pests and mostly work at short distances. This was not an issue in

our study because the host trees typically are clustered within a given
survey site, such that a large proportion of the trees fall within a single
trap’s attraction radius.

The cost of tree sampling depends on where trees are located. In
Winnipeg, only public trees can be inspected for EAB using traps or
branch samples (surveyors are not able to inspect privately owned
trees), so we assumed that surveys would target public trees only.
However, the likelihoods of EAB infestation in a site were estimated
assuming the insect would infest public and private ash trees. The sur-
vey costs were calculated using the rates paid to contractors to do
branch sampling and trapping in previous EAB surveys in Canada (Cdn
$25-h−1). We identified three broad classes of trees eligible for surveys:
medium-sized accessible public (street) trees (20–60 cmdbh), large-
sized accessible public trees (>60 cmdbh) and public woodlot, park and
riparian zone trees >20 cmdbh. Branch sampling and trapping would
target public trees with >20 cm dbh. Sampling trees between 20 and 60
cmdbh would require installing either one sticky trap or sampling two
branches. For the purposes of this exercise, we assumed that sampling
trees larger than 60 cm dbh would require installing two traps or sam-
pling four branches to achieve the same detection rate. Usually, it takes
longer to access woodlot trees, so we assumed the site access and trap
setup cost portions for woodlot trees would double.

For trapping, the trap cost was estimated as Cdn $24.71. Sampling
procedures include three 15-min visits by a crew of two (for setup, sam-
pling and teardown). Site access costs account for an additional 10min
per visit by the two-person crew. The total trapping cost was estimated
as $87.21 for trees between 20 and 60 cm dbh and $124.42 for trees
larger than 60 cmdbh.

Branch sampling requires only one site visit. The total cost includes
the site access cost by the crew of two (10-min), sampling, bark peeling
and branch disposal. Sampling costs were based on estimates from the
current survey campaign in Winnipeg (i.e. $65 for a 20–60 dbh tree and
$121.42 for trees larger than 60 cm dbh, including the site access cost).
Peeling the bark from sampled branches was estimated to take 1.11
person-hours per branch and would cost $55.60 for a 20–60 cm dbh
tree and $111.20 for a tree larger than 60 cm dbh. Branch disposal
included chipping the material and was estimated to take 5min for the
two-person crew ($4.17 branch−1). The total cost of branch sampling
was estimated as $128.90 for a 20–60 cm dbh tree and $249.60 for
trees larger than 60 cm dbh.

We composed problems 1 and 2 in the GAMS environment (GAMS, 2018)
and solved with the GUROBI linear programming solver (GUROBI, 2018).

Results
Impact of uncertainty on optimal survey solutions
We compared the optimal solutions between a single-scenario
deterministic formulation that used mean likelihoods of infest-
ation and the 2000-scenario formulation (Figures 2 and 3). The
single-scenario formulation assumed that the survey manager
knows the likelihood of EAB infestation for a particular site. The
2000-scenario solutions assumed that only the approximate
range of infestation likelihoods is known for each site.

For both problems 1 and 2, the approach that accounted for
uncertainty (2000-scenario solutions, Figure 2c, d) sampled a
larger area than the single-scenario approach that assumed the
manager had perfect knowledge of the pest distribution
(Figure 2a, b). For all solutions (Figure 2), the number of survey
sites, the inspection method, and the intensity of survey were
all influenced by the survey budget (Figure 3).

For a small budget (i.e. $25 000), all solutions to both pro-
blems selected branch sampling over trapping as the preferred

Ash density, tr.-site–1:

0 – 500
500 – 1300
1300 – 2700
2700 – 4700
4700 – 7500 
Initial infested 
site

(a)

(b)

Likelihood
of invasion:

< 0.01
0.01 – 0.06
0.06 – 0.12
0.12 – 0.2
> 0.2
Initial infested
site

0 5 10 km

Figure 1 Ash host density in the study area: (a) likelihood of EAB infest-
ation (expected value based on 2000 infestation scenarios); (b) ash host
density.
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survey method (Figure 2). In general, the solutions selected
branch sampling for the sites around the area of initial detec-
tion, with trapping in the peripheral sites. When we incorporated
both uncertainty in the pest distribution (Figure 2c, d) and ambi-
guity aversion (Figure 2e, f) the results showed an increase in
the area surveyed but retained the same general pattern of pre-
ferring branch sampling over trapping. However, the intensity of
survey tended to decrease. For instance, in the presence of
uncertainty, more sites were selected but fewer trees were cho-
sen to be inspected (Table 2). We also noted that the allocation
of sites tended to track ash density, with higher ash density sites
being selected for sampling (e.g. callout 1, Figure 2f highlighting
riparian sites with high ash density as seen in Figure 1). Branch
sampling was preferred because the lack of funds necessitated
the lower sampling rates, and thus placed a premium on the
more reliable detection method. Most surveyed sites were
within 5 km of the initial infestation, which indicates that

inspections in close proximity to known-infested locations are
most cost-efficient.

