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ABSTRACT
Burn severity maps based on remotely sensed reflectance data provide a useful way for
land managers and researchers to represent and compare spatial variation in fire effects
among wildfires and prescribed fires. A need exists for an objective and rigorous selection
approach that ensures the best possible spatial predictions of burn severity. The aim of this
study was to present and test a methodology for selecting the optimal burn severity index
from a suite of calculation and validation options that can be used to produce data for
more rigorously comparing ecological effects of fire that occur in contrasting phenologies.
In our study, we cross-validated remote sensing data with field data and we tested the pre-
dictive ability of 12 cross-validated index calibrations that were generated using common
statistical approaches, to predict field-measured burn severity indices collected at burned
and unburned areas in New Jersey Pinelands National Reserve. We demonstrate the utility
of our approach, provide convincing evidence for the use of CBI as a field-based index over
WCBI, and provide a cross-validated method for calculating burn severity in this vegetation
type that can be used by managers and researchers.

RÉSUMÉ

Les cartes de gravit�e des feux bas�ees sur des donn�ees de r�eflectance spectrales fournissent
aux gestionnaires et aux chercheurs un moyen utile de repr�esenter et de comparer la vari-
ation spatiale des effets des incendies de forêts naturels ou des feux dirig�es. Cependant, les
multiples m�ethodes disponibles pour calculer et valider les indices peuvent entrâıner des
incoh�erences entre les types de v�eg�etation. Le besoin demeure pour une m�ethode de
s�election objective et rigoureuse qui assure les meilleures pr�evisions cartographiques possi-
bles. Cette �etude pr�esente et teste une m�ethodologie pour s�electionner l’indice de gravit�e
des feux optimale parmi une s�erie d’options de calcul et de validation. Nous avons test�e la
capacit�e pr�edictive de douze indices au moyen d’une validation crois�ee, indices de
t�el�ed�etection et indices de terrain, g�en�er�es �a l’aide d’approches statistiques couramment uti-
lis�ees dans la litt�erature et ce afin de pr�edire des indices de gravit�e des feux �evalu�ees sur le
terrain pour des zones brûl�ees et non brûl�ees du New Jersey Pinelands National Reserve.
Nous d�emontrons l’utilit�e d’une telle approche, fournissons des preuves convaincantes de
l’utilisation du CBI en tant qu’indice sur le terrain par rapport au WCBI, et proposons une
m�ethode de validation crois�ee pour calculer la gravit�e des feux dans ce type de v�eg�etation
qui peut être utilis�e par les gestionnaires et les chercheurs.
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Introduction

Burn severity indices are used to quantify the magni-
tude of ecological change across landscapes that are
impacted by fire to estimate spatially explicit fire

effects (Kolden et al. 2015; Keeley 2009). Burn severity
index maps are most commonly derived from spectral
reflectance data (Key and Benson 2006; Garcia and
Caselles 1991), which is advantageous to managers in
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need of rapid analyses of fire effects. Field-observed
burn severity indices, generated from visually observed
fire effects, present an alternative often used for evaluat-
ing the accuracy of burn severity index maps created
via remote sensing (De Santis and Chuvieco 2009;
Picotte and Robertson 2011). Multiple methods exist
for calculating burn severity maps from remotely
sensed reflectance data, and each results in similar, but
unique, indices that vary in accuracy, even with the
same input data (Parks et al. 2015; Soverel et al. 2010).

Remotely sensed burn severity indices are typically
derived from near infrared (NIR, 700� 1400 nm) and
short-wave infrared (SWIR, 1400� 2500 nm) wave-
lengths, as they are theoretically the most receptive to
changes in soil and vegetation reflectance incurred by
fire (Garcia and Caselles 1991; Key and Benson 1999).
The most basic of these indices is the Normalized
Burn Ratio (NBR), which is used as a precursor for
calculating other NIR and SWIR based burn severity
indices (Parks et al. 2014; Soverel et al. 2010). While
NBR is an attractive option for its relative simplicity
compared to other burn severity indices; being a sin-
gle date index gives it the inherent disadvantage of
only capturing a state of conditions rather than a
departure from initial conditions. This limitation can
make fire effects indistinguishable from other disturb-
ance effects on vegetation in resultant maps.
Differencing pre- and post-fire NBR provides a differ-
ent index called the differenced Normalized Burn
Ratio (dNBR), which resolves the single-date problem
(Key and Benson 2006). Relative Differenced
Normalized Burn Ratio (RdNBR) and the relative
burn ratio (RBR) are also calculated using pre- and
post-fire NBR, and are normalized to pre-burn reflect-
ance to account for variation in pre-fire vegetation
density (Parks et al. 2014; Miller and Thode 2007).

