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ABSTRACT
The USDA Forest Service uses satellite imagery, along with a sample of national forest inventory field
plots, to monitor and predict changes in forest conditions over time throughout the United States.
We specifically focus on a 230,400 ha region in north-central Wisconsin between 2003 and 2012. The
auxiliary data from the satellite imagery of this region are relatively dense in space and time, and
can be used to learn how forest conditions changed over that decade. However, these records have
a significant proportion of missing values due to weather conditions and system failures that we
fill in first using a spatiotemporal model. Subsequently, we use the complete imagery as functional
predictors in a two-component mixture model to capture the spatial variation in yearly average live
tree basal area, an attribute of interest measured on field plots. We further modify the regression
equation to accommodate a biophysical constraint on how plot-level live tree basal area can change
from one year to the next. Findings from our analysis, represented with a series of maps, match
known spatial patterns across the landscape. Supplementary materials for this article, including a stan-
dardized description of the materials available for reproducing the work, are available as an online
supplement.
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1. Introduction

The national forest inventory (NFI) of the United States, con-
ducted under the Forest Inventory and Analysis (FIA) program
of the USDA Forest Service, is designed to provide consistent
and unbiased strategic-level information about the status and
trends of the Nation’s forest resources (Bechtold and Patter-
son 2005). Given the geographic size and wide distribution
of this population, the inventory is conducted annually using
a probability sample with a base sampling intensity of one
field plot per 2400 ha. An active area of forestry research
involves the use of auxiliary data that can be collected quickly
and inexpensively, such as from satellite imagery, to model
the relationship between these auxiliary data and the field
plot data in an effort to improve the precision of population
estimates, particularly for smaller domains within the larger
population.

Since satellite-based optical sensors, such as Landsat 7’s
ETM+ instrument, detect reflectance from the Earth’s surface,
these data are expected to be closely correlated with land
cover. Kauth and Thomas (1976) developed a linear transfor-
mation of the original Landsat Multispectral Scanner bands,
named the tasseled cap (TC) transformation. Comparable trans-
formations have since been developed for the Landsat The-
matic Mapper (Crist and Cicone 1984), Enhanced Thematic
Mapper Plus, and Operational Land Imager sensors. The TC
features are related to growing vegetation, soil moisture, and
overall surface brightness, and are correlated with the phases
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of vegetation development over time. With the advent of the
data policy of 2008, granting unrestricted access to the entire
USGS archive of Landsat, dense time series of TC features
can now be used readily and economically to model forest
dynamics. Numerous studies have shown TC features derived
from Landsat imagery to be useful for mapping land cover
(Yuan et al. 2005), as well as several forest characteristics such
as growing stock volume (Zheng et al. 2014) and biomass
(Karlson et al. 2015). In the current work, live tree basal area,
measured in square meters per hectare (m2/ha), is the forest
characteristics of interest. It is a simple measure of tree size
and represents the cross-sectional area of the stem based on
the diameter of the tree at a certain height, see Section 2 for
details of FIA requirement for measuring basal area. It is closely
correlated with other measures of tree size, such as volume
and biomass, but does not require additional measurements
like tree form, height, or wood density. While extracting the
data for basal area from FIA database, filters are used within
the SQL query to limit the data retrieval to measurements of
live trees alone, excluding basal area of standing dead trees.
We note that, in the rest of the article, any mention of basal
area actually implies live tree basal area, even if not explicitly
stated.

The goal of this article is to build a novel and flexible
hierarchical model leveraging the relationship between the TC
features, for which we have observed values for the majority
of the population units at regular time intervals, and the basal
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area data, for which we have relatively few observed values only
from the FIA sample of field plots at certain years, to make
annual predictions of the latter for every population unit. Our
dataset comes from Landsat 7 ETM+ imagery, collected during
the decade 2003–2012, from a 230,400 ha square-shaped region
in north central Wisconsin. We also use a relatively small dataset
of 146 pairs of basal area measurements from the same period,
consisting of two 5-year FIA measurement cycles 2003–2007
and 2008–2012. This region is particularly interesting from a
modeling perspective because, around middle of that decade,
a tornado touched down near the eastern edge of the region,
causing extensive damage to forest within a long, narrow swath,
an example of natural canopy disturbance common within this
region (Stueve et al. 2011). So, it is important to see if the
proposed methodology can successfully reproduce the dynamic
pattern along a tornado trajectory—undisturbed forest during
the initial years, removal of live tree basal area due to the
tornado and its gradual regeneration in the following years,
as well as for more common anthropogenic disturbance like
harvest.