When a decision-maker aspires to minimize the expected
worst area of undetected infestations (i.e. the problem 1 object-
ive) given a small budget, the survey sites cover an even greater
area and more sites are inspected using the traps instead of
branch sampling (Figure 2e). For example, in the solutions with
a $25 000 survey budget, the budget proportion spent on trap-
ping increased from 14 per cent to 53 per cent (Table 2). The
reason for using the less reliable but cheaper trapping method
is that the cost savings allowed inspections of more trees (i.e.
239 vs. 202 in the 2000-scenario solutions without ambiguity
aversion). The ambiguity-averse solutions in problem 2 behaved
differently from the solutions in problem 1: the solutions
inspected fewer total trees than the ambiguity-neutral 2000-
scenario solutions, and the proportion of sites inspected using
branch sampling increased (Figure 2f).

Problem 1 Problem 2

Sampling rate,
trees per site:

I

(a)

(c)

(e)

(b)

(d)

(f)

1–5
6–15
16–25
26–50
>50

Branch
sampling:

Trapping:

1–5
6–15
16–25
26–50
>50

2000-scenario
solutions

2000-scenario 
solutions,
ambiguity aversion 

Single-scenario
solutions

Figure 2 Optimal survey patterns for problem 1 (minimizing the
expected area of undetected infestations) and problem 2 (minimizing
the expected slippage) solutions with a budget of $25 000: (a) problem 1,
single scenario; (b) problem 2, single scenario; (c) problem 1, 2000 scen-
arios, (d) problem 2, 2000 scenarios; (e) problem 1, 2000 scenarios, ambi-
guity aversion; (f) problem 2, 2000 scenarios, ambiguity aversion. Callout I
shows the selection of sites in a riparian zone with high host densities at
farther distances from the initial infestation.

Problem 1 Problem 2

Sampling rate,
trees per site:

1–5
6–15
16–25
26–50
>50

Branch
sampling:

Trapping:

1–5
6–15
16–25
26–50
>50

(a)

(c)

(e)

(b)

(d)

(f)

I

2000-scenario
solutions

2000-scenario 
solutions,
ambiguity aversion 

Single-scenario
solutions

Figure 3 Optimal survey patterns for problem 1 (minimizing the
expected area of undetected infestations) and problem 2 (minimizing
the expected slippage) solutions, with a budget of $100 000: (a) problem 1,
single scenario; (b) problem 2, single scenario; (c) problem 1, 2000 scen-
arios, (d) problem 2, 2000 scenarios; (e) problem 1, 2000 scenarios, ambi-
guity aversion; (f) problem 2, 2000 scenarios, ambiguity aversion. Callout I
shows the selection of sites in a riparian zone with high host densities at
farther distances from the initial infestation.
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For a large budget ($50 000 and above), the optimal choice of
sampling changes. Under this budget, all solutions to both pro-
blems selected trapping over branch sampling as the preferred
survey method (Figure 3). As with the small budget, the solutions
located branch sampling survey sites around the area of initial
detection, with trapping in the peripheral sites, however a greater
proportion of sites were sampled using traps. When we incorpo-
rated both uncertainty in the pest distribution (Figure 3c, d) and
ambiguity aversion (Figure 3e, f) the results again revealed an
increase in the area surveyed but retained the same general pat-
tern of preferring trapping over branch sampling. The lower cost
of trapping enables inspections of more trees, which compen-
sates for the lower detection rate, but ultimately trapping is only
cost-effective when the trap density is high (which is only pos-
sible when the survey budget is large).

Adding the ambiguity aversion further increased the survey
area, although this was more evident in the optimal solutions to
Problem 2 (Figure 3e, f). Similar to the large-budget solutions
without ambiguity aversion (Figure 3a–d), a significant portion
of the budget was spent on surveying sites close to the initial
infestation. However, there is always a risk of long-distance low-
probability infestations, which, if undetected, could cause signifi-
cant damages to host trees. So, a portion of the budget was
directed toward inspecting sites at farther distances where the
likelihood of infestation is low.