Field-observed burn severity indices are inherently
tedious and dangerous to collect in the post-fire envir-
onment and do not provide the wall-to-wall estimates
that remote sensing can; but are useful when only
relatively few spatially explicit data points are
required, such as for calibrating and cross-validating
remote sensing indices. The Composite Burn Index
(CBI) and the Weighted Composite Burn Index
(WCBI) are simple to obtain and the most common
field-observed indices found in the literature (Key and
Benson 2006; Cansler and McKenzie 2012). These
indices are generated using a standardized formula to
rank and summarize effects on biotic indicators in dif-
ferent forest strata, such as exposure of soil and
scorch height, which are then summarized as a
weighted average. WCBI differs from CBI in that the

influences of specific forest strata are additionally
weighted by their percent cover (Cansler and
McKenzie 2012; Soverel et al. 2010). However, the fact
that percent cover is often visually estimated post-fire
may introduce bias into calculations that is difficult
to quantify.

Seasonally variant trends in forest reflectance can
be a critical factor to consider when remote sensing
burn severity in regions where fire can burn under
contrasting phenological conditions, such as in forests
of the Eastern US where prescribed fires and wildfires
take place during both leaf-on and leaf-off conditions.
Under these circumstances, baseline reflectances differ
because of the lack of foliage. Similarly, dormant sea-
son fires tend to be less damaging to vegetation
because soil conditions are cooler and damper, and
buffer heating from the fire, leaves of deciduous plants
have naturally senesced and are absent from being
damaged, and roots have already stored carbohydrates
for new growth when the growing season begins.
Similarly, intra-annual variation in live plant moisture
content has been shown to follow seasonal patterns,
relating to variation in flammability and susceptibility
to injury (Thomas et al. 2014; Jolly and Johnson
2018). Likewise, the degree of damage or mortality
among woody plants from dormant season fire may be
difficult to observe in the field before spring leaf-out.
Comparing effects to vegetation reflectance between the
contrasting baseline reflectances of dormant and grow-
ing seasons is methodologically inconsistent and simi-
larly problematic. This presents an important
consideration for choosing a methodology to consist-
ently compare burn severities in temperate forest types
where fire impacts deciduous species under both dor-
mant and growing season conditions (Gallagher 2017).

The objectives of this study were to (1) develop a
rigorous selection process to identify the most highly
correlated pair of remote sensing and field-based burn
severity indices, and (2) to test its use in a new eco-
system with phenologically consistent mapping data.
This study is based on the remotely sensed and field-
observed burn severity data collected from 23 pre-
scribed fires, 5 wildfires, and 5 unburned forests
dominated by an overstory of pitch pine (Pinus rigida
Mill.) in the New Jersey Pinelands National Reserve.
We cross validated remote sensing data with field data
using multiple common approaches and statistically
compared results to evaluate the most accurate remote
sensing and field index pair. We then identify
strengths and potential improvements for field indices
of burn severity and describe the strengths and
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weaknesses of the approach offered in this study for
use in future fire effects monitoring and
research efforts.

Materials and methods

Site description

The study area falls within the New Jersey Forest Fire
Service’s Division B primary response area, which
encompasses 254,033 ha mainly within the Pinelands
National Reserve (PNR) in Burlington and Ocean
Counties (Figure 1). More than 60% of PNR is com-
prised of upland forests (Forman 1998; Lathrop and
Kaplan 2004), with fire being most frequent in pitch
pine-dominated areas. It should be noted that pitch
pine is highly adapted to fire and maintains the ability
to resprout from epicormic buds along its root collar,
trunk, and branches, and recover, after partial or com-
plete crown consumption from fire (Ledig and Little
1998). Pitch pine-dominated stands have understories
composed of ericaceous shrubs and shrub oaks, such
as lowbush blueberry (Vaccinium palladum Aiton and
angustifolium Aiton), black huckleberry (Gaylussacia
baccata (Wangenh.) K. Koch.), scrub oak (Q. ilicifo-
lia), black jack oak (Q. marilandica), and inkberry
holly (Ilex glabra (L.) A. Gray), and represent a rela-
tively similar mix of species as is found in other oak-
dominated and mixedwoods stands of the PNR and
other coastal plain pine-dominated forests of the Mid-
Atlantic and Northeastern US. As a whole, the PNR is

an area of complex wildland urban interface that
experiences a higher frequency of wildfires than any-
where else in the region, with multiple large wildfires
per decade that exceed 400 ha each in both the dor-
mant season and growing season (Forman and
Boerner 1981; La Puma 2012). Dormant-season pre-
scribed fire, on state and federal land, has accounted
for twice as much land burned as wildfire on this
landscape over at least the past decade (Gallagher
2017). However, legislation signed into law in 2018
has enabled prescribed burning on privately owned
land and expanded the burn window into the growing
season, which may impact the overall balance of fire
size and seasonality on this landscape (Prescribed
Burn Act of New Jersey 2018).