We turn to highlighting the original contributions of this
article. A motivating earlier work on hierarchical spatial pre-
dictive model for NFI data can be found in Finley, Banerjee,
and MacFarlane (2011). The current work differs significantly
from that in terms of the scope and objective of modeling as
well as structure of the data. Emphasis of Finley, Banerjee, and
MacFarlane (2011) lies in building a low-rank multivariate spa-
tial process that is computationally efficient for predicting forest
variables over a large landscape. On the contrary, we consider a
univariate response, live tree basal area, over a relatively smaller
region and focus on two key ideas. First, unlike the majority of
studies that use remote sensing imagery either at a single point
in time or as a composite of images over the study duration, we
use the entire time series of monthly images over the decade
of the study period. The temporal patterns of the TC features
derived from this imagery, being correlated with land cover,
are shown to be informative in distinguishing deciduous from
evergreen forests, different tree species from one another, as well
as predicting tree biomass (Wilson, Lister, and Riemann 2012;
Wilson, Knight, and McRoberts 2018). Hence, in the regression
equation for basal area, we propose to use the TC features as
functional predictors (Ramsay and Dalzell 1991; Morris 2015).
The resultant predictive model is used to depict the variation
in live tree basal area across the region as well as to infer about
changes between successive years during the period. To account
for zero basal area measurements, we use, in the same vein
as Finley, Banerjee, and MacFarlane (2011), a two-component
mixture of a log-Gaussian functional regression model and a
point mass at zero, with the mixture weights determined by a
probit functional regression.

Our second key idea is to tweak this functional regression
setting to accommodate an important biophysical constraint
on the development of basal area; over two consecutive time
intervals, a substantial decrease in live tree basal area is far more
likely than a substantial increase. As explained later, this char-
acteristic is not necessarily shared by the TC covariates, so the
model needs to incorporate a correction factor. For this purpose,
we introduce latent indicators that identify situations where
such correction becomes necessary and encourages the model

stochastically to adapt in the proper direction. A Markov chain
Monte Carlo (MCMC) scheme is developed for this setting
and, by use of likelihood-based and predictive diagnostics, we
demonstrate the benefit of incorporating the constraint inside
the hierarchy.

Importantly, in our case, the stack of monthly TC feature
imagery over the study period has many missing values both
in space and time, due either to the failure of the scan line
corrector or the presence of cloud cover. This issue does not
arise in most other studies, since it is common practice to use
either a single image with minimal cloud cover or a composite
image constructed over a longer time period to fill in any gaps
in the data record. Hence, before proceeding with the func-
tional predictor regression mentioned above, first we have to
fill in the missing parts of these images using a spatiotemporal
regression.

The rest of the article is organized as follows. Section 2
describes the study area as well as the datasets of satellite
imagery and NFI field plots. A constrained functional regression
framework is developed in Section 3, for predicting variation in
basal area using the series of TC feature imagery as covariates. In
Section 4, the models developed in preceding section are imple-
mented in R (R Core Team 2019) and we present outputs from
the data analysis including results from model comparison and
validation. Finally, Section 5 discusses some important aspects
of our work and outlines the scope of possible extensions.