Overall, and regardless of budget size, the impact of uncer-
tainty and ambiguity aversion on problem 2 solutions was
somewhat similar to their impact on problem 1 solutions, yet
with some distinct differences in spatial survey patterns
(Figures 2f and 3f). The surveys targeted sites with both high
infestation rates and high host densities and applied higher
sampling rates than in problem 1 solutions. In general, problem
2 solutions selected survey sites with 30–50 per cent higher
host densities than problem 1 solutions (Table 2). Actually, min-
imizing the expected worst slippage in problem 2 solutions pre-
scribed surveying two distinct groups of sites: sites with high
host densities and high infestation rates in close proximity to
the infested area and sites with high host densities at far dis-
tances where detection failures could cause significant damage
to the host resource (Figures 2 and 3, callout I).

Preferred inspection method vs. budget

The choice of trapping vs. branch sampling depended strongly
on the size of the survey budget (Figure 4, Table 2). The stacked
graphs in Figure 4 show the total areas inspected with a particu-
lar sampling rate and survey method for a particular budget
level. Colour shades in Figure 4 show the apportionment of the
total inspected area among different survey methods and tree
sampling rates, with darker colours indicating higher sampling
rates. Stacked together, the colour shades show the total
inspected area. Figure 4 also shows the areas inspected via
trapping and branch sampling for a particular budget level (i.e.
yellow-red vs. green-blue shades). Branch sampling was always
preferred in small-budget solutions (≤$25 000) and trapping is
preferred in large-budget solutions (≥$50 000). However, the

optimal use of trapping in large-budget solutions is contingent
on the use of high sampling rates (i.e. deploying many traps in a
survey site) in order to compensate for the lower efficiency of
traps. In contrast, branch sampling in most cases was applied
with low sampling rates, rarely exceeding 15 trees per site.

Minimizing the undetected infested area vs. expected
slippage

Our results indicate a moderate trade-off between strategies
that minimize the expected area of undetected infestations
(problem 1) and those that minimize the expected slippage
(problem 2). The efficiency frontiers in Figure 5 show the trade-
off between these strategies. The horizontal portions of the effi-
ciency frontiers indicate that minimizing the expected slippage
eventually imposes a significant penalty on the ability to detect
infested sites. However, there are substantial distances among
the efficiency frontiers for the single-scenario solution and the
multi-scenario solutions (Figure 5).

Single-scenario solutions have lower initial expected slippage
values and thus will have better capacity to detect infested
sites. We expect this pattern because the multi-scenario solu-
tions require surveys of more sites in order to account for uncer-
tainty and the multi-scenario solutions have lower per-site
sampling intensities which results in more sites with missed
detections. In our single-scenario solutions, the manager knows
the likelihood of infestation and so can allocate their budget
more efficiently. Adding uncertainty significantly worsens slip-
page and the number of undetected infestations but also
decreases the magnitude of the efficiency frontiers. This indi-
cates the impact of omitting the uncertainty about EAB spread
is much greater than differences between the optimal survey
strategies for problems 1 and 2. Adding the ambiguity-aversion
assumption slightly worsens the trade-off frontier but the pen-
alty is small (Figure 5, dotted lines). This is because the extra
portion of sites allocated to long-distance inspections in the
ambiguity-averse case is relatively small and most of the bud-
get in both problem 1 and 2 solutions is allocated to sites close
to the initially infested area. Differences among the single- and
multi-scenario frontiers also suggest that any insights gained
from single-scenario solutions with a deterministic depiction of
infestation rates may have limited use for survey planning.
Typically, managers operate under uncertainty about the likeli-
hood of infestation in a survey site, which is more consistent
with the multiple-scenario solutions that yield considerably
poorer performance than idealized single-scenario solutions.

Objective function value vs. budget level

Our results allow us to assess the cost-effectiveness of survey
efforts. Figure 6 shows the survey budget that is required to
meet a desired target with respect to the expected area of
undetected infestations (problem 1 objective) and expected slip-
page (problem 2 objective). All curves in Figure 6 show exponen-
tial decay as the budget level increases, indicating diminishing
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returns, i.e. small-budget surveillance is more cost-effective on
a unit cost basis than large-budget surveillance.

