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Abstract

Detections of invasive species outbreaks are often followed by the removal of susceptible

host organisms in order to slow the spread of the invading pest population. We propose the

acceptance sampling approach for detection and optional removal of susceptible host trees

to manage an outbreak of the emerald ash borer (EAB), a highly destructive forest pest, in

Winnipeg, Canada. We compare the strategy with two common delimiting survey tech-

niques that do not consider follow-up management actions such as host removal. Our

results show that the management objective influences the survey strategy. The survey-

only strategies maximized the capacity to detect new infestations and prioritized sites with

high likelihood of being invaded. Comparatively, the surveys with subsequent host removal

actions allocated most of the budget to sites where complete host removal would minimize

the pest’s ability to spread to uninvaded locations. Uncertainty about the pest’s spread

causes the host removal measures to cover a larger area in a uniform spatial pattern and

extend to farther distances from already infested sites. If a decision maker is ambiguity-

averse and strives to avoid the worst-case damages from the invasion, the optimal strategy

is to survey more sites with high host densities and remove trees from sites at farther dis-

tances, where EAB arrivals may be uncertain, but could cause significant damage if not

detected quickly. Accounting for the uncertainty about spread helps develop a more robust

pest management strategy. The approach is generalizable and can support management

programs for new pest incursions.

Introduction

When an invasive species is detected in a novel environment, rapid response measures provide

a way to impede the invader’s advance and limit its potential impacts [1–5]. For example, in
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management programs for wood-boring invasive insects in urban forests, successful detections

(e.g., via tree inspections) may be followed by the removal of host trees that are infested or sus-

ceptible to attack. In such cases, host removal helps slow the expansion of the invader’s popula-

tion into previously uninvaded areas and, if implemented at early stages of the invasion, may

lead to successful eradication [6,7].

However, host removal is expensive, especially when compared to the cost of surveillance

on a per-unit basis. Limited funding may render the host removal measures ineffective if too

few trees are removed, while managers may attempt to balance the surveillance and removal

efforts to maximize their joint effectiveness. Optimization-based models have been used to

identify combinations of survey and strategic removal of selected trees to serve overall manage-

ment objectives [8–11]. These models can be quite sophisticated in terms of computational

scope. Recently, some authors have proposed the use of optimization-based strategies to deter-

mine how to allocate funds for surveys and control actions when managing invasions in geo-

graphical space [5,9,12–17] and through time [18,19].

To be effective, surveys need to cover large areas in order to uncover the full spatial extent

of an invasion. For example, one strategy in delimiting surveys is to attempt to maximize the

number of sites (or total area) with successful detections of an invader of interest (i.e., to find

all the sites where the invader has established). However, the success of this particular strategy

will be influenced by the fact that the manager knows that any successful detection will lead to

the application of a control measure. Thus, a portion of funds has to be set aside for those con-

trol measures, which either reduces the potential number of sites that can be surveyed or the

surveys must be implemented at lower sampling rates. Reducing the surveyed area or sampling

at a lower rate may lead to fewer detections, thus creating a trade-off between the relative

amounts of funds that can be spent on surveys or control actions.

In practice, resource allocation decisions for surveillance and control are even more chal-

lenging because knowledge about the true extent of an invasion is always lacking. This uncer-

tainty forces managers to rely on vague expectations of where and when an invader might

establish when planning detection surveys. If these expectations ignore the uncertainty about

the invader’s future spread, the surveys based on these expectations will underestimate the true

extent of the invasion and thus create an optimistic perception of the efficacy of any control

efforts that follow the detections. Furthermore, any other management actions based on these

expectations may lead to failed detections and delays with eradication decisions, which, in

turn, would amplify the potential damage from an invasion.

Statistical quality control methods such as acceptance sampling [20] provide effective

means to account for potential negative outcomes of invasive species management decisions

under uncertainty [21]. The acceptance sampling technique allows inspectors to accept or

reject a lot (i.e., a group of items) based on information obtained from a sample of inspected

items in the lot [22]. Acceptance sampling plays an important role in public health and food

safety control programs [23–27] and controlling harmful pest entries with agricultural or orna-

mental plant imports [21,28,29].

Chen et al. [21] and Yemshanov et al. [30] applied acceptance sampling to the problems of

invasive pest detection in plant imports and via geographical delimiting surveys. Here, we

extend the acceptance sampling approach proposed in [21] and [30] to a geographical pest

management problem with optional control measures, namely, the removal of infested and

susceptible host plants (trees) after detection.

We divide the survey area into a spatial grid of survey sites and consider each site analogous

to a lot with items that can be selected for inspections. The items in this case are the suitable

host trees in each site, which can be inspected for visible signs of infestation. A sample of these

trees is inspected and if one or more trees is found to be infested, the site is declared as
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invaded. A decision maker may choose after detection to remove a portion of trees from the

sampled tree population and from the rest of the tree population in the invaded site.

We find optimal allocations of survey and tree removal actions (at different budget levels)

that minimize the expected number of infested trees in the area after completion of these

actions. We compare two optimal surveillance strategies. The first strategy includes optional

tree removal measures which may follow the detection of the infested trees. The second strat-

egy follows the approach presented in [30], which does not assume any tree removal or control

actions after a detection and evaluates two alternative survey objectives (described as problem

1 and 2 in [30]). The first survey objective maximizes the expected number of sites with posi-

tive detections in the area, while the second objective minimizes the expected number of

infested trees in sites where surveys failed to detect the infested trees or where no survey was

conducted. We propose a linear programming model that allocates survey and tree removal

measures when the likelihoods of pest introduction and spread in the managed area are uncer-

tain. We also examine how a decision-maker’s perception of uncertainty, such as an ambigu-

ity-averse perspective that aspires to avoid the worst-case outcomes of management actions,

may influence the tree removal choices. We apply our approach to a case study of the emerald

ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in Winnipeg, Can-

ada. EAB is an invasive forest insect that was discovered in Winnipeg in December 2017 [31].

The EAB is native to eastern Asia and poses a major threat to North American ash (Fraxinus)
trees. Since its initial introduction in Michigan, it has caused catastrophic damage in the east-

ern United States and Canada, with estimated tree replacement costs of over US $12B and lost

property values of over $3.8B [32–37]. Currently, the EAB infestation in Winnipeg is at its

early stage (with a significant number of detections made via branch sampling in asymptom-

atic trees) and a higher proportion of the population is estimated to have a longer, two-year

life cycle compared to populations where the shorter one-year lifecycle of EAB predominate

(e.g., southern Ontario and the eastern U.S.). Selecting and removing trees at the early stage of

an infestation, when done in conjunction with branch sampling that enables early detection of

EAB in asymptomatic trees, could reduce the incidence of new infestation nuclei in an area

and buy time for cost-effective host removal actions before the infestation spreads uncontrolla-

bly and becomes too costly to eradicate.

Materials and methods

Our spatial optimization model for surveillance and host removal depicts the uncertain like-

lihoods of invasion with a set of probabilistic scenarios (see Table 1 for symbol definitions).