2. Data Description

Our region of interest lies in the southeastern part of the Web-
Enabled Landsat Data (WELD) tile H20V05 (Roy et al. 2010),
located near Langlade, Shawano, and Menominee counties in
north-central Wisconsin, USA. Figure 1 shows its position
within the tile and the state in the left panel. The right panel
shows a variety of land covers and uses, such as agricultural
fields (orange pixels), deciduous (purple) and evergreen (green)
forests, developed land (gray), as well as scattered water bodies
(white) and wetlands (pink). The study area falls within the
Laurentian Mixed Forest Province of the USDA Forest Service
National Hierarchical Framework of Ecological Units (Cleland
et al. 2007; McNab et al. 2007) with the town of Antigo located
in the northwest. The province experiences a continental cli-
mate, with some maritime influence from nearby Great Lakes
(Superior and Michigan). This leads to moderately long winters
and warm summers, when most of the precipitation occurs. This
landscape was shaped by past glaciation with a mix of boreal
and broadleaf deciduous forests, lakes and wetlands, along with
grasslands that have since been converted to agricultural fields.
The eastern half of the study area is predominantly forested. On
June 7, 2007, a tornado, with estimated winds of 225–255 km/hr,
touched down and followed a 65 km long and 0.75 km-wide
northeasterly path through parts of Menominee, Langlade, and
Oconto counties.

The auxiliary data used in the study were dense Landsat
time series images from the WELD project. WELD imagery are
composites of high fidelity data, determined on a pixel-by-pixel
basis, from all Landsat 7 ETM+ scenes collected over the com-
positing period. These composite images have been processed
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Figure 1. (Left) In the map of Wisconsin, the study area (the smaller square) is shown in the southeastern part of the WELD tile H20V05 (the larger square). (Right) Spatial
variability of the land cover within the study area.

Figure 2. Proportion of missing TC observations within the study area during 2003–2012: (a) temporally, for each month and (b) spatially, for each gridcell.

for the contiguous United States and Alaska over the decade
of 2003–2012. The composite scenes have been ortho-rectified,
transformed to top-of atmosphere reflectance and mosaicked
into 5000 × 5000 pixel tiles at the native 30-meter pixel resolu-
tion using the Albers Equal Area projection with origin at 23◦N
and 96◦W. Our study area, a part of tile H20V05, consists of 1600
× 1600 pixels. The WELD monthly composites for the entire
decade of 2003–2012 from this area were used for the study.
For each monthly composite, the reflectance values from ETM+
were transformed to the first three TC components: brightness
(TC1), greenness (TC2), and wetness (TC3) (Huang et al. 2002).
The monthly TC features were then compiled into individual
stacks. To control the size of the dataset, we aggregated every
16 × 16 adjacent pixels into a single gridcell of area 23.04
ha by taking the average of the pixels with available data. At
this scale, our study area consists of 10,000 gridcells, an area
230,400 ha in size, Easting between 532,330 and 579,750 m, and
Northing between 2,452,240 and 2,499,760 m. However, each
TC component has a high frequency of missing values (∼23%)
with 100% missing data for six months (April 2004, June 2003,
November 2011, and December in 2006, 2011, and 2012), due
either to completely missing records in the WELD archive or to

pixels that were masked out because of the presence of clouds,
snow, or artifacts of sensor failure. Figure 2 represents the tem-
poral and spatial patterns of missingness, in panels (a) and (b),
respectively. The latter exhibits a strong linear boundary, with
larger values in the east and smaller values in the west, due to the
flight track of the descending polar orbit of the Landsat satellites.
Areas to the west of the image are in the zone of overlap (sidelap)
between neighboring Landsat scenes, while areas to the east
have no overlap. Therefore, there are fewer pixel observations in
the eastern portion of the image, meaning that it is more likely
that data will be missing. Hence, to make the imagery complete,
we need to perform a model-based filling-in of missing TC
observations.

NFI data from the FIA program were collected on 146 field
plots inside the study area during 2003–2012. An FIA field plot
is a cluster of 4 circular subplots, each with a radius of 7.32
m, with the centers of three subplots located 36.58 m from
the center of a central subplot, with one subplot due north
of the central subplot, and the other two arranged by equal
angles of 120◦. All trees on the subplot having a diameter of
12.7 cm or larger at 1.3716 m above ground are measured.
Additionally, each subplot contains a circular micro-plot with
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a radius of 2.07264 m. All trees with a diameter between 2.54
cm and 12.7 cm at 1.3716 m above ground, which are defined
as saplings, are measured on a micro-plot. For the purposes
of this study, all trees measured on the micro-plot or subplot
were used to compute the live tree basal area per hectare value
for the plot. The plots are spatially distributed, each randomly
located within a hexagonal tessellation of the landscape, with
each hexagon being 2400 ha in size. In the case of Wisconsin,
these hexagons were further subdivided in two, resulting in
polygons 1200 ha in size. Each of these field plots was measured
and then remeasured during that decade, spanning two 5-year
FIA measurement cycles 2003–2007 and 2008–2012. Overall,
in the dataset, positive live tree basal area measurements were
recorded in 206 plots and a basal area measurement of zero
was recorded in the remaining 86 plots indicating no basal area,
according to FIA criterion, was found in those plots. These
plot-level measurements were calculated by multiplying each
condition’s plot proportion by its corresponding basal area per
hectare value, then summing across all conditions. The basal
area measurements and TC features are linked spatially by
matching the geographic coordinates of the centers of the field
plots with the gridcells.