We can also compare the solutions that minimized the
expected survey outcomes with the ambiguity-averse solutions
that minimized the expected worst-case outcomes. As one

Table 2 Area surveyed (i.e. number of surveyed sites) and budget proportions allocated to branch sampling and trapping at different survey
sampling rates. Results are shown separately for problems 1 and 2 at small ($25 000) and large ($100 000) budget levels.

Uncertainty assumptions 1 scenario, deterministic 2000 scenarios, uncertainty 2000 scenarios, uncertainty,
ambiguity aversion

Number of
surveyed sites

Allocated
budget
proportion

Number of
surveyed sites

Allocated
budget
proportion

Number of
surveyed sites

Allocated
budget
proportion

Sampling rate Br.
sampl.1

Trap. Br.
sampl.

Trap. Br.
sampl.

Trap. Br.
sampl.

Trap. Br.
sampl.

Trap. Br.
sampl.

Trap.

Survey budget $25 000, Problem 1: Minimizing the expected area of undetected infestations
1–5 tr.-site−1 7 1 15% <1% 27 2 42% 3% 19 8 25% 7%
6–15 tr.-site−1 8 13 30% 54% 13 4 44% 11% 6 15 22% 45%
16–25 tr.-site−1 – – – – – – – – – – – –

26–50 tr.-site−1 – – – – – – – – – – – –

51–100 tr.-site−1 – – – – – – – – – – – –

Total sites surveyed 15 14 46% 54% 40 6 86% 14% 25 23 47% 53%
Total trees inspected 83 156 162 40 88 151
Mean host density at the surv.sites,
tr.-site−1

1056 1056 1014 1014 997 997

Survey budget $25 000, Problem 2: Minimizing the expected slippage
1–5 tr.-site−1 – 2 – 1% 17 1 25% <1% 27 7 37% 2%
6–15 tr.-site−1 6 7 33% 24% 14 1 56% 4% 13 2 55% 5%
16–25 tr.-site−1 1 3 11% 20% – 2 – 15% – – – –

26–50 tr.-site−1 – 1 – 11% – – – – – – – –

51–100 tr.-site−1 – – – – – – – – – – – –

Total sites surveyed 7 13 44% 56% 31 4 80% 20% 40 9 92% 8%
Total trees inspected 85 161 156 56 179 22
Mean host density at the surv.sites,
tr.-site−1

1616 1616 1490 1490 1689 1689

Survey budget $100 000, Problem 1: Minimizing the expected area of undetected infestations
1–5 tr.-site−1 5 13 3% 4% 6 0 3% <1% 6 7 3% 2%
6–15 tr.-site−1 9 8 15% 6% 5 24 8% 21% 4 22 8% 18%
16–25 tr.-site−1 1 15 2% 32% – 37 – 69% – 32 – 62%
26–50 tr.-site−1 – 16 – 39% – – – – – 3 – 7%
51–100 tr.-site−1 – – – – – – – – – – – –

Total sites surveyed 15 52 20% 80% 11 61 11% 89% 10 64 10% 90%
Total trees surveyed 136 917 64 1025 61 1027
Mean host density at the surv.sites,
tr.-site−1

987 987 1024 1024 1040 1040

Survey budget $100 000, Problem 2: Minimizing the expected slippage
1–5 tr.-site−1 1 2 <1% <1% 14 6 5% 2% 32 15 12% 3%
6–15 tr.-site−1 2 3 3% 3% 2 25 2% 23% 7 21 8% 18%
16–25 tr.-site−1 5 6 14% 11% – 15 – 29% 1 14 2% 25%
26–50 tr.-site−1 – 15 – 49% – 13 – 40% – 11 – 32%
51–100 tr.-site−1 – 4 – 21% – – – – – – – –

Total sites surveyed 8 30 17% 83% 16 59 7% 93% 40 61 22% 78%
Total trees inspected 124 953 50 1064 164 893
Mean host density at the surv.sites,
tr.-site−1

1396 1396 1265 1265 1435 1435

1Survey methods: Br.sampl. – branch sampling, Trap. – trapping.
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would expect, minimizing the worst-case outcome (i.e. the
CVaRα of the undetected infested area in problem 1 and CVaRα
of slippage in problem 2 solutions) imposes a penalty on the
expected value (Figure 6). In our case, this penalty was small
while the reduction of the worst-case outcomes was significant
(Figure 6, callouts I and II). However, the capacity to reduce the
worst-case outcomes is limited: further increase of the budget
does not lead to a greater net reduction of CVaRα (Figure 6,
arrows). In our case, the reduction of the worst-case outcomes
can only be achieved by inspecting sites with a particular range
of host densities (i.e. low host densities in problem 1 solutions
and very high host densities in problem 2 solutions).