Data collection and processing

This study used a sample of 33 pitch pine-dominated
stands in the PNR. Between 2012 and 2015, 23 of
these stands were treated with mixed intensity dor-
mant season (leaf-off) prescribed fire, 5 were burned
in mixed intensity growing season (leaf-on) wildfires,
and 5 remained unburned as part of a larger effort to
understand the variability in effectiveness of pre-
scribed burning for fuel reduction (Skowronski et al.
2017). Prescribed fires ranged from 2� 162 ha in size
and wildfires ranged from 11� 277 ha in size.
Shapefile data for burn units was collected as part of a
separate project and is publicly available and was

Figure 1. Map of the study area and field locations within the overlap zone of the New Jersey Forest Fire Service Division B
primary response area and New Jersey Pinelands Management Area.
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acquired from the USDA Forest Service data archive
(Skowronski et al. 2017), with the exception of one
wildfire, the Atsion Fire, which was acquired with per-
mission from New Jersey Forest Fire Service. Fire
behavior and fuel consumption analyses have been
previously published for the Experiment 1 (Mueller
et al. 2014, El Houssami et al. 2016), Experiment 2
(Mueller et al. 2017, 2018; Filkov et al. 2017), and
Cedar Bridge (Clark et al. 2018) prescribed fires used
in this study. Across all units, plots measuring 30m in
diameter were established before prescribed fires and
immediately following wildfires. Plot center locations
were recorded using a Trimble GeoExplorer 6000 GPS
paired with a Tornado receiver (Trimble Inc.,
Sunnyvale, CA, USA), which produced point data esti-
mated to be within 3m of the actual positions after
differential correction, thus facilitating accurate spatial
correlation with remotely sensed reflectance data. A
total of 77 plots were located in prescribed fires, 20 in
wildfires, and 13 in unburned areas (Table 1).
Shapefile data for plot locations is publicly available as
US Forest Service archived data (Gallagher
et al. 2017).

CBI and WCBI data were gathered immediately
post-fire at each burn severity assessment plot follow-
ing the CBI field sheet developed by Key and Benson
(2006) and WCBI adaptation from Cansler and
McKenzie (2012). This worked well to characterize the
largely coniferous canopy conditions and changes to
the substrate layer across all phenologies; but proved
difficult for characterizing damage and mortality to
the dense layers of deciduous shrubs and mid-story
species immediately following dormant season fires
during the leaf-off conditions of the that season. We
therefore revisited our plots at the end of the growing
season, approximately when spectral data was col-
lected (described later in this section), to confirm
damages and mortality in these layers that are more
obvious during the growing season.

Landsat 7 Enhanced Thematic Mapper Plus
(ETMþ) scenes were acquired for the growing season
immediately preceding and following the fires.
Imagery was constrained to Julian dates 176 through
288, or the period of full leaf expansion during the
growing season for this region (Clark et al. 2012).
Raw ETMþ scenes were downloaded as Level 1 data
products from the USGS and converted from digital
numbers (DN) to radiance and from radiance to top
of atmosphere reflectance values to normalize for nat-
ural variation in solar angle and the distance between
the sun and the Earth (Chander et al. 2009).

Additional relative radiometric correction was per-
formed to synchronize spectral scaling between scenes,
and thus adjust for inconsistencies in top of atmos-
phere reflectance observations made on different dates
that can arise from variation in atmospheric condi-
tions. While numerous approaches can be used to cor-
rect for different sources of variation in observed
reflectance of different types of surfaces, we corrected
our imagery using a simple approach intended for for-
est environments, described by Isaacson et al. (2012).
This approach involves normalizing reflectance of
multi-temporal images with coniferous forest areas
with largely invariant interannual reflectances in a
clear baseline image. We performed this normalization
using mature stands of Atlantic White Cedar
(Chameacyparis thyoides), a densely foliated evergreen
which are scattered throughout the region and are
unlikely to be impacted by disturbances or pests that
would confound reflectance between scenes, in a sin-
gle Landsat 5 Thematic Mapper (TM) scene from
August 28, 2010 that was collected on clear day and
clouds cloud-free day.