3. Model for FIA Study

Our objective is to use the TC feature imagery to predict the
spatiotemporal variation in forest inventory measurements of
live tree basal area during the decade. Live tree basal area is
a nonnegative random variable; it takes positive values when
live trees, large enough to meet the FIA’s diameter threshold,
are present on forested land, and is zero otherwise. Similar to
Finley, Banerjee, and MacFarlane (2011), we propose a two-level
hierarchical model, where the first level separates the occurrence
of zeros and next level estimates the variation within nonzero
measurements.

We begin with notations. The spatial domain of the study
is denoted by W and is partitioned into disjoint areal units
(or gridcells) W1, W2, . . . , WS such that the feature imagery are
available at the resolution of these areal units. Let T be the
temporal domain and Xs(τ ) represents the value of a feature
variable at any gridcell Ws at time τ ∈ T . The dataset for
each of these features consists of composite values over disjoint

time intervals within T , so we partition T =
T⋃

t=1
Dt . For

the current application, TC features were reported monthly,
so D1, D2, . . . , DT represent consecutive months spanning T .
Define Xst = ∫

τ∈Dt

Xs(τ )dτ as the summary feature over Ws

during Dt . As Section 2 indicates, some of these Xst values are
missing and how to fill in those missing values is discussed in
Appendix A.1 in the supplementary materials.

To link the TC feature values to basal area measurements at
any gridcell, we construct a partition of T that has a coarser
resolution than the partition {Dt : t = 1, 2, . . . , T}. This can
be achieved by collapsing every d adjacent time intervals of the
former partition in a single unit. The level of aggregation d is
determined by the user. The data analysis in this article uses
d = 12, implying annual aggregation. It is adequate to model
basal area at that time scale since reporting on forest resources

is typically done on an annual basis, if not longer, because
uncertainty can exceed annual change estimates. Consequently,

we can write T =
Ty⋃

k=1
�k where Ty = T/d is the number of

units in the coarsened partition {�1, �2, . . . , �Ty}.
Let Bsk be the average basal area over time window �k

at gridcell Ws for 1 ≤ k ≤ Ty and 1 ≤ s ≤ S. For
the convenience of model development, we introduce a pair
(y(1)

sk , y(2)

sk ) corresponding to Bsk. y(1)

sk is a latent continuous
variable whose negative values corresponds to the absence of
basal area, implying Bsk = 0. When y(1)

sk is positive, Bsk is positive
and is equal to exp

(
y(2)

sk

)
. It is adequate to propose models for

y(r)
sk , r = 1, 2, as Bsk can be written as a deterministic function

of the pair as follows:

Bsk = 1(y(1)

sk > 0) exp
(

y(2)

sk

)
, (1)

where, for any event A, 1(A) represents the binary indicator
that becomes 1 only when A occurs. Below, in Section 3.1, we
discuss modeling of y(1)

sk and y(2)

sk using functional regression.
Section 3.2 discusses incorporation of a stochastic constraint
in the model for y(2)

sk to better resemble how basal area can
change temporally. Derivation of posterior distributions, esti-
mation using MCMC and inference using posterior predictive
distributions are described in Section 3.3.