Consider an area of J sites that may be invaded by a pest. Each site j, j � J, has Nj host trees

that may be infested. The manager chooses an inspection intensity m, m �M, for each site j,
representing a sample size of njm trees to inspect for infestation. One of the inspection

intensities assumes no inspections (i.e., njm = 0). For each site and inspection intensity, we

define a binary decision variable xjm, where xjm = 1 if inspection intensity m is selected for

site j and xjm = 0 otherwise. In our case, inspection intensity defines the number of trees m
inspected at a site j. Only one inspection intensity level is allowed for each site. We define ej
as the detection rate, which is the probability that an inspection of a tree finds an infestation

if it is present. Inspection of a tree at a site j has cost gj and the total cost is constrained by an

upper budget limit B.

Let γj be the infestation rate of trees in site j, which denotes the likelihood that a tree in site j
is infested. The knowledge of the infestation rates γj for all sites j � J is uncertain. Based on

prior information about the infestation in the area and historical estimates of spread rates for

other regions, we define S scenarios of infestation rates. Each scenario s � S is a vector of
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infestation rates γjs, for all sites j, j � J, where each element γjs depicts the infestation rate at a

given site j.
The manager chooses the number of trees to inspect in each survey site, njm. If one or more

of the trees in the sample of inspected trees is found infested, then the site is declared infested.

We adapt the acceptance sampling formula from Chen et al. [21] to determine the expected

number of infested trees, Ejms, in a site j after an inspection of nm trees fails to find the infesta-

tion in a scenario s, i.e.:

Ejms ¼ ð1 � gjsejÞ
njm gjsðNj � njmÞ þ

1 � ej
1 � gjsej

gjsnjm

" #

¼ PfD1 þ D2g: ð1Þ

Term P denotes the probability that none of the inspected trees were found to be infested, D1
is the expected number of infested trees among those that were not inspected, and D2 is the

expected number of infested trees among those inspected, conditional on the fact that the site

was declared uninfested. Using terminology from Chen et al. [21], Eq (1) defines the expected

Table 1. Summary of the model parameters and decision variables.

Symbol Parameter / variable name Description

Sets:

J Potential 1-km2 survey sites in the managed area j j � J, J = 472

S Infestation scenarios s. Each scenario s defines a plausible pattern of infestation

likelihoods, γjs in the managed area J
s � S. S = 2000

M Survey sampling levels m for a site j. Each level m specifies sampling njm trees at a site j m �M
Parameters

B Survey budget constraint B> 0

Nj Number of host trees at a site j Nj � 0

γjs Likelihood of that a tree is infested in a site j in a scenario s
(γjsNj−expected number of infested trees at a site j in a scenario s);

γjs � [0; 1]

ej Probability of that inspections of an infested tree at a site j detect the signs of infestation ej � [0; 1]

Pjms Probability of that inspections, at a sampling level m, fail to detect the infested tree(s) at a

site j in a scenario s.
Pjms � [0;1]

gj Cost of surveying a tree at a site j gj > 0

cj Cost of removing a tree at a site j cj> 0

njm Number of trees inspected at a site j at a survey sampling level m.

The sampling level njm = 0 assumes no survey at a site j;
njm � [0; Nj]

Ejms Expected number of infested trees in a site j conditional on an inspection of njm trees at a

sampling level m does not find the infested trees in a scenario s
Ejms � [0;

γjsNj]

Fjms Expected number of infested trees in a site j conditional on an inspection of njm trees at a

sampling level m detects one or more infested trees in a scenario s
Fjms � [0;

γjsNj]

βjs Normalizing factor that conditions the number of infested trees in a sampled tree

population njm on failing to detect the infested trees in a sample of njm trees in a scenario s
P Probability of that inspections fail to detect one or more infested trees at a survey site P � [0;1]

D1 Expected number of infested trees at a surveyed site among those that were not inspected, D1 � [0; γjsNj]
D2 Expected number of infested trees among those inspected, conditional on the fact that the

survey fails to find the signs of infestation

D2 � [0; γjsNj]

D3 Expected number of infested trees among those inspected, conditional on the fact that the

survey fails finds the signs of infestation

D3 � [0; γjsNj]

Decision variables:

xjm Binary selection of a survey at a site j at a sampling level m (i.e., inspecting njm trees) xjm � {0,1}

y1jm Proportion of trees removed from a sampled population of njm trees at a site j y1jm � [0;1]

y2jm Proportion of trees removed from an unsampled population of Nj−njm trees at a site j y2jm � [0;1]

https://doi.org/10.1371/journal.pone.0220687.t001
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slippage when failing to detect an infestation in a site j. Note that when no trees are inspected

in site j, njm = 0 and Ejms = γjsNj, which is the expected number of infested trees in site j.
If one or more trees in an inspected sample njm in a scenario s are found to be infested, the

site is declared infested and the decision maker may decide to remove a portion of host trees

from the site. The manager may choose to remove a portion of trees from the sampled popula-

tion, y1jm, in a site j in a scenario s and a portion of the remaining population of unsampled

trees, y2jm. No trees are removed from sites that are declared uninfested (i.e., when the inspec-

tion of njm trees did not find signs of infestation) or sites that were not surveyed. The cost of

removing a tree at a site j is cj. Tree removal decisions at a site j are not scenario-specific and

apply to all S invasion scenarios because knowledge about the infestation rates at the survey

sites is uncertain.

Our problem objective is to choose the inspection intensity and tree removal proportions

for the sites in the managed area with positive detections that minimize the expected number

of infested trees remaining in the landscape after tree removal. This problem objective is sub-

ject to an upper bound on the total survey and tree removal budget. First, we use Eq (1) to esti-

mate the expected number of infested trees in the sites where the inspection of a sample of njm
trees did not find the signs of infestation (i.e., the expected slippage when failing to detect an

infestation). We then estimate the expected number of infested trees in the sites where the

inspection of a sample of njm trees has detected the infestation as:

Fjms ¼ ½1 � ð1 � gjsejÞ
njm � gjsðNj � njmÞ þ njmgjs

1 � ð1 � ejÞð1 � gjsejÞ
njm � 1

1 � ð1 � gjsejÞ
njm

" #

¼ ð1 � PÞfD1 þ D3g: ð2Þ

Term 1 –P denotes the probability that the inspections find one or more infested trees in a

population of sampled trees and D3 is the expected number of infested trees among those

inspected conditional on that the site is declared infested.