Due to a systematic ETMþ sensor error and high
frequencies of clouds in imagery, we used

Table 1. Prescribed fire, wildfire, and unburned plot
information.
Unit Burn date Fire size (ha) Field plots (n)

Prescribed fires (Leaf-off)
AT&T Line 3/3/2013 29 3
Dan’s Bridge 3/5/2013 118 3
Experiment 1 3/5/2013 7 12
Fish and Wildlife 3/10/2013 103 1
Cedar Bridge 3/15/2013 162 3
Dead Pheasant 3/15/2013 55 1
Burnt Schoolhouse 3/6/2014 5 1
Experiment 2 3/11/2014 5 12
Bulltown Road 3/14/2014 132 3
Tylertown 3/14/2014 76 3
3 Foot Road 3/15/2014 78 3
Carranza Skit 3/15/2014 53 3
East Sandy Ridge 3/15/2014 56 3
Lacey 3/15/2014 89 3
Rattler Road North 3/15/2014 65 3
Rattler Road South 3/15/2014 76 1
Snuffy’s Turnpike 3/16/2014 62 1
Whiting East 3/16/2014 14 3
Whiting Middle 3/16/2014 43 3
Whiting West 3/16/2014 67 3
Burn Experiment 3/23/2014 2 3
Bloody Ridge Road 3/24/2014 58 3
Bodine Field 3/24/2014 39 3

Wildfires (Leaf-on)
Crossroads Fire 4/24/2014 81 3
Continental Fire 4/24/2014 128 3
Springers Brook Fire 4/25/2014 104 3
Bodine Field Fire 7/7/2014 11 3
Atsion Fire 5/7/2015 277 8

Not burned
Brendan T. Byrne SF 2005 1
Butterworth Road North 2003 3
Butterworth Road South 2003 3
Jenkins 2011 3
Nugentown 1983 3
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multitemporal data to fill gaps and create mosaics that
covered our study plots. Our study was conducted fol-
lowing the decommissioning of the TM and partially
prior to the commissioning of Landsat 8 Operational
Land Imager (OLI) and required us to use
ETMþ data during the Scan Line Corrector-off period
(SLC-off) in which scenes exhibited lines of missing
data (for more information on this error see
Preliminary Assessment of the Value of Landsat-7
ETMþData Following Scan Line Corrector
Malfunction by Andrefouet et al. (2003)). First, clouds
and cloud shadows were manually masked and
removed from each scene. Multiple overlapping scenes
were mosaicked for single growing seasons, using the
most error-free scene with the latest date as the pri-
mary scene, and rectifying gaps caused by clouds and
the systematic Landsat ETMþ Scan Line Corrector-off
errors with other scene’s based on their completeness
(Table 2). No topographic correction was required
because the study area is topographically simple.

NBR, dNBR, RdNBR, and RBR were calculated for
2012� 2015 using the mosaicked scenes and the fol-
lowing calculations:

NBR ¼ NIR� SWIR
NIRþ SWIR

(1)

dNBR ¼ NBRprefire � NBRpostfire (2)

RdNBR ¼ dNBRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABS NBRprefire

1000

� �r (3)

RBR ¼ dNBR
NBRprefire þ 1:001

(4)

We checked for potentially confounding effects of
using multi-temporal data in mosaics by comparing
pre- and post-fire NBR in stands adjacent to each
burn unit and found that post-burn reflectance was

within 3% of pre-burn reflectance on average and
deemed acceptable for the purposes of this study.
Using the GPS points from each burn severity field
plot, values were extracted from the burn severity ras-
ters by averaging a 3� 3 window of pixels. This
approach or other spatial averaging approaches are a
standard way of accounting for spatial error in the
remotely sensed datasets (Cansler and McKenzie 2012;
Miller and Thode 2007). Burn severity maps for each
burn, in terms of RdNBR, can be seen in the
Appendix of this manuscript.

Evaluation of remote sensing data with field data

A series of models were developed to examine the
accuracy of the selected remotely sensed indices for
predicting CBI and WCBI indices in the New Jersey
Pinelands. These models varied in terms of remote
sensing index and field-based index pairing, as well as
equation form. Indices used are listed in previous sec-
tions of this manuscript, and the most commonly
used equation forms were determined from the litera-
ture as polynomial, exponential, and sigmoidal, and
can produce widely differing results but have yet to be
compared in a single environment (Chen et al. 2011;
Warner et al. 2017; Wimberly and Reilly 2007; Picotte
and Robertson 2011). These equations are given as:

y ¼ b0 þ b1x þ b2x
2 þ e (5)

y ¼ b0 þ b1 1� e�b2xð Þ þ e (6)

y ¼ b0
1þ e� b1ðx�b2ð ÞÞ þ e (7)

where y¼ field burn severity index, x¼ remotely
sensed burn severity index, e¼ random error, and the
b’ s are model coefficients estimated from the data
through model fitting.