3.1. Functional Predictor Regression for Basal Area

Functional predictor regression involves regression of a scalar
response on a set of functional covariates. This framework,
discussed in Morris (2015), is adopted below for modeling of
y(r)

sk for r ∈ {1, 2}. For simplicity of notation, we omit the
superscript r for now and reintroduce it when necessary. Hence,
ysk is the continuous response at gridcell Ws at time window
�k that we want to model using the functional auxiliary data
{Xs(τ ) : τ ∈ �k} of the TC features over the same time window.
The functional regression model can be written as

ysk = β0 +
∫

τ∈�k

Xs(τ )β(τ)dτ + εsk, (2)

where β0 is the intercept and β(τ) is the functional regres-
sion coefficient. The error term εsk has a zero-mean normal
distribution, is uncorrelated in space and time, and, accounts
for two sources of noise: (i) the pure error of the functional
regression and (ii) the approximation error due to using the FIA
measurement from a given month of a year as representative of
the average value for that entire year.

Since each �k consists of d adjacent units from {Dt : t =
1, 2, . . . , T}, we can replace the indexing variable t for the finer

partition with a unique pair (k, l) such that �k =
d⋃

l=1
Dkl. As an

example, if d = 12, for any month Dt in the finer partition, k
represents the year it belongs to and l represents position of that
month within that year. With this notation, we can rewrite (2)
as

ysk = β0 +
d∑

l=1

∫
τ∈Dkl

Xs(τ )β(τ)dτ + εsk.
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Now, we let β(τ) ≡ βl if τ ∈ Dkl. This amounts to two assump-
tions. First, the coefficients do not change within a single unit of
the finer partition Dkl. This is reasonable as X-data are available
at that resolution only. Second, the coefficients vary only based
on l, the position of Dkl within �k, and are independent of k.
This is equivalent to assuming that the functional linear model
does not have dynamic coefficients. If d is chosen as 12, these two
assumptions together imply that coefficients are constant within
a month and have an annual periodicity, that is, the weight of TC
features from a specific month, in predicting the average basal
area for that year, does not change from one year to the next.
Consequently, we can simplify the model for ysk as

ysk = β0 +
d∑

l=1
βl

∫
τ∈Dkl

Xs(τ )dτ + εsk = β0 +
d∑

l=1
Xsklβl + εsk,

(3)
where Xskl corresponds to the definition of Xst with t replaced
by the equivalent (k, l) pair as mentioned above.

Since we want to use all TC covariates in the model for ysk,
we extend (3) as

ysk = β0 +
3∑

TC=1

d∑
l=1

X(TC)

skl β
(TC)

l + εsk. (4)

Using matrix notation, we can simplify the expression in the
right-hand side of (4) as XT

skβ where Xsk and β are two column
vectors that concatenate Xskl values and βl parameters, respec-
tively, for all TC covariates and for l = 1, 2, . . . , d. Now, we apply
(4) separately to y(r)

sk for r ∈ {1, 2} to hierarchically extend (1) as

Bsk = 1(y(1)

sk > 0) exp
(

y(2)

sk

)
, y(r)

sk = β
(r)
0 + XT

skβ
(r) + ε

(r)
sk ,

r = 1, 2, ε
(1)

sk ∼ N (0, 1), ε
(2)

sk ∼ N (0, σ 2), (5)

where the variance of ε
(1)

sk is fixed at 1 for identifiability and
N stands for univariate normal distribution. It is easy to see
that marginalizing y(r)

sk for r = 1, 2 would result in a two-
component mixture model for Bsk with the components being
a point mass at zero and a lognormal regression; their weights
are determined by a probit model. To handle the sparse data size
relative to number of covariates in (5), we use a shrinkage prior
for covariate effects, the horseshoe (HS) prior from Carvalho,
Polson, and Scott (2009). The advantages of this prior are that it
has (i) a heavy tail suitable to retain significant covariate effects
and (ii) a spike to infinity at the origin that shrinks the insignif-
icant covariate effects. Since we assign this prior separately on
β coefficients of y(1)

sk and y(2)

sk models, for notational simplicity,
we again omit superscript r in the description of the prior and
reintroduce it in the discussion of posterior distributions. The
usual hierarchical specification of the HS prior is as follows: if
βj is the effect of j-th component of Xsk, then

βj ∼ N (0, λ2
j ζ

2); λj ∼ C+(0, 1); ζ ∼ C+(0, 1) for

j = 1, 2, . . . , p,

where C+ denotes the standard Cauchy distribution truncated
to R

+, λj is called the local shrinkage parameter (specific to
βj), ζ is called the global shrinkage parameter (common to all

components of β) and p is the number of entries in Xsk. For con-
jugacy of posterior distributions, we set the prior distributions as
β0 ∼ N (αβ0 , ν2

β0
), σ 2 ∼ IG(a0, b0), with fixed values of hyper-

parameters, where IG denotes the Inverse-Gamma distribution.