Eqs (1) and (2) can be written as:

Ejms ¼ gjsðNj � njmÞð1 � gjsejÞ
njm þ njmgjsð1 � ejÞð1 � gjsejÞ

njm � 1
ð3Þ

Fjms ¼ gjsðNj � njmÞ½1 � ð1 � gjsejÞ
njm � þ njmgjs½1 � ð1 � ejÞð1 � gjsejÞ

njm � 1
� ð4Þ

Let Pjms be the probability that the survey fails to detect one or more infested trees in a sample

of trees njm in a scenario s:

Pjms ¼ ð1 � gjsejÞ
njm ð5Þ

and βjs be the adjustment factor for the number of infested trees in the inspected sample of

trees in Eq (1):

bjs ¼
1 � ej

1 � gjsej
: ð6Þ

Given the equality (1 –ej)(1 –γjsej)njm-1 = Pjmsβjs, Eqs (3) and (4) can be rewritten as:

Ejms ¼ PjmsgjsðNj � njmÞ þ njmgjsPjmsbjs ð7Þ

Fjms ¼ gjsðNj � njmÞ½1 � Pjms� þ njmgjs½1 � Pjmsbjs�: ð8Þ

The sum of the expected numbers of infested trees conditional on detecting and failing to
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detect the infestation is equal to the expected number of infested trees at a site j, i.e:

Ejms þ Fjms ¼ gjsNj: ð9Þ

We then formulate the objective function as minimizing the expected number of infested

trees in a site j where the inspection of njm trees did not find an infestation or no survey

occurred, Ejms, and the expected number of infested trees after the inspection of njm trees has

found one or more infested trees in a scenario s and tree removal may have occurred, Fjms:

z ¼ min
1

S

XS

s¼1

XJ

j¼1

XM

m¼1

ðxjmEjms þ xjmFjmsÞ; ð10Þ

where Ejms is defined in Eq (7) and

Fjms ¼ gjsðNj � njmÞ½1 � Pjms�ð1 � y2jmÞ þ njmgjs½1 � Pjmsbjs�ð1 � y1jmÞ: ð11Þ

Terms 1 –y1jm and 1 –y2jm denote the proportions of the remaining infested trees in a sample

of njm inspected trees and the unsampled tree population Nj—njm, and terms Pjms and βjs are

defined in Eqs (5) and (6).

Terms xjmEjms and xjmFjms in Eq (10) can be written as:

Ejmsxjm ¼ xjmPjmsgjsðNj � njmÞ þ xjmnjmgjsPjmsbjs ð12Þ

and

Fjmsxjm ¼ xjmgjsðNj � njmÞ½1 � Pjms�ð1 � y2jmÞ þ xjmnjmgjs½1 � Pjmsbjs�ð1 � y1jmsÞ: ð13Þ

The products of the binary decision variables xjm and non-negative tree removal variables y1jm

and y2jm in Eq (13) can be replaced with the variables y1jm and y2jm and the constraint (18),

which ensures that y1jm and y2jm = 0 when xjm = 0 or njm = 0, i.e.:

Fjmsxjm ¼ gjsðNj � njmÞ½1 � Pjms�ðxjm � y2jmÞ þ njmgjs½1 � Pjmsbjs�ðxjm � y1jmÞ: ð14Þ

Term xjm(Ejms + Fjms) can be written as:

gjsðNj � njmÞ½1 � Pjms�ðxjm � y2jmÞ þ njmgjs½1 � Pjmsbjs�ðxjm � y1jmÞ þ xjmPjmsgjsðNj � njmÞ þ xjmnjmgjsPjmsbjs ¼

¼ gjsðNj � njmÞðxjm � y2jm½1 � Pjms�Þ þ gjsnjmðxjm � y1jm½1 � Pjmsbjs�Þ
ð15Þ

and the objective function equation after rearranging as:

z ¼ min
1

S

XS

s¼1

XJ

j¼1

XM

m¼1

½xjmgjsPjmsðNj � njm½1 � bjs�Þ þ gjs½1 � Pjms�ðNj � njmÞðxjm � y2jmÞ þ gjsnjm½1 � Pjmsbjs�ðxjm � y1jmÞ�ð16Þ

s.t.:

0 � y1jm; y2jm � 1 8 j 2 J;m 2 M; s 2 S ð17Þ

y1jm; y2jm � xjmnjm 8 j 2 J;m 2 M; s 2 S; ð18Þ

assuming the lowest positive sample size njm = 1. Constraint (17) imposes lower and upper

bounds on the proportions of trees removed from the sampled and unsampled populations,

y1jm and y2jm. Constraint (18) ensures that tree removal could only occur at sites that are sur-

veyed (i.e., y1jm and y2jm = 0 when njm = 0) and also ensures that only one set of y1jm and y2jm
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variables out of M possible survey intensity levels m can be positive at a site j (i.e., y1jm, y2jm = 0

when xjm = 0).

As noted earlier, the budget constraint (19) limits the total number of inspected and

removed trees by an upper bound in each infestation scenario:

XJ

j¼1

XM

m¼1

½xjmnjmgj þ cjð1 � PjmsÞ½ðNj � njmÞy2jm þ njmy1jm�� � B 8s 2 S ð19Þ

where njmy1jm and (Nj−njm)y2jm are the expected numbers of trees removed from the sampled

and unsampled tree populations in site j.
Constraint (20) specifies that only one sample size m out of possible M sampling levels njm

can be chosen for a survey implemented at a site j, i.e.:

XM

m¼1

xjm ¼ 1 8 j 2 J: ð20Þ

Surveys with host removal vs. survey-only strategies

We compared our survey strategy with optional host removal with two common delimiting

survey strategies (as shown in Yemshanov et al. [30]). The first strategy (problem 1 hereafter)

minimizes the expected number of sites with undetected infestations in area J across a set of

infestation rate scenarios S, subject to the inspection budget constraint (22), i.e.:

z1 ¼ min
1

S

XS

s¼1

XJ

j¼1

XM

m¼1

ðxjm½ð1 � gjsejÞ
njm �Þ ð21Þ

s.t.:

constraint (20) and

XJ

j¼1

XM

m¼1

xjmnjmgj � B: ð22Þ

The second strategy (problem 2 hereafter) minimizes, across all sites and all scenarios of infes-

tation rates, the expected slippage Ejms when failing to detect an infestation (defined in Eq (1)),

i.e.:

z2 ¼ min
1

S

XS

s¼1

XJ

j¼1

XM

m¼1

xjmEjms

" #

: ð23Þ

s.t.:

constraints (20) and (22).

In practical situations, decision-makers, after undertaking a conventional delimiting sur-

vey, may decide to proceed with the removal of trees at the infested sites. We compared the

efficacy of tree removal measures based on our proposed strategy and on the survey-only prob-

lems described in Eqs (21) and (23) as follows. We first solved our survey and tree removal

problem for a given total budget level B. The solutions provided an optimal apportionment of

the budget between the survey and tree removal costs. Next, we solved the survey-only prob-

lems 1 and 2 for the survey budget levels prescribed by the survey and tree removal model solu-

tions. We then fixed the survey selection variables xjm in our survey and tree removal model to

the values from the model 1 and 2 solutions and re-solved the model with respect to tree

Managing biological invasions with the acceptance sampling approach
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removal variables y1jm and y2jm, yielding optimal tree removal strategies for the fixed survey

patterns prescribed by the survey-only problem 1 and 2 solutions.

Minimizing the expected worst-case outcomes of survey actions

Detection errors and uncertainty about where an infestation may occur and how many trees

may be infested causes the objective value to vary across the infestation scenarios s. The objec-

tive function in Eq (16) minimizes the expected number of infested trees that remain in a land-

scape over the distribution of all infestation scenarios. Note that the right-hand tail of that

distribution contains the most severe scenarios where large numbers of infested trees in the

surveyed area go undetected. In these severe scenarios, host removal or other control measures

are likely to be ineffective as they are predicated on the accuracy of the survey. Knowing this,

decision-makers may exercise caution and decide that the chance of missing a large number of

infested trees is unacceptable and instead may try to minimize the expected worst outcomes of

pest management actions. This behaviour is an example of ambiguity aversion [38] and widely

occurs in the management of biological invasions [39–41]. When the outcomes of decision-

making actions are uncertain, an ambiguity-averse manager evaluates potential actions in

terms of the minimum utility that might emerge from each action. The manager then selects

an action that, at the least, ensures the best of all other worst possible outcomes.