Model selection was achieved through a two-step
process in which the best model to predict each form
of the dependent variable (e.g. CBI and WCBI) was
established using a k-fold cross validation, and then
those models were reevaluated to determine that
which was most suitable. Across all burns, field obser-
vations indicated that the range of low to high severity
was represented but overall was skewed toward the
lower end of the range of severity. We thus ensured
that the training data and test data in each of the
k-fold iteration always represented the entire range of
the data by ordering data by field index value and
then dividing the entire dataset into 5 quantiles. 80%
of data from each quantile were randomly chosen as
training data, while the remaining 20% of data
were reserved for testing. In this way, the dataset was

Table 2. Landsat TM and ETMþ scenes used to cre-
ate mosaics.
Year Date Path Row Image ID

2010 28-Aug 14 32 lt50140322010240
2012 2-Jul 13 32 le70130322012183

20-Sep 13 32 le70130322012263
3-Aug 13 32 le70130322012215

2013 25-Jun 14 32 le70140322013176
5-Aug 13 32 le70130322013217
6-Sep 13 32 le70130322013249
15-Oct 14 32 le70140322013288

2014 28-Jun 14 32 le70140322014179
7-Jul 13 32 le70130322014188
30-Jul 14 33 le70140332014211
8-Aug 13 32 le70130322014220
15-Aug 14 32 le70140322014227

2015 24-Jun 13 32 le70130322015175
17-Jul 14 32 le70140322015198
26-Jul 13 32 le70130322015207
18-Aug 14 32 le70140322015230
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randomly resorted at each k-fold iteration into new
combinations of training and testing data, while pro-
viding balance of burn severity in the training and
testing data. Model results were ranked using sum of
squared errors (SSE) as a primary criterion and
Akaike’s Information Criterion (AIC) as a tie breaker
when SSE values were equal. We then compared CBI
and WCBI by rerunning the highest-ranking model
for each using the full dataset (e.g., not split into test
and training data) to produce new coefficient esti-
mates for each model, which were then compared.

Results

Field observed CBI values ranged from 0 to 2.68, rep-
resenting 89% of the possible range of the index (CBI
ranges 0�3), while observed WCBI ranged from 0 to
2.49, representing only 83% of the possible range of
burn severity (WCBI ranges 0�3). Although mean
CBI and WCBI values were similar, the range and
variance of WCBI was substantially lower (Figure 2).
Percent cover (i.e. FCOV), used to weight the influ-
ence of each strata in the calculation of WCBI, tended
to approach 100% in the lowest two forest stratum
and had very low variability. FCOV was substantially
lower and more variable in the upper 3 strata that
represent the midstory and overstory, muting the
effects in the canopy which can be substantially differ-
ent and more visible in reflectance data (Figure 3).

On average, models using NBR had a lower AIC
and SSE than the bi-temporal remote sensing indices

when predicting either CBI or WCBI, regardless of
the model form (Tables 3 and 4). Similarly, models
using the polynomial equation form produced lower
SSE values on average in both CBI and WCBI model
groups compared to exponential or sigmoidal equa-
tion forms. Models with sigmoidal equations per-
formed poorly in comparison despite their prevalence
in previous work.

Figure 2. Boxplots summarizing observations of burn severity
across all plots using 3 field indices and four remote sens-
ing indices.

Figure 3. Box plots of observed pre-fire percent cover (FCOV)
and post-fire Burn Index (BI) data by forest strata.

Table 3. Akaike’s Information Criterion (AIC) and sum of
squared error (SSE) for candidate models of CBI and WCBI.
Dependent variable Eqn. form Independent variable SSE AIC

CBI Pol NBR 4.4 87.6
dNBR 4.1 82.6
rdNBR 4.1 82.4
RBR 4.2 82.4

Exp NBR 4.4 87.5
dNBR 4.9 100.9
RdNBR 5.0 100.9
RBR 4.9 99.3

Sig NBR 4.2 80.9
dNBR 4.2 81.8
RdNBR 4.4 82.0
RBR 4.3 82.0

WCBI Pol NBR 3.9 77.0
dNBR 4.0 79.7
RdNBR 4.1 79.3
RBR 4.0 79.5

Exp NBR 3.9 76.8
dNBR 4.8 95.3
RdNBR 4.8 95.3
RBR 4.7 94.1

Sig NBR 4.1 80.3
dNBR 4.2 79.8
RdNBR 4.3 80.3
RBR 4.1 80.0

AIC and SSE values represent averages across all models from the cross
validation segment of each fold.
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When ranking models based primarily on SSE and
secondarily on AIC, two candidate models (e.g. CBI/
dNBR/polynomial and CBI/RdNBR/polynomial) tied
as highest rank with the same SSE and nearly the
same AIC across all iterations of the k-fold process
(Table 3). We attempted to break this tie by conduct-
ing a difference of means test, which is a Bayesian
analog to the t-test, using the BEST package in R
(Kruschke 2013). However, the resulting highest dens-
ity interval for the posterior probability of the differ-
ence means contained 0, indicating that the models
were not statistically different and the tie was sus-
tained (Figure 4). Therefore, both models were con-
sidered in the final evaluation along with the highest

ranking WCBI model to be re-run with full dataset as
a final evaluation step. Coefficients of determination
for the observed vs. predicted values were 0.74 for
both CBI models and 0.68 for the WCBI model, indi-
cating that both CBI models performed better than
the WCBI model (Figure 5). Figure 6 provides exam-
ples of representative prescribed fire and wildfire
RdNBR maps created using the final approach.