3.2. Incorporating a Biophysical Constraint on Temporal
Change

Live tree basal area is related to the presence of tree cover. A
forested landscape would be expected to accrue live tree basal
area slowly, over a period of many years, without any sudden
increases. This landscape might similarly experience a slow
decrease in basal area as trees age, become unproductive, and
die. However, a rapid decrease is also possible due to harvest,
storm damage or other agents of forest change. Hence, in our
setting, y(2)

sk can abruptly decrease from one time window to the
next in a gridcell, but the opposite is far more unlikely.

Variation in the time series of satellite imagery, on the other
hand, would be subject to a different set of constraints. Fluctua-
tions in seasonal weather patterns would be expected to result
in greater variability in both TC brightness and wetness due
to snow and rain. TC greenness is highly correlated with tree
foliage, not directly with the basal area of the stem, which is
expected to be more variable both seasonally and annually. Since
the models in the current study are dynamic, constraints must
be placed on how these models transition from one time step
to the next to follow known biophysical patterns. Hence, we are
proposing to rectify the model for y(2)

sk in (5) such that it dis-
courages sudden increase in the mean response at any gridcell
compared to the previous year. However, no such adjustment
is deemed necessary in the model for y(1)

sk , binary indicator for
presence/absence of basal area, because a sudden year-over-year
change from zero to nonzero is possible when trees meet the
FIA’s diameter threshold for measuring basal area.

Below, we present the modified equation for y(2)

sk along with
a discussion of how it achieves the above-mentioned purpose:

y(2)

sk ∼ N (μsk, σ 2), 1 ≤ s ≤ S, 1 ≤ k ≤ Ty,

μsk = zsk(β
(2)
0 + XT

skβ
(2)) + (1 − zsk)μs(k−1),

zs1 = 1, zsk ∼ Ber
(
�(μs(k−1) − β

(2)
0 − XT

skβ
(2))

)
,

2 ≤ k ≤ Ty, (6)

where � and Ber denote the standard normal cumulative dis-
tribution function and the Bernoulli probability distribution,
respectively. At the initial time window �1, the mean response
depends solely on the TC imagery from the same window as no
information is available from past. For the second time window
onward, we introduce a binary parameter zsk to select from
two different choices for the mean structure: one evaluated only
from the explanatory variables at the current time window and
the other being the mean response from the previous time win-
dow. Moreover, the probability of selecting an option increases
as it gets smaller compared to the other choice and vice-versa.
Hence, if the covariates suggest a large increase in μsk relative to
the preceding interval, zsk = 1 becomes unlikely implying μsk
stays at μs(k−1). On the other hand, if the covariates suggest a
decrease or a small increase, that is relatively more likely to be
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accepted. Thus, (1−zsk) acts as a stochastic inhibitor of a sudden
increase in the y(2)

sk . The unconstrained specification of (5) can
be viewed as a special case of (6) with zsk = 1 for 1 ≤ k ≤ Ty.

3.3. Posterior Estimation and Inference

Using the observed Bsk values, we first draw the model param-
eters a posteriori and then sample from the posterior predic-
tive distributions for unobserved Bsk values. The MCMC steps
for unconstrained regression model of (5) is discussed first.
Subsequently, we present a detailed derivation of the posterior
distributions from the constrained model of (6).

3.3.1. Unconstrained Model
The posterior distributions for β0, {βj : j = 1, 2, . . . , p} and σ 2

are standard, due to conjugacy of their prior distributions. For
the hyperparameters within the HS prior, we use the data aug-
mentation technique of Makalic and Schmidt (2016) to rewrite
them as follows:

ζ 2|ξ ∼ IG(0.5, 1/ξ),
ξ ∼ IG(0.5, 1),

λ2
j |νj ∼ IG(0.5, 1/νj),

νj ∼ IG(0.5, 1), j = 1, 2, . . . , p.