The right tail of the scenario-based distribution can be controlled with a percentile-based

metric that characterises the expected tail value, such as maximum loss [42, 43], value-at-risk

or conditional tail expectation. In particular, conditional value-at-risk is widely used in finance

to quantify the risk of extreme losses [44–47]. In our pest management problem, value-at-risk

(VaRα) is defined, with a confidence level α, α � [0;1], as the objective function value that is

exceeded in (1 –α)×100% of the scenarios. For a random variable, the conditional value-at-risk

(CVaRα), with a confidence level α, is the conditional mean of the objective function values

exceeding VaRα. For this analysis, we use CVaRα to depict the ambiguity-averse strategy of

minimizing the expected worst-case outcome of tree removal measures, i.e.:

min½CVARaðnumber of infested treesÞ�: ð24Þ

Since the objective function (16) in our problem was linear with respect to decision variables

xjm, y1jm and y2jm, we applied a linear formulation of the CVaR minimization from [46, 47]

(see S1 Appendix). We composed the problem in the GAMS environment [48] and solved it

with the GUROBI linear programming solver [49].

Case study: Managing the emerald ash borer (EAB) infestation in

Winnipeg, Canada

We applied our model to develop optimal strategies to manage EAB in Winnipeg, Manitoba,

Canada. We used the same study area, data and assumptions as described in [30]. Detecting

new EAB infestations is difficult because the infested trees stay asymptomatic for two to three

years, or longer [50]. This means that the first detection of the insect in a location usually indi-

cates that other trees are infested and will eventually require some kind of management activity

(i.e., removal). Branch sampling to inspect for EAB galleries is the most reliable method to

detect the insect, in particular during early stages of an outbreak when trees are otherwise

asymptomatic [50, 51]. Another common method to detect EAB is to hang traps in ash trees.

These traps are baited with a plant volatile and (in Canada) the EAB pheromone [52]. Trap-

ping is less expensive on a per-tree basis, but yields lower detection rates than branch sampling

[53].
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After the initial discovery of EAB in December 2017 [31] (Fig 1A), the City of Winnipeg

and the Province of Manitoba established a program to delimit the extent of the EAB infesta-

tion in the city and remove the detected infested trees. The city was divided into a grid of 1×1

km sites. Note that the use of a 1-km survey grid ignores information about the spatial posi-

tions of the infested tree(s) within a grid cell. This may lead to coarser estimation of the infesta-

tion probabilities and could potentially affect the modelling results if the size of the grid cell is

comparable with the annual spread rate of a pest. This was not the case for EAB, which has an

annual spread rate exceeding 5 km, so the use of a 1-km survey grid was justified.

Some sites were inspected using the branch sampling during the winter months immedi-

ately following the initial detection, while additional sites were sampled using traps in the sum-

mer of 2018. The branch sampling method was used in the neighborhood surrounding the

initial detection, while the traps were deployed in the surrounding neighborhoods and more

widely within the city limits. Below we briefly describe the parameters used in our optimiza-

tion model.

Likelihoods of EAB infestation

We estimated the likelihoods of EAB arrival in uninvaded sites as a function of distance from

the nearest known infested site. Modelling distance-dependent spread is a practical way to pre-

dict the likelihoods of spread for EAB [34, 54]. Because EAB was discovered only recently, we

had little information about the spread of EAB in Winnipeg, so we estimated the likelihoods of

introduction over distance using historical observations of the closest urban EAB infestation

to Winnipeg in Minneapolis—St. Paul (Twin Cities), Minnesota [55, 56]. Evidence suggested

that the pest entered the Winnipeg area six years ago, hence we used records of EAB from the

Twin Cities for a six-year period starting from the oldest detection.

The spread of EAB in the Twin Cities was depicted as a map of infested trees, each with an

age of infestation. For each infested tree, we estimated the distance to the group of trees with

the oldest recorded infestation. We also identified the locations of other non-infested ash trees

from municipal tree inventories [57, 58] and urban tree data for St. Paul used in Koch et al.

[59]. We divided the area into a grid of 1×1 km sites, and for each site, estimated the propor-

tion of infested ash trees. Next, using the EAB detection rate values collected during previous

survey campaigns in the area [56], we estimated the likelihood of EAB infestation in that site.

We then grouped the sites into 1-km distance classes from the infestation center and, for each

distance class, estimated the distributions of likelihoods of EAB infestation.

We used the distance-dependent distributions from the Twin Cities to generate the infesta-

tion scenarios in Winnipeg. We divided Winnipeg into a grid of 1×1-km potential survey sites

and for each site estimated the distance to the nearest infested area. We then sampled the dis-

tribution of infestation likelihood values for that distance from the Twin Cities data to generate

the likelihood of infestation in a particular scenario. We generated 2000 infestation scenarios,

which depict plausible outcomes of EAB invasion in the area. For each site, we also estimated

mean likelihoods of infestation from the 2000-scenario set (Fig 1A), which depict a hypotheti-

cal single-scenario example if the manager perceives the likelihoods of EAB infestation as cer-

tain. We compared the problem solutions for the single-scenario and the 2000-scenario cases

in order to see the effect of uncertainty on the results.

Survey costs, detection rates and host densities

We estimated the ash density at each survey site from a municipal tree inventory [60] (H. Dau-

det, City of Winnipeg, Urban For. Br., pers. comm.), which provided information about tree

species, ownership and size (Fig 1B). We used two tree size classes, 20–60 and>60 cm
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diameter at breast height (dbh), to adjust the cost of tree surveys because Winnipeg’s pest sur-

vey protocols only target trees with dbh>20 cm. We further assumed that inspecting

trees > 60 cm dbh would require twice the effort to achieve the same detection rate as when

inspecting trees 20–60 cm dbh.

The Winnipeg EAB population is thought to have been established for at least six years

prior to its initial discovery, so we assumed sites where EAB was detected would contain a mix

of asymptomatic and symptomatic trees. In our case, branch sampling was able to detect the

presence of infestation in asymptomatic trees, so the detection rate was higher than when

using traps. Based on evidence from previous surveys in Canada [50,51,53,61], we determined

the efficacy of branch sampling and using traps to detect the presence of EAB. The detection

rate for branch sampling was set to 0.7, based on a typical sample of two mid-crown branches

from a medium-sized tree [53]. The likelihood of a single trap detecting the presence of an

EAB was set to 0.5. The detection rates were determined for urban EAB populations in south-

ern Ontario, Canada but should be applicable for Winnipeg given that its tree size distribution

was typical of other urban areas in Canada.

In Winnipeg, only public trees can be inspected for EAB due to legal constraints, so we

assumed that surveys would target public trees only. We calculated the survey costs using the

rates paid to contractors to do branch sampling and trapping in recent EAB surveys in Winni-

peg (Cdn $25-hr-1). We identified three broad classes of trees eligible for inspections:

medium-sized accessible public (street) trees 20–60 cm dbh, large-sized accessible public trees

>60 cm dbh and public woodlot, park and riparian zone trees >20 cm dbh. Inspecting trees

between 20 and 60 cm dbh would require installing either one trap or sampling two branches.