Discussion

We present a framework for rigorously selecting
methods and demonstrate its potential by using it to
evaluate the optimal combination of spectral index,
field index, and predictive model form for predicting
burn severity in the pitch pine-dominated forests of
the New Jersey Pinelands. Our study indicates that
monitoring and comparing ecological effects of fires
across broad spatial extents and differing phenological
conditions can be simplified using spectral burn sever-
ity indices, yet the accuracy of evaluations and com-
parisons made within and between studies made using
these indices hinges on consistent use of rigorously
selected methods for generating predictions. Our
results offer a justifiable approach to comparing and
selecting indices that is statistically robust to uneven
distributions of burn severity values and fires that
occur under differing phenological conditions, and
avoids pseudoreplication that is present in some other
studies from pooling plots within burn units at the
landscape level (Allen and Sorbel 2008; Kasischke
et al. 2008). Our results demonstrate how fire effects

Table 4. Maximum likelihood estimates and two standard errors (2 SE) for coefficients of models predictive of field indices of
burn severity from remotely sensed indices of burn severity.
Predicted index (field) Eqn. form Predictor index (remote sensing) b0 2 SE b1 2 SE b2 2 SE

CBI Pol NBR 1.242 0.005 �5.619 0.034 �1.152 0.017
dNBR 1.245 0.005 5.584 0.031 �1.648 0.02
rdNBR 1.24 0.006 5.536 0.03 �1.67 0.02
RBR 1.24 0.005 5.583 0.031 �1.568 0.02

Exp NBR 2.486 0.004 1 0.043 0.002 2.57E-05
dNBR 0.625 0.004 �161.448 1.667 2.07E-05 1.69E-07
rdNBR 0.607 0.005 �115.223 2.157 2.48E-05 2.89E-07
rbr 0.62 0.004 �185.639 1.978 3.03E-05 2.56E-07

Sig NBR 2.182 0.007 0.011 0.001 1.42Eþ 02 1.02Eþ 01
dNBR 2.358 0.007 0.01 9.59E-05 148.17 0.96
rbr 2.34 0.007 0.016 0 88.39 0.59

rdNBR 2.329 0.007 0.008 8.62E-05 179.40 1.18
WCBI Pol NBR 1.234 0.005 �4.734 0.03 �1.165 0.019

dNBR 1.232 0.004 4.624 0.027 �1.528 0.021
rdNBR 1.229 0.005 4.62 0.028 �1.523 0.021
RBR 1.229 0.005 4.638 0.027 �1.439 0.02

Exp NBR 2.215 0.003 0.552 0.054 2.00E-03 2.99E-05
dNBR 0.72 0.004 �145.908 1.734 1.91E-05 1.92E-07
rdNBR 0.702 0.004 �111.658 2.507 2.18E-05 3.18E-07
rbr 0.713 0.005 �167.233 1.857 2.80E-05 2.44E-07

Sig NBR 2.17 0.006 0.11 0.001 143.49 10.48
rbr 2.166 0.006 0.014 1.53E-04 73.82 0.52
dNBR 2.161 0.006 0.009 9.51E-05 120.75 0.83
rdNBR 2.147 0.007 0.007 5.91E-05 150.25 1.06

Figure 4. Significance testing for differences between AIC val-
ues of the CBI-polynomial-dNBR model and the CBI-polyno-
mial-RdNBR model.
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in dense understory strata had a dominating influence
on WCBI, reducing its sensitivity to the full scope of
fire effects throughout the vertical forest profile. We
also found that dNBR and RdNBR performed better
than NBR or RBR for burn severity monitoring in the
New Jersey Pinelands, although it should be noted
that most models performed fairly well. In our study,
dNBR and RdNBR were found to predict CBI equally
well when using a polynomial model, and future users
could justify use of either index. This finding supports

the results of the only other previously published
study on burn severity in the New Jersey Pinelands,
which found that CBI was correlated with dNBR data
generated using the spectral data from WV-3, and
highlights the potential for future monitoring and
research in this environment with burn severity
(Warner et al. 2017).