Sensitivity analysis

We estimated the sensitivities of key output metrics to changes
in the model parameters (Table 3). Rows in Table 3 denote the
input parameters of interest (i.e. survey cost, detection rate,

host density and infestation rate) and columns denote the out-
put metrics. The sensitivity values indicate the relative change
of the output metric in response to altering the input parameter
by ±25 per cent. In addition to testing the objective values in
problem 1 and 2 solutions, we also examined the sensitivities of
other relevant outputs, such as the area surveyed and the num-
ber of trees inspected via a particular sampling method.

The problem 1 objective was moderately sensitive to changes
in survey costs, detection rates and infestation rates and was
insensitive to changes in host densities. The problem 2 objective
was most sensitive to changes in host densities followed by
changes in infestation rates. This high sensitivity to host densities
was expected because the problem 2 solutions targeted sites
with higher host densities than the problem 1 solutions, and
used higher sampling rates to achieve the same detection
success.

At small budget levels, changes in survey costs, detection
rates and infestation rates influenced the area and number of
trees surveyed via trapping. Decisions to use traps depended on
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Figure 4 Area surveyed (km2) with different sampling rates and sampling methods versus the survey budget ($). X-axis denotes the survey budget,
in thousand Canadian dollars, Y-axis denotes the surveyed area, in km2. Colours/stacked shades indicate the areas surveyed at a particular sampling
rate and survey method for a particular budget limit. Green-blue shades indicate the areas inspected via branch sampling with the sampling rates
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and >25 trees-site−1. Darker colours indicate higher sampling rates.
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the detection capacity, infestation rate and the cost of trapping.
The use of branch sampling was moderately sensitive to
changes in infestation and detection rates but revealed low sen-
sitivity to changes in the survey costs and host densities.
Sensitivity of branch sampling to changes in the survey costs as
well as the detection and infestation rates increased only in
large-budget problem 2 solutions.

Overall, the budget allocation to trapping and branch sam-
pling surveys responded differently to parameter changes in dif-
ferent budget situations. Improving the detection accuracy and
decreasing the cost of trapping will have the most impact at
small-budget levels. By comparison, branch sampling is less
sensitive to budget changes and variations in host density.

Detection rate and the choice of the inspection method

The choice of trapping or branch sampling depends on a com-
bination of the cost and efficiency of each method. We explored
the impact of changing the detection efficiency of trapping vs.
branch sampling. In addition to our baseline scenario that
assumed a detection rate of 0.5 for trapping and 0.7 for branch
sampling, we examined solutions with the trap detection rate
altered by +/−10 per cent (Figure 7). Colour shades in Figure 4
show the apportionment of the total inspected area among dif-
ferent survey methods and tree sampling rates. Yellow-red
shades indicate the area inspected via trapping and green-blue
shades show the area inspected via branch sampling. When the
detection rate of traps was lowered (i.e. to 0.45), almost all
trees were inspected via branch sampling regardless of the bud-
get level (Figure 7a). Increasing the trapping efficiency had the

opposite effect, increasing the proportion surveyed via trapping,
but branch sampling was still applied to a small portion of sites
(Figure 7c). Branch sampling appears to be the preferred meth-
od for sites with a combination of moderate-high infestation
rates and low host densities (where detections can be made
with low sampling rates). Increasing or decreasing the trapping
efficiency has little impact on the total area surveyed irrespect-
ive of budget but forced the model to reallocate funds between
trapping and branch sampling.

In practical situations, the detection rates for branch sam-
pling and trapping method may vary depending on tree status,
age and the severity of infestation (Ryall et al., 2011, 2013;
Turgeon et al., 2015). We estimated the detection rate combina-
tions for trapping and branch sampling that cause one sampling
method to predominate over the other. This analysis empha-
sizes the importance of accurate estimation of detection rates
for both methods. Figure 8 shows the space of optimal solutions
in dimensions of branch sampling and trap detection rate
values. Dark and light-shaded regions depict the combinations
of trapping and branch sampling rate values that cause one sur-
vey method to predominate the other. For example, all optimal
solutions in dark-shaded regions in Figure 8 have branch sam-
pling applied to a larger area than trapping, and all solutions in
light-shaded regions have larger areas inspected with traps
than via branch sampling. The line that divides regions with a
predominance of branch sampling and trapping is a straight
line, which indicates that the preference of branch sampling
over trapping depends on the ratio between the branch sam-
pling and trap detection rate values. On average, branch sam-
pling is preferred over trapping when its detection rate is 1.45
times greater than the detection rate of traps.