We assumed that inspecting trees larger than 60 cm dbh would require installing two traps or

sampling four branches to achieve the same detection rate (i.e., twice the inspection effort for

smaller trees). Usually, it takes longer for a surveyor to access a woodlot tree, so we doubled

the costs for the site access and trap setup for woodlot trees.

Based on the constraints listed above, we estimated the total trapping cost at Cdn $87.21 for

20–60 cm dbh trees and $124.42 for trees > 60 cm dbh. This includes the cost of the trap (Cdn

$24.71 and the cost of the inspection procedures of three, 15-min visits by a crew of two (for

setup, sampling and teardown). Site access costs account for an additional 10 min per visit by

the two-person crew.

We estimated the total cost of branch sampling at Cdn $128.90 for a 20–60 cm dbh tree and

Cdn $249.60 for trees>60 cm dbh. Unlike trapping, branch sampling requires only one site

visit but the total cost includes the site access by the crew of two (10-min), sampling, bark peel-

ing and branch disposal. Sampling costs were based on estimates from the current survey cam-

paign in Winnipeg (i.e., Cdn $65 for a 20–60 dbh tree; Cdn $121.42 for >60 cm dbh, including

the site access cost). We estimated that peeling the bark from sampled branches would take

1.11 person-hours per branch and cost Cdn $55.60 for a 20–60 cm dbh tree and Cdn $111.20

for a tree> 60 cm dbh. Branch disposal included chipping the material and was expected to

take 5 min for the two-person crew (Cdn $4.17 branch-1).

Results

Impact of uncertainty on optimal survey patterns

We compared the optimal solutions between single-scenario formulations that used mean like-

lihoods of infestation and the 2000-scenario formulations (Figs 2 and 3). In all solutions, the

proportion of the budget spent on surveys is very small (Table 2) because tree removal is con-

siderably more expensive on a per tree basis than tree surveys. Recalling that the single-sce-

nario solutions assumes that the manager knows the likelihood of EAB infestation for a
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Fig 1. Likelihood of infestation and ash host densities in the study area: a) likelihood of EAB infestation (expected

value based on 2000 infestation scenarios); b) ash host density, trees-km-2.

https://doi.org/10.1371/journal.pone.0220687.g001
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particular site whereas the 2000-scenario solutions assumes that the manager only knows the

approximate range of infestation likelihoods. We found that in the 2000-scenario solutions that

also accounted for uncertainty (Figs 2C, 2D, 3C and 3D), more sites had trees removed after

detections than in the single-scenario solutions (Figs 2A, 2B, 3A and 3B). In single-scenario

solutions, branch sampling was used to inspect sites adjacent to the known infested area (which

is very small) and traps were used for inspecting the rest of the city. In the solutions where the

manager is ambiguity-averse, more sites were inspected via branch sampling (Fig 2E and 2F). In

solutions where the available budget was large (i.e., Cdn $3M and above; Fig 3), sites proximal

to the known infested area were inspected using higher sampling rates and a larger total area

was surveyed than when the budget was small (Fig 2). This result shows that when a manager is

ambiguity-averse, branch sampling is used more often, more sites are inspected, and more

remote sites (i.e., sites that are not proximate to the known infested area) are inspected. These

remote sites are primarily in parks and river valleys where the host density is high.

In single-scenario solutions, the removal of the unsampled tree population after detection

was only recommended for sites in close proximity to the known infested area (Figs 2B and

3B). In the 2000-scenario solutions, adding uncertainty resulted in prescriptions for the

removal of some unsampled trees after detection across nearly all of the surveyed area (Figs 2D

and 3D). In the solutions where the manager is ambiguity-averse, the prescription was for a

larger proportion of the unsampled tree population to be removed, and more trees are

removed from remote sites (Figs 2F and 3F).

In large-budget solutions, the optimal tree removal strategy after detection was to remove all

trees in both the sampled and unsampled populations except in sites with very low host densi-

ties. At low density sites the prescription was only to remove the sampled trees. In short, com-

plete tree removal after detection is a strategy to compensate for uncertainty. This is because the

actual infestation rate in the survey area is unknown, therefore it is impossible to stratify the

removal of the unsampled trees. Thus, the optimal strategy is to remove all trees at a site after

detection. Though, the extent of tree removal across a city is still limited by the project budget.

Optimal apportionment between survey and tree removal budgets

Without uncertainty, in the single-scenario solutions, trapping was the most used inspection

method, with its share of the coverage of the surveyed area ranging from 77 to 85% (Table 2).

Adding uncertainty in the 2000-scenario solutions makes the choice of the inspection method

more dependent on the project budget. In small-budget solutions, most of the area was surveyed

using traps. This is unsurprising because a larger area needs to be surveyed in order to compen-

sate for the uncertainty and the only way to achieve this with limited survey funds is to use the

cheaper trapping method. However, when the budget is large, more funds can be set aside for

surveys and more sites are inspected with the more reliable branch sampling method (Table 2).

When we assumed the manager is ambiguity-averse, this further increased the proportion

of sites surveyed via branch sampling, but also made the choice of the inspection method less

dependent on the budget. Being averse to ambiguity necessitates inspection of more remote

sites in areas of high host density, where failed inspections could lead to significant damage to

the host resource.

With respect to tree removal, single-scenario solutions prescribed the removal of the largest

number of trees and the uncertainty scenarios with ambiguity prescribed the removal of the

smallest number of trees (Table 3). However, removal occurred over more sites in the ambigu-

ity-averse scenarios, and furthermore, more of the removed trees were from the unsampled

tree populations. This occurred because the removal of trees is conditional on detecting the

pest and yet the true infestation rate in the unsampled tree population of a site is unknown.
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Fig 2. Optimal survey and tree removal patterns for a $0.8M project budget. No-uncertainty solutions: a) survey allocation; b)

optimal tree removal pattern. The uncertainty solutions: c) survey allocation; d) optimal tree removal pattern. The uncertainty

solutions with the ambiguity aversion assumption: e) survey allocation; f) optimal tree removal pattern.

https://doi.org/10.1371/journal.pone.0220687.g002
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Fig 3. Optimal survey and tree removal patterns for a $4M project budget. No-uncertainty solutions: a) survey allocation; b)

optimal tree removal pattern. The uncertainty solutions: c) survey allocation; d) optimal tree removal pattern. The uncertainty

solutions with the ambiguity aversion assumption: e) survey allocation; f) optimal tree removal pattern.

https://doi.org/10.1371/journal.pone.0220687.g003
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Therefore, the manager–after a detection in the sampled population–must remove all the

unsampled trees to guarantee that all of them that might be infested are removed. As noted

previously, the likelihood of infestation at remote sites is lower than at sites in close proximity

to the known infested area. This means that the expected proportions of infested trees in the

sampled and unsampled populations of remote sites are also lower. In turn, this means the

removal of unsampled trees from remote sites is less cost-effective than is removal of trees

from nearby sites. Thus, the penalty for compensating for uncertainty about the ability of the

invader to spread, particularly in combination with an ambiguity-averse manager (cf. the

avoidance of worst-case damage), is to inspect remote sites, where both survey and removal

are comparatively inefficient but necessary so as to minimize the chance of a major undetected

expansion by the invader.