Inverse-Gamma being a conjugate prior for variance param-
eters, sampling the posterior distributions becomes standard.
The form of the posterior distributions are mentioned in
Appendix A.2 in the supplementary materials.

3.3.2. Constrained Model
We expand the expression for μsk in (6) as follows:

μsk = zsk(β
(2)
0 + XT

skβ
(2)) + (1 − zsk)μs(k−1)

= zsk(β
(2)
0 + XT

skβ
(2)) + (1 − zsk)zs(k−1)

(β
(2)
0 + XT

s(k−1)β
(2)) + (1 − zsk)(1 − zs(k−1))μs(k−2)

...

=
k∑

j=1

[ k∏
i=j+1

(1 − zsi)
]

zsj(β
(2)
0 + XT

sj β
(2))

=
k∑

j=1
Gskj(β

(2)
0 + XT

sj β
(2)), (7)

where

Gskj =
[ k∏

i=j+1
(1 − zsi)

]
zsj, 1 ≤ j ≤ k, (8)

with the convention that the empty product
∏k

i=k+1(1 − zsi) =
1. As zsk can be either 0 or 1, Gskj is also binary. Below, we prove
that

Result 1. For fixed s and k, exactly one member of the binary
sequence {Gskj}k

j=1 is 1.

Proof. We can rewrite,

Gskj =
⎧⎨
⎩

(1 − max
j+1≤i≤k

zsi)zsj for j = 1, 2, . . . , (k − 1),

zsk for j = k.

Suppose j = max{j : zsj = 1}. (j exists since zs1 ≡ 1.) Now,
the possible cases are:

• For j > j, Gskj = 0 because Gskj is a multiple of zsj.
• For j < j, Gskj = 0 because max

j+1≤i≤k
zsi = 1.

• For j = j, Gskj = 1 because if j = k, zsk = 1 and if j < k,
max

j+1≤i≤k
zsi = 0.

Therefore, (7) can be rewritten as

μsk = β
(2)
0 + XT

s, arg max
j≤k

{Gskj}β
(2). (9)

Now, we discuss the posterior sampling of zs. Let zs =
(zs1, zs2, . . . , zsTy)

T with zs1 = 1 for 1 ≤ s ≤ S. Accounting for
two possible states for each of the remaining (Ty − 1) binary zsk
variables, the vector zs can be any one of the 2Ty−1 combinations.
For the current dataset, Ty = 10 implies 512 possible binary
sequences. Suppose z̃s denotes one such candidate combination
for zs. Given zs = z̃s, we use (8) and (9) to construct the
candidate mean response μ̃s = (μ̃s1, μ̃s2, . . . , μ̃sTy)

T . Let us
define H = {s : ∃ k such that Bsk > 0}, the subset of indices
corresponding to areal units with at least one nonzero basal area
observation. It follows that we can update zs for s ∈ H using a
multinomial distribution with the probability given by

P(zs = z̃s) ∝
[ ∏

{k: Bsk>0}
φ(y(2)

sk |μ̃sk, σ 2)

]

×
[ Ty∏

k=2
p̃̃zsk

sk (1 − p̃sk)
1−̃zsk

]
,

where p̃sk = �(μ̃s(k−1) − β
(2)
0 − XT

skβ
(2)) and φ denotes

the normal density function. Once we update zs, we can also
update arg max

j≤k
{Gskj} for 1 ≤ k ≤ Ty. Readily, β

(2)
0 and σ 2

can be updated from standard distributions similarly as in the
unconstrained setting of Section 3.3.1. However, the updating
step for β(2) is unlike the usual regression since β(2) appears
in two places within the hierarchy: (i) in the expression of μsk
and (ii) in the probit regression of zsk for 2 ≤ k ≤ Ty. Using
the data augmentation approach of Albert and Chib (1993) for
zsk, β(2) can also be simulated from a multivariate Gaussian
distribution. The simulation of hyperparameters of the HS prior
follows exactly as in Section 3.3.1. Further details of posterior
distributions are included in Appendix A.3 in the supplemen-
tary materials.