Discussion
Planning delimiting surveys for pests is a balancing act of distrib-
uting scarce inspection resources, in many cases across large
regions. Managers often have limited understanding of how a
pest may spread through the area of interest, which further
reduces the efficacy of survey efforts. Our models address these
challenges and demonstrate how accounting for this uncertainty
about invasion spread could change the optimal survey strategy.

One important aspect of our work is that it focuses on min-
imizing potentially deleterious outcomes from failed detections.
Decision-makers always face the prospect of making ‘false
negative’ errors, where inspections fail to find an infestation
after surveying a site. False negatives lead to delays with regula-
tion and may eventually prompt decision-makers to neglect or
minimize efforts aimed at controlling an invasion, thereby creat-
ing the potential for future economic damage (Davidson et al.
2015). When the issue of false negatives is overlooked, budget
limitations may push survey managers to survey large regions
at low sampling rates, resort to less expensive and less reliable
detection methods, or adopt both options. Our proposed slip-
page formulation helps minimize the impacts of false negatives
in survey planning decisions. We also demonstrate key differ-
ences between a strategy that minimizes slippage and the
more common strategy that ignores the issue of false negatives
by seeking to minimize the number of undetected infestations.
Overall, it appears that accounting for false negatives should
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assist with more efficient resource allocation in pest manage-
ment programs. For instance, a well-planned delimiting survey
would allow a municipality to allocate pest management tactics
(e.g. removals, insecticides) in a targeted manner. This in turn
would help detect new pest entries, slow dispersal of the exist-
ing infestation and distribute the costs of removal and replace-
ment of damaged host trees over multiple years.

Our expected slippage approach minimized the number of
infested trees in sites that are not surveyed or erroneously
declared uninfested. This approach could be reformulated into
one that attempts to minimize the expected number of sites
with failed detections. This formulation would correspond to the
acceptance sampling problem that minimizes the expected
number of accepted defective lots (Surkov et al., 2009; Powell,
2014). Similar to our expected slippage formulation in problem
2, we expect that these solutions would allocate surveys to sites
with high infestation rates, but they should be less dependent
on host densities. Along these lines, we compared the behaviour
of our problem 2 solutions with the behaviour of an expected
slippage model for inspections of live plant imports (Chen et al.,
2018). That model found that inspections should be allocated to
the largest and dirtiest lots whereas our problem 2 solutions
allocated surveys to the sites with the highest host densities

(i.e. the largest lots) and the highest infestation rates proximal
to the infested sites (i.e. the ‘dirtiest’ lots). Chen et al. (2018)
also found that adding uncertainty to their model prompted
surveys of additional lots, but at lower sampling rates. When we
added uncertainty to our models the solutions behaved similarly
by surveying more sites but also at lower sampling rates.

Our results also provide new insights to an ongoing debate
regarding the use of trapping versus branch sampling in EAB sur-
veys. The choice of inspection method should always consider
the available survey budget and factor in uncertainty about
future EAB spread. Note that factors such as the density of
infested trees, total number of host trees and the likelihood of
infestation (and other parameters defined in Equations (1) and
(5)) are likely to influence the selection of the sampling method
for a survey site. Additionally, there is a non-linear relationship
between the probability of pest detection and the tree sampling
rate at a site, and these dependencies behave differently for the
trapping and branch sampling methods. Furthermore, the survey
allocation patterns and decisions to select particular sampling
methods for different sites may be the result of the combinatorial
nature of the survey allocation problem. For example, the use of
the more reliable but expensive branch sampling method in sites
where EAB is more likely to be detected can be offset by using
the cheaper but less reliable trapping method in other locations
where the likelihood of infestation is lower. This behaviour stems
from using the summation over J sites in objective function equa-
tions (1) and (5).

The results of our analyses show that when the survey bud-
get is small, low sampling rates are likely to be prescribed.
When this occurs, the sampling method with the better detec-
tion rate should be used regardless of its cost. Branch sampling
can be effective for surveying the two groups of sites: those
proximal to the already-infested area that have high likelihoods
of infestation, and those sites with low host densities where
detections can be made using low sampling rates. The use of
traps is only justified when the budget is large enough to sup-
port branch sampling inspections of the sites immediately
around the initial detection, with sufficient funds remaining to
spend on surveying the rest of the area of interest with traps.
Trapping is more cost-effective when deployed at moderate and
high sampling densities, but the utility of trapping depends on
the efficiency of the traps. For example, decreasing trap effi-
ciency by 10 per cent renders traps ineffective in most circum-
stances and shifts the optimal strategy to branch sampling.