Survey allocation and the tree removal budget

In some situations, budgets for invasive species management programs can be apportioned

separately between survey and management actions. We explored how varying the amount of

Table 2. Number of surveyed 1×1-km sites and proportions of the budget allocated to branch sampling and trapping at different survey sampling rates.

Uncertainty assumptions: 1 scenario, deterministic 2000 scenarios, uncertainty 2000 scenarios, uncertainty,

ambiguity aversion

Sampling rate

Number of

surveyed sites

Allocated budget

proportion

Number of

surveyed sites

Allocated budget

proportion

Number of

surveyed sites

Allocated budget

proportion

Br.sampla. Trap. Br.sampl. Trap. Br.sampl. Trap. Br.sampl. Trap. Br.sampl. Trap. Br.sampl. Trap.

Budget limit $0.8M

1–5 tr.-site-1 - 37 - 44.4% 1 46 0.7% 34.5% 12 32 46.2% 45%

6–25 tr.-site-1 1 6 15.3% 14.8% - - - - - 1 - 8.8%

26–50 tr.-site-1 - 2 - 25.5% - 2 - 37.7% - - - -

51–100 tr.-site-1 - - - - - 1 - 27.1% - - - -

Total sites surveyed 1 45 15.3% 84.7% 1 49 0.7% 99.3% 12 33 46.2% 53.8%

Total trees surveyed 25 200 1 216 25 43

Budget proportion spent on surveys - - 2.6% - - 3% - - 1.4%

Budget limit $1.5M

1–5 tr.-site-1 - 35 - 32.3% 19 35 19.6% 33.8% 27 26 43.6% 25.4%

6–25 tr.-site-1 2 8 22.6% 35.3% - 6 - 32.6% 3 1 19.3% 11.7%

26–50 tr.-site-1 - 1 - 9.8% - 1 - 14% - - - -

51–100 tr.-site-1 - - - - - - - - - - - -

Total sites surveyed 2 44 22.6% 77.4% 19 42 19.6% 80.4% 30 27 62.9% 37.1%

Total trees surveyed 48 231 26 156 62 54

Budget proportion spent on surveys - - 1.8% - - 1.6% - - 1.3%

Budget limit $4M

1–5 tr.-site-1 - 32 - 10.6% 21 23 11.9% 9.4% 34 15 19.7% 6.2%

6–25 tr.-site-1 1 26 3.9% 27.7% 2 28 2.6% 56.1% 9 20 15.3% 41.6%

26–50 tr.-site-1 3 9 15.8% 35.8% - 4 - 19.8% - 2 - 17.2%

51–100 tr.-site-1 - 1 - 6.2% - - - - - - - -

Total sites surveyed 4 68 19.7% 80.3% 23 55 14.5% 85.5% 43 37 35% 65%

Total trees surveyed 112 742 67 556 156 384

Budget proportion spent on surveys - - 2.1% - - 2% - - 2%

a Survey methods: Br.sampl.–branch sampling, Trap.–trapping.

https://doi.org/10.1371/journal.pone.0220687.t002
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the budget set aside for tree removal and the potential under- or over-allocation of tree

removal funds may influence the optimal survey strategy. We found the solutions for a fixed

survey budget and a set of different tree removal budgets. These solutions depict circumstances

where a city’s survey budget and tree removal budget come from different funding sources

decided on through separate planning procedures. We then compared these solutions with the

solution that optimally apportioned the budget between survey and tree removal and had simi-

lar funding level allocated to surveys.

Figs 4 and 5 show the optimal survey and tree removal solutions for the survey budgets of

Cdn $25k and $50k and total project budgets Cdn $0.8M and $4M. The solutions with a total

budget of $0.8M depict a situation when the manager has limited funds to remove trees (Figs

4A,4B, 5A and 5B). In these solutions, most of the area was inspected using traps at low sam-

pling rates. High sampling rates and branch sampling were only used at sites adjacent to the

known infested area. All sampled trees were removed at the sites with positive detections, but

the removal of unsampled trees only occurred at a few sites adjacent to the known infested

area that were subject to high sampling rates. In summary, if the tree removal budget is rela-

tively small, high sampling rates should only be used in the sites where intensive removal of

trees is expected (i.e., in close proximity to the known infested area). The rest of the survey

budget should be spent on low-intensity surveys using the least expensive method.

When sufficient funding is available for tree removal, the optimal prescription is to remove

all the host trees from all sites where infested trees were found. There is a trade-off however, in

large-budget solutions the total surveyed area is smaller than in small-budget solutions but the

surveys use higher sampling rates. The budget available for tree removal determines the total

survey area assuming the removal of all trees from any site with a detection (Figs 4D and 5D).

Tree removal is most effective when the portion of the budget allocated to survey is close to

its optimal value. Table 4 shows the expected number of removed infested trees for three fixed

survey budgets at small ($0.8M) and large ($4M) total budget levels. In general, the fixed-sur-

vey solutions closest to the optimal apportionment of survey and tree removal costs also pre-

scribe the removal of the highest number of trees. When the survey budget is set above its

optimal value, less funding is available for tree removal. When the survey budget is too low,

tree removal doesn’t work because too many infested trees are likely missed.

Table 3. Expected number of trees removed and the budget proportion spent on tree removal in sampled and unsampled populations.

Uncertainty assumptions: 1 scenario, deterministic 2000 scenarios, uncertainty 2000 scenarios, uncertainty,

ambiguity aversion

Sampling rate Tree removal Allocated budget

proportion

Tree removal Allocated budget

proportion

Tree removal Allocated budget

proportion

SPa. UPb SP. UP SP. UP SP. UP SP UP SP. UP

Budget limit $800000

Total sites with tree removal 46 4 12.1% 87.9% 50 28 15.5% 84.5% 45 38 2.3% 97.7%

Exp. number of removed trees 118 855 127 695 14 626

Budget limit $1500000

Total sites with tree removal 46 11 9.2% 90.8% 61 52 5% 95% 57 50 2.3% 97.7%

Exp. number of removed trees 166 1673 69 1306 30 1270

Budget limit $4000000

Total sites with tree removal 72 21 12.2% 87.8% 78 69 6.8% 93.2% 80 73 5.6% 94.4%

Exp. number of removed trees 598 4298 254 3485 206 3465

a SP–sampled population;
b UP–unsampled population.

https://doi.org/10.1371/journal.pone.0220687.t003
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Surveys with tree removal vs. the survey-only strategies

Plans that dictate the removal of trees after detecting an infestation (survey-removal) have a

different survey strategy than plans that do not anticipate management actions after detection

Fig 4. Optimal survey and tree removal patterns for the solutions with fixed survey budgets and different tree removal budgets. The survey

budget $25000 and total project budget $0.8M ($0.775M spent on tree removal): a) survey allocation; b) optimal tree removal pattern. The survey

budget $25000 and total project budget $4M ($3.975M spent on tree removal): c) survey allocation; d) optimal tree removal pattern.

https://doi.org/10.1371/journal.pone.0220687.g004
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(survey-only). We compared our optimal survey-removal solutions to survey-only strategies

implemented as problems 1 and 2 described in [30] via Eqs (21) and (23), respectively. Figs 6

and 7 show pronounced differences in survey-only strategies between the problem 1 and 2

solutions and the solutions for our survey-removal approach. For small budgets (with the

Fig 5. Optimal survey and tree removal patterns for the solutions with fixed survey budgets and different tree removal budgets. The survey

budget $50000 and total project budget $0.8M ($0.775M spent on tree removal): a) survey allocation; b) optimal tree removal pattern. The survey

budget $50000 and total project budget $4M ($3.975M spent on tree removal): c) survey allocation; d) optimal tree removal pattern.

https://doi.org/10.1371/journal.pone.0220687.g005
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survey cost below $40,000), branch sampling was preferred in problem 1 and 2 solutions (Figs

6A,6B, 7A and 7C) but trapping was preferred in the survey-removal solutions (Figs 6C and

7C). The proportional use of branch sampling and trapping in the survey-only and survey-

removal solutions starts to converge at large budgets (Fig 6), but the spatial patterns of where

surveys should occur still show notable dissimilarities (Fig 7B,7D and 7F).