Due to climate change and the increased use of
prescribed fire, fires burn across a broader range of
seasonal variation in forest plant phenology. One
example of this is the difference in reflectance between
dormant and growing season conditions of deciduous
and mixed composition forests of the eastern US.
Traditional approaches that use spectral burn severity
indices have approached image acquisition based on a
window of time that is relatively close to the calendar
date of an individual fire, which is very useful for
guiding time-sensitive, post-fire environmental inter-
ventions, such as to mitigate post-fire erosion, but
may be less informative for use in monitoring and
comparing effects of many fires that occur under dif-
ferent phenological conditions. This is because certain
critically informative fire effects are most easily eval-
uated as impacts to foliage or foliar responses (i.e.
mortality of deciduous plants, responses of fire
adapted conifers) and are exceedingly difficult to
evaluate for dormant season fires before foliage has
had the opportunity to regenerate. For this reason,
field and spectral-based evaluations of dormant season
burn severity may have limited accuracy when con-
ducted in the dormant season alone, because key
impacts to vegetation can be difficult to evaluate espe-
cially for low to moderate severity fires. Our results
suggest that using growing season reflectance data can
be a robust way for comparing burn severity for fires
that occur in dormant and growing season conditions
(i.e. leaf-off and leaf-on). Once burn severity indices

Figure 5. Linear regression plots of actual CBI field observations vs. predicted CBI observations from (a) dNBR-polynomial model
(b) RdNBR-polynomial model, and (c) plot of WCBI field observations predicted from NBR-exponential model.

Figure 6. RdNBR burn severity maps and field plot locations
for the Cedar Bridge prescribed fire and the Springer’s Brook
Fire, which are representative of prescribed fire and wildfires
in the study area. Note that field plot sizes appear larger than
their true size to facilitate viewing (see methods for actual size
descriptions).
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are calibrated for a vegetation type using this
approach, annual landscape-scale evaluations of pre-
scribed fire and wildfire effects could be efficiently
predicted with minimal spectral data requirements.
We feel this approach could be especially useful in
other Eastern regions where prescribed fires and wild-
fires occur in both the dormant and growing seasons.
Similarly, the average fire size in many areas of the
Eastern US can be smaller than those which are moni-
tored automatically and freely available as Monitoring
Trends in Burn Severity products (https://www.mtbs.
gov/), which also uses spectral data relative to fire
date rather than phenology.

Statistically sound selection and validation of
remotely sensed burn severity indices can be compli-
cated given the variable distributions of burn severity
between fires and variable forest types within and
among burns that need to be accounted for. Some
previous studies have pooled point data replicates
from independent burns (e.g., numerous points within
individual burns) to conduct a single regression ana-
lysis (Allen and Sorbel 2008; Kasischke et al. 2008);
however, this represents pseudoreplication and ignores
uneven sampling and burn severity distributions
between fires. Future studies can easily avoid such
problems by employing the k-fold leave one out pro-
cess that we have presented and solve for unevenness
in point and burn severity distributions with the
ordering step we have suggested. We also suggest
using measures of model fit other than the coefficient
of determination when using non-linear regression to
compare burn severity datasets, when it is no longer
bounded by 0 and 1 and thus difficult to interpret.
Our results demonstrate SSE or AIC as a superior
alternative to compare non-linear relationships, as
they provide more clarity and consistency regardless
of regression form. These methods can increase statis-
tical rigor and comparability of future burn severity
research and better leverage the richness of datasets
collected across numerous fires.

Our results contrast with findings from fires in
California conifer forests that RdNBR provides signifi-
cantly better predictions of CBI than dNBR (Miller
and Thode 2007) and with findings from a study of
18 fires in conifer forests across the Western US that
suggested that RBR produced significantly better pre-
dictions than RdNBR (Parks et al. 2014). It should be
noted that these studies did not investigate the full
suite of burn severity indices or the influence that
selected equation forms may have had on their result-
ant predictions, which can influence predictions as
shown in our results. Their results may also differ

because of major differences in vegetation type, vege-
tation structure, and substrate qualities that can influ-
ence reflectance (Stoner and Baumgardner 1981;
Eriksson et al. 2006; Wang and Li 2013). Another key
difference between studies is that those in the west
were mostly growing season fires, while those in this
study were primarily dormant season fires, which may
influence drivers of first-order fire effects (e.g. leaf
scorch vs. girdling or fine root damage) and impacts
vertical distributions of fire effects that influence burn
severity. Our results are in agreement with those of
the only other burn severity study that has been con-
ducted in New Jersey Pinelands (Warner, Skowronski,
and Gallagher). In that study, a comparison between
bi-temporal WorldView-3 NIR and SWIR data and
field observed CBI demonstrated the potential for
conducting burn severity studies on dormant season
prescribed fire in the New Jersey Pinelands. While it
is difficult to directly compare our statistics to those
of that study due to methodological differences, our
study appears to have found similarly robust relation-
ships between spectral and CBI data, which is notable
due to the greater spatial, spectral, and temporal pre-
cision of the previous study.