We also found that the switch between sampling methods
can be triggered by small changes in sampling efficiency or cost.
This is because the model did not incorporate any behavioural
inertia or other factors that may influence the preferability or effi-
cacy of a sampling method. In the current formulation, the mod-
el always selects the method that yields a higher probability of
detection (in problem 1 solutions) or lower slippage value (in
problem 2 solutions) for a given combination of model para-
meters at a survey site.

Impact of ambiguity-averse perceptions on survey
strategies

Incorporating uncertainty about how an invading pest will
spread changes the optimal survey strategy. The uncertainty

440

445

450

455

460

465

470

2000

3000

4000

5000

6000

7000

8000

Expected value Expected value

CVaRα (value)CVaRα (value)

No ambiguity aversion:

Problem 1

E
xp

ec
te

d 
ar

ea
 o

f 
un

de
te

ct
ed

 
in

fe
st

at
io

ns
 (

pr
ob

le
m

 1
 o

bj
ec

tiv
e)

0 100 200 300 

0 100 200 300 

E
xp

ec
te

d 
sl

ip
pa

ge
(p

ro
bl

em
 2

 o
bj

ec
tiv

e)

Problem 2

Survey budget, $

I

II

Objective value:

I

II

Ambiguity aversion:

Figure 6 Budget level required to achieve a target objective value in
problem 1 and 2 solutions. Callout I indicates a small penalty of the
ambiguity aversion on the expected outcome of the survey; callout II
shows a significant reduction of CVaRα compared to the solutions that
minimize the expected outcome of survey actions.

Acceptance sampling for cost-effective surveillance of emerald ash borer in urban environments

291



leads to the prescription of surveys across a larger area at lower
sampling rates. Accounting for uncertainty addresses possible
temporal and spatial variation in infestation rates and helps
develop a more diversified survey strategy. When a decision-
maker wants to avoid the worst-case outcomes (such as large
host losses from failed detections), the optimal strategy is to
survey additional sites with high host densities and at farther
distances from the infested area where the arrival of the pest
would cause significant damage. In our case study of EAB in
Winnipeg, the penalty for implementing an ambiguity-averse
strategy on the expected survey outcomes was small. Such a
small penalty implies that satisfying the preferences of an
ambiguity-averse manager does not cause substantial penalties
to the pest management objectives of the survey programme
and overall makes the survey strategy more robust.

Technical aspects and future work

Our analyses highlight the importance of estimating the likeli-
hoods of pest entries for delimiting survey planning. However,
data regarding novel pest entries are seldom available and ana-
lysts, at best, can only access records of old infestations in other

geographic regions. In our current formulation, we parameter-
ized the likelihoods of EAB spread from historical records in the
Twin Cities area of Minnesota. This area has a slightly warmer
climate than Winnipeg. It is possible that the actual rates of
EAB spread in Winnipeg could be lower due to a longer (i.e.
2-year) pest development cycle as well as colder winter condi-
tions. Calibrating the EAB spread assumptions would require
better understanding of the EAB development cycle in Winnipeg
and could be a worthwhile exercise in the future.

Our optimal survey strategies assumed sampling of public
trees only due to liability constraints. We recognize that access
to private trees would likely change the optimal survey prescrip-
tions, especially in areas with high densities of private trees.
Private trees are usually more expensive to inspect due to extra
access time. In general, public street trees have the lowest
access and inspection costs and tend to be inspected first, espe-
cially when a small budget dictates the use of low sampling
rates. Although our estimates of the total number of infested
and susceptible host trees include trees on both private and
public property, the omission of private tree inspections should
not impact survey patterns significantly. This is because the pub-
lic street trees (which not only tend to be inspected first, but are

Table 3 Sensitivity of key output metrics to changes in model parameters. The values represent an average relative change in the output value to
the parameter change by ±25 per cent.