These differences in sampling strategies stem from distinct survey objectives. The survey-

only and survey-removal approaches adopt different philosophies. A survey-only approach

intends to get a handle on the extent of an invasion, in preparation for planning future

response actions; because resources are always limiting, a decision maker wants to start taking

action where the invader is a priority. This is a reactive measure. Alternatively, the survey-

removal approach tries to limit the scope (and thus the expected impact) of the invasion in the

immediate future by removing trees in recently detected infestation nuclei. This is a proactive

measure. Compared to the survey-only solutions, the survey-removal approach does not maxi-

mize the capacity to detect infestation or minimize the number of infested trees in false nega-

tives per se. Instead, the survey-removal approach attempts to minimize the expected number

of infested trees remaining after removal. Recall that surveys have to compete with tree

removal within the budget allocation. The smaller the tree removal budget the fewer sites

where complete tree removal is cost-effective. In this case, a two-tiered strategy is optimal: sur-

vey a small number of sites at high sampling rates with a method that gives the best chances of

detection and survey the rest of the area with low sampling rates with the least expensive detec-

tion method. Comparatively, the survey-only strategies prescribe higher sampling rates and

use of a more reliable inspection method to maximize the number of successful detections,

inspecting a smaller area as a result. When used to guide removal efforts, the survey-only strat-

egies also lead to removal of fewer infested trees overall (Table 5).

Sensitivity analysis

We estimated the sensitivities of key output metrics to changes in the model parameters

(Table 6). Rows in Table 6 denote the input model parameters of interest (i.e., the survey and

tree removal unit costs, the detection and infestation rates and the host density) and columns

denote the output metrics of interest. The sensitivity values indicate the relative change of the

output metric (columns in Table 6) in response to changing the input parameter (rows in

Table 6) by ±20%. In addition to testing the objective value, we also examined the sensitivities

of other relevant outputs to changes in model parameters, such as the number of sites surveyed

via branch sampling and trapping, the budget portion spent on surveys and the proportions of

trees removed from sampled and unsampled tree populations.

Table 4. Expected number of removed infested trees for fixed survey budgets. The uncertainty solutions with 2000

scenarios are shown.

Budget limit, $ Survey cost allocation Survey cost, $ Expected number of removed infested trees

0.8M Optimal 18966 285.8

Fixed 25000 285.7

Fixed 50000 279.3

Fixed 100000 262.6

4M Fixed 25000 872

Fixed 50000 960.3

Optimal 59484 964.9

Fixed 100000 960.5

https://doi.org/10.1371/journal.pone.0220687.t004
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As expected, the model objective was most sensitive to changes in the infestation rate and

moderately sensitive to changes in the unit cost of tree removal. The infestation rate defines

the expected number of infested trees in a landscape. Sensitivity to changes in the infestation

rate was highest in small-budget solutions because the limited funds allowed removal of only a

small proportion of the infested trees, and so the expected number of remaining infested trees

was essentially a function of the infestation rate.

Fig 6. Area surveyed with different sampling rates in the solutions with tree removal and the survey-only problem

1 and 2 solutions. Colors / shades show the areas surveyed at a particular tree sampling rate and using a particular

survey method. X-axis denotes the total budget, $ million, secondary X-axis shows the survey budget portion, $, and Y-

axis denotes the survey area, km2: a) surveys based on problem 1 objective; b) surveys based on problem 2 objective; c)

surveys in the optimal solution with tree removal.

https://doi.org/10.1371/journal.pone.0220687.g006
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Fig 7. Optimal survey patterns in the solutions with tree removal and the survey-only problem 1 and 2 solutions. Project

budget $0.8M: a) survey-only problem 1 solution; c) survey-only problem 2 solution; e) optimal survey solution with tree

removal. Project budget $4M: b) survey-only problem 1 solution; d) survey-only problem 2 solution; f) optimal survey solution

with tree removal. The survey cost portions in the $0.8M and $4M project budgets are approximately $0.019M and $0.059M.

https://doi.org/10.1371/journal.pone.0220687.g007
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In small-budget solutions, the budget proportion spent on surveys was moderately sensitive

to the unit cost of tree removal and the infestation rate. The use of branch sampling was highly

sensitive to changes in the survey and tree removal costs and, to a lesser degree, to changes in

the detection rate. The use of trapping is less sensitive to changes in the model parameters

because it was the more commonly used method.

Changes in the model parameters did not affect the number of sampled trees that were pre-

scribed for removal because all solutions prescribed removal of all sampled trees. The propor-

tion of the unsampled trees that were prescribed for removal was most sensitive to changes in

the unit cost of tree removal in small-budget solutions and moderately sensitive to changes in

the detection rate. The impacts of changing the detection and infestation rates were slightly

more evident in large-budget solutions than in small-budget solutions, because in large-budget

solutions more trees were removed across a larger area, and so the ability to detect the infesta-

tion becomes more critical.

Table 5. Expected number of infested trees removed in the solutions with different problem objectives. The sur-

vey-only strategies 1 and 2 use problem objectives from Eqs [21] and [23].

Survey problem Total budget, million $

0.4 0.8 1.5 4

Uncertainty scenarios:

Survey with tree removal 144.9 285.8 475.1 964.9

Survey-only problem 1 127.4 257.6 447.5 934.2

Survey-only problem 2 131.1 260.1 444 925.4

Uncertainty scenarios, ambiguity aversion:

Survey with tree removal 120.5 232.7 450.5 953.2

Survey-only problem 1 109 230.5 443.8 932.1

Survey-only problem 2 110 220.2 402.5 915.2

https://doi.org/10.1371/journal.pone.0220687.t005

Table 6. Sensitivity analyses exploring the response of model outputs to varying model input parameters by +/- 20%a.