Our study found that WCBI had reduced sensitivity
to fire effects, compared to CBI, due to the influence
of vertical vegetation structure patterns on FCOV.
This was interesting given the lower SSE and AIC of
WCBI in most cases; however it was substantially
underpredicted by remote sensing data, especially at
high severities. In the New Jersey Pinelands, a dense
cover of detritus and understory vegetation layers
skew WCBI to primarily reflect effects in those layers,
somewhat to the exclusion of effects in the canopy.
This is problematic because both low and high inten-
sity fires can have a large impact on substrates and
understory vegetation, but increasing severity will pro-
duce a broader range of effects in the canopy. A more
suitable metric than FCOV for scaling the influence of
strata might be actual leaf area index (LAI), because it
would account for the amount of vegetation, which
does not necessarily co-vary with percent cover when
LAI is vertically distributed. Vertical distributions of
vegetation often vary from stand to stand throughout
the PNR (Skowronski et al. 2011, 2014, 2007) and in
other forest landscapes (Lacki et al. 2017; McCarley
et al. 2017; Hoff et al. 2019) due to prior forest man-
agement and disturbances that redistribute leaf area
and forest structure. Vertical LAI and forest structure
is difficult to assess across broad spatial extents using
physical sampling methods, especially within tall forest
canopies; however, new approaches that use terrestrial
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laser scanners offer a new potential to rapidly accom-
plish this with high precision (Rouzbeh Kargar et al.
2019; Zhu et al. 2018; Rowell et al. 2020).

Our results and those of Warner et al. (2017) high-
light the potential for spectral burn severity indices to
be used in pine pitch barren forest types for future
fire effects monitoring and fire ecology research
efforts. As the largest population of this globally-rare,
fire-dependent, forest type, such monitoring and
research efforts in the New Jersey Pinelands can be
critically important for guiding the restoration and
maintenance of other smaller pitch pine barrens land-
scapes which are either too small or receive too little
fire to conduct landscape scale work necessary for
understanding certain ecological mechanisms of fire.
Future landscape-scale investigations of weather con-
ditions and ignition patterns that drive fire behavior
and resultant fire effects are a logical next step and
would provide useful findings that would aid in the
refinement of numerical models that predict fire
behavior and prescribed fire prescriptions for spe-
cific outcomes.

Certain shortcomings of our study can be avoided
in future studies. First, we needed to use a series of
preprocessing steps to conduct our analysis due to the
limitations of the data sources that were available when
we began our study; however, current and expected
data products now come pre-processed as ground
reflectance data. Presently, Landsat ground reflectance
products for Landsat TM and ETMþ are freely avail-
able (https://glovis.usgs.gov/), are much simpler to dir-
ectly use without pre-processing, and may provide a
slight improvement in results, compared to the radio-
metrically corrected top of atmosphere reflectance in
this study (Young et al. 2017). Likewise, Landsat 8 and
future Landsat 9 data will provide new gap-free data
that was not available during the time period of the
study, reducing the need to mosaic as many scenes.
Likewise, WorldView-3 is a privately owned platform
that can provide higher spectral and spatial resolution
NIR and SWIR data for burn severity studies than
Landsat products, although it must be tasked to collect
specific imagery (Warner et al. 2017; McKenna
et al. 2018).

Conclusions

Our study aimed to test a methodology for selecting
the optimal burn severity index from a suite of calcu-
lation and validation options in the Pinelands
National Reserve. We present a new approach that is
statistically rigorous and is flexible for incorporating

data from fires with uneven distributions of severity
or which have occurred under differing baseline
reflectances. We found that dNBR and RdNBR were
more correlated with field data than NBR or RBR,
which agrees with previous research in this environ-
ment, but conflicts with findings in some western
conifer forest types. We also compared CBI and
WCBI as field methods for evaluating burn severity
and identified fundamental problems with using
WCBI in this environment, due to patterning in verti-
cal distributions of forest material. Our method for
selecting optimal burn severity indices can be repeated
in other systems using similar or different input indi-
ces if desired. Finally, the results of this study support
the use of burn severity indices as a monitoring and
research tool for examining ecological fire effects
across rare pitch pine barrens landscapes. However,
those indices are less suitable for rapid post-fire burn
severity assessments that do not need to be compared
to other fires and are intended to guide short-term
post-fire efforts to mitigate further environmen-
tal damage.
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