Input parameter

Output metric of interest

Surveyed area Number of inspected trees Objective value

Problem 1 Problem 2
Via branch sampling Via trapping Via branch sampling Via trapping Exp. area of undetected

infestations
Expected slippage

Budget = $25 000
Problem 1 – minimizing expected number of undetected infested sites
Survey cost 1.30 8.67 0.88 8.10 0.54 0.25
Detection rate 1.35 9.00 1.44 8.65 0.59 0.28
Host density 0.10 0.67 0.16 1.00 0.01 1.01
Infestation rate 1.15 7.67 1.10 6.50 0.59 0.73

Problem 2 – minimizing expected slippage
Survey cost 0.52 0.50 0.67 2.71 0.58 0.25
Detection rate 1.16 3.00 0.59 2.43 0.65 0.28
Host density <0.01 <0.01 <0.01 <0.01 <0.01 1.00
Infestation rate 0.97 2.00 0.29 1.21 0.65 0.73

Budget = $100 000
Problem 1 – minimizing expected number of undetected infested sites
Survey cost 0.91 0.13 1.81 1.15 0.42 0.27
Detection rate 0.73 0.13 1.13 0.10 0.46 0.28
Host density 0.55 0.10 1.44 0.13 <0.01 1.00
Infestation rate 0.73 0.13 1.13 0.10 0.46 0.73

Problem 2 – minimizing expected slippage
Survey cost 2.50 1.12 5.12 1.42 0.46 0.25
Detection rate 2.88 0.34 5.00 0.35 0.48 0.27
Host density 0.75 0.20 1.00 0.07 <0.01 1.00
Infestation rate 3.25 0.44 5.60 0.39 0.48 0.75

Sensitivity values 1.0 and above are shaded.
Sensitivity values 2.0 and above in bold.
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present in nearly all survey sites) drive the survey selection pro-
cess in most cases (i.e. at smaller budget levels), regardless of
any private trees on the sites. However, at large budget levels
when higher sampling rates can be applied, it may be optimal
to inspect trees on private property in addition to public street
trees, and so the survey patterns may shift toward inspecting
some of the more accessible private trees. In other words, tree
inspections on private property become relevant only when the
survey budget is large enough that there are sufficient funds
left after inspections of public street trees to also inspect not-
able numbers of private trees. As a practical matter, the impact
of the omission of private trees would be more evident if the
EAB infestation rates were higher, indicating an advanced stage
of an outbreak, but this was not the case in our study where
EAB presence was relatively low and mostly confined to a 5-km

radius around the area of initial detection. Nevertheless, given
that Winnipeg is not currently planning inspections of private
trees, we felt justified in our approach.

Our model considered a fixed size of the survey sites as an
exogenous parameter defined prior to optimization. Potentially,
the problem could be extended by introducing an additional set
of decision variables that specify how the area should be divided
into survey sites to maximize the problem objectives 1 and 2.
The problem of selecting the optimal size of the survey sites can
be formulated as a special case of a redistricting problem (see
Kim, 2011) which finds an aggregation of smallest municipal
subdivisions into a set of larger units that minimizes the
expected area of undetected infestation (or expected slippage
value). Note that redistricting problems are often numerically
demanding and may only be applicable for small datasets.
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Because our model is designed as a short-term planning tool
for an annual seasonal planning cycle we did not incorporate
the update of gamma. The model can be re-solved in sequential
order after updating the data on infested locations and recalcu-
lating the infestation rate values. Potentially, the model could
be reformulated as a multi-stage stochastic programming prob-
lem but the problem size will make it too big to solve for prac-
tical datasets. Reformulating the model as a multi-stage
problem could be the focus of future work.

Our model did not consider a sequential strategy for inspect-
ing individual sites (or trees) and did not use information from
sampled sites to update knowledge about the infestation prob-
abilities. In practical EAB survey campaigns, the processing of
sampled material does not happen immediately after individual
tree inspections and often is delayed until such time that
enough material has been collected to justify processing. This
makes the issue of sequential search less important for EAB, but
we note that this aspect could be pertinent in circumstances
where there is no delay between sampling and identifying signs
of infestation (such as visual tree inspections for signs of Asian

longhorned beetle attack). Nevertheless, we believe non-
sequential sampling is a reasonable assumption in the EAB con-
text. Unlike a human disease epidemic, for which there may be
frequent status updates, the status of an invasive insect pest
such as EAB in an area of concern is usually defined at the end
(and less commonly in the middle) of the field season, when the
bulk of the surveys have been completed.

For the current study, we only considered survey strategies
without follow-up actions to control any established EAB popu-
lation. Potentially, surveys could be followed by optional removal
or treatment of detected infested trees with insecticide and, in
some circumstances, removal of all remaining host trees.
Adding such management options would likely change optimal
survey strategies. This will be the focus of future work.
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