Model

parameter

Objective value: Exp. number of

remaining inf. Trees

Number of surveyed sites Budget portion spent on

surveys

% trees removed after detection

Via branch

sampling

Via

trapping

Sampled

population

Unsampled

population

Total budget $0.8M:

Survey cost 0.02 6.0b 0.29 0.47 <0.01 0.14

Detection rate 0.03 4.0 0.49 0.22 <0.01 0.43

Host density <0.01 2.0 0.12 0.06 <0.01 0.25

Infestation rate 25.6 2.0 0.16 0.62 <0.01 0.10

Tree removal

cost

0.89 8.0 0.37 0.91 <0.01 10.13

Total budget $4M:

Survey cost 0.01 0.43 0.36 0.88 <0.01 0.16

Detection rate 0.02 1.13 0.40 0.97 <0.01 0.51

Host density 0.00 0.17 <0.01 0.02 <0.01 0.29

Infestation rate 3.45 0.61 0.15 0.59 <0.01 0.26

Tree removal

cost

3.70 2.35 1.05 0.87 <0.01 0.36

a Sensitivity value 1.0 indicates that the relative change of the parameter by +/- 20% causes the change in the output values by +/-20%.
b Sensitivity values 3.0 and above are in bold.

https://doi.org/10.1371/journal.pone.0220687.t006
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Discussion

Planning a response to a biological invasion is a balancing act of distributing scarce resources

between surveillance and control. Managers often have limited understanding about how a

pest might spread through their area of concern, which may hinder their decisions on where

to apply costly control measures. Our approach helps address this challenge and demonstrates

how accounting for the uncertainty and decision-makers’ perceptions of it may influence con-

trol decisions. Decision-makers always face the risk that wrong assumptions lead them towards

incorrect decisions. Our results demonstrate that omitting this uncertainty may push manag-

ers to survey and initiate tree removal in a smaller area than may be advisable. Accounting for

uncertainty prompts survey of a larger area and, when the budget permits, spending the funds

on the removal of all sampled and unsampled trees across all sites with positive detections.

Our results also provide new insights about the utility of using trapping versus branch sam-

pling techniques for EAB detection. When a community’s project budget is small and their

survey aims to guide tree removal efforts, branch sampling is only advisable in sites with a high

probability of successful detections and where tree removal is most likely to occur. The rest of

the area should be inspected with the cheaper trapping method to preserve more funds for tree

removal. The use of branch sampling is only advised for widespread use in communities

where the budget is big enough to also undertake a large-scale tree removal effort (although

trapping still remains the predominant inspection method).

The application of branch sampling and trapping in our survey-removal solutions was dis-

tinct from how they were applied in the survey-only strategies. At small budgets, traps were

used to inspect most of the area in our survey-removal strategies (Fig 7C) whereas branch sam-

pling predominated in the survey-only strategies (Figs 6, 7A and 7B). Under our approach,

branch sampling was more effective for inspecting sites proximal to the known infested area or

sites with low host densities (so the inspections of fewer trees could lead to a detection). The

use of the cheaper trapping method elsewhere helps maximize the survey area and ensures that

enough detections can be made to allocate the tree removal budget.

Impact of the uncertainty and ambiguity-averse perceptions on tree

removal strategies

Uncertainty about an invader’s spread changes the tree removal strategy for the unsampled

trees in a survey site. Without uncertainty, our tree removal solutions prescribe the removal of

unsampled trees after detection only in sites that also have a high probability of pest introduc-

tion, because the prescriptions tended to follow the spatial pattern of where infestations were

likely. When information about an invader’s spread is acknowledged as uncertain, the optimal

strategy changes to one where, after detection, a manager should remove all trees in the sam-

pled and unsampled populations. Thus, tree removal becomes more spatially uniform to com-

pensate for uncertainty. This behaviour also persists when the manager is ambiguity-averse

and striving to avoid the worst-case outcome of having large numbers of infested trees remain-

ing in the area. Ambiguity-averse solutions usually prescribe surveys and tree removal in

remote sites with high host densities, where the pest is less likely to spread, but if gone unde-

tected, could cause serious damage.

Tree removal vs. survey-only strategies

Factoring potential host removal directly into the overall response strategy makes the removal

of infested trees more cost-effective. Our results show distinct differences between survey-only

and survey-removal solutions, particularly at small budgets (Fig 7A,7C and 7E). This highlights
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a fundamental difference in the survey objective when host removal will be the response to a

detection. Finding the full extent of the infestation per se is no longer the main goal of the sur-

vey. Instead, inspections become the means by which a manager can reduce the number of

infested trees in a landscape and so needs to ensure a sufficient number of detections to effec-

tively spend the tree removal budget. Because tree removal is expensive, any savings in the sur-

vey budget can be spent to remove more infested trees from the area of concern. However, if

the manager anticipates that the tree removal funds will be insufficient then a two-tiered strat-

egy should be adopted. High sampling rates should only be applied to sites proximal to the

known infested area, where arrival of the pest and the subsequent removal of trees is most

likely, and the rest of the area should be inspected using low sampling rates and the least

expensive inspection method.

Future work

Our case study followed the current surveillance practices adopted by the city of Winnipeg

where surveys and tree removal only affect public trees. It is possible that including private

trees could change the tree removal prescriptions. However, evidence from previous tree

removal campaigns in southern Ontario suggests that inspecting and removing trees on pri-

vate property in an urban setting is often more expensive than removing public trees due to

access and liability constraints. Thus, when a budget only allows inspecting and removing a

small number of trees, the most cost-effective strategy would still be to inspect public street

trees only.

Dealing with uncertainty about an invader’s pattern and rate of spread is a familiar chal-

lenge for pest management professionals. Precise estimates of spread rates and likelihoods of

pest introductions are rarely available for newly detected infestations and can only be approxi-

mated from previous infestations or from knowledge of the organism’s ecology. Our results

highlight the importance of proper estimation of the expected spread rates for new infesta-

tions. In our study, we estimated the likelihoods of EAB spread from recent infestation in the

Twin Cities. While the spread of this EAB infestation has been well documented and good ash

density data area available, the area also has a warmer climate than Winnipeg which could

have lead to an overestimate of the spread rate. For instance, colder winters in Winnipeg may

cause EAB to switch to a longer, two-year life cycle, which would result in both lower popula-

tion growth rate and a slower spread rate. However, given that long-distance dispersal of EAB

is often a result of human activities, the impact of colder climate on spread of EAB within a

city may be difficult to estimate. Calibrating the long-distance spread assumptions would

require better understanding of the EAB’s ecology in Winnipeg and will be a focus of future

work.

Another potential model enhancement could be adding a chemical treatment option for

host trees that are found to be infested. Most insecticides available for control of EAB in the

United States are available for purchase in Canada, but have not been registered for use against

the insect due to various reasons: environmental and legal restrictions, stringent requirements

in terms of application methods and generally small markets (i.e., less demand) for pesticides

to treat urban trees). In Canada, there are presently two products available, TreeAzin (azadir-

actin) and ImaJet (imidacloprid), for treating ash trees via trunk injections. TreeAzin is the

more commonly used product and is marketed as effective for two years after application. For

Canada, the manufacturer of ImaJet (Arborjet) suggests reapplication every year. Using either

of these products to treat infested ash trees in Winnipeg is less cost-effective than treating

equivalent trees in the eastern U.S., where less expensive and longer-lasting options are regis-

tered. This is why we focused on the tree removal option in this case study. Potentially, our
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model could be adapted to include both chemical treatment and tree removal options. This

requires switching from a one-stage to a multi-stage problem formulation to account for the

temporary effect of treatment actions, and will be the focus of future efforts.
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