For s ∈ H, zs vector is sampled during each MCMC iteration
that we use in (9) to determine μsk and subsequently generate
missing y(2)

sk measurements from their posterior predictive dis-
tribution. On the other hand, for s /∈ H, zsk does not appear
in the likelihood for any k, so we follow the structure of (6)
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to sequentially generate y(2)
s1 , y(2)

s2 , . . . , y(2)
sTy

using the parameter
values from the current MCMC draw. Additionally, using the
parameter draws from the unconstrained functional regression
for y(1)

sk , we generate binary indicators for nonzero status of Bsk.
Posterior samples of Bsk values at unobserved (s, k) combina-
tions are set either at 0 or an exponential of corresponding sam-
ples of y(2)

sk depending on the indicators being 0 or 1, respectively.

4. Analysis of Basal Area Data

We begin our analysis by filling in the missing parts of TC
imagery in Section 4.1. These complete images are then used
as functional covariates for predicting basal area. In Section 4.2,
we do likelihood-based as well as cross-validation analyses to
explore whether use of the constrained approach from Sec-
tion 3.2 leads to improved predictive performance. In Sec-
tion 4.3, we compare the proposed method against some of the
commonly used nonparametric approaches from FIA literature.
Finally, in Section 4.4, we present maps related to spatiotempo-
ral prediction of basal area from the proposed model.

4.1. Filling in Missing Landsat Imagery

We model TC features in logarithmic scale. In the original
dataset, TC1 has strictly positive values whereas both TC2 and
TC3 can be positive as well as negative. Prior to applying the

logarithmic transformation, we first translate and rescale the
measurements of TC2 and TC3 to the same range as that of TC1.
Hence, in case of brightness, Xst in Section 3 represents natural
logarithm of original values and, for greenness and wetness, it
represents logarithm of linear transformations of original val-
ues. Some more technical material pertaining to model selection
for Xst has been collected in the Appendix in the supplementary
materials. Specifically, the interested reader will find mention
of different candidate models for Xst in Appendix A.1.1 in the
supplementary materials; the details about the MCMC sampler
in Appendix A.1.2 in the supplementary materials; the graphi-
cal and numerical summaries used for model comparison and
selection in Appendix A.1.3 in the supplementary materials.
Once we identify the best performing model, we use that to fill
in the missing TC values. For every such missing value, we plug-
in the empirical median of the corresponding posterior pre-
dictive distribution and measure the uncertainty of prediction
by empirical width of the corresponding 90% highest posterior
density (HPD) interval. In Figure 3, we present 10-year averaged
monthly maps of the complete TC imagery in the original scale
of these measurements.

Both the spatial and monthly variation seen in the panels of
Figure 3 can be explained by differences in land cover across
the study area, as well as seasonality in vegetation and weather.
TC1 is related to overall surface albedo. Snow-covered fields
have larger albedo values than forests. This pattern is most

Figure 3. Monthly map of 10-year average TC features after filling in the missing values: (top left) TC1 brightness, (top right) TC2 greenness, and (bottom) TC3 wetness.
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obvious for the TC1 panels during the winter months, with the
western portion of the image being brighter than the eastern
portion. The contrast in brightness between forests and agri-
cultural fields is much smaller during the summer months, in
the absence of snow. TC2 is related the amount of photosyn-
thetically active vegetation on the land surface. During the win-
ter months, agricultural fields have been previously harvested
and are dormant. Similarly, deciduous trees have shed their
leaves, while evergreen trees retain their needles. During the
spring, fields are planted and crops begin to grow and deciduous
trees leaf-out. Conversely in autumn, crops are harvested and
deciduous trees begin to drop their leaves. These patterns are
visible in the TC2 panels, with an overall increase in green-
ness during the spring and summer months. Also, the larger
greenness values of evergreen trees stand out in the southeast
potion of the image during the winter months. Finally, TC3
is related to soil moisture, as well as the presence of water
and snow. As with brightness, wetness values are larger during
the winter months. However, TC3 shows less contrast between
forests and agricultural fields during the growing season for the
study area, approximately April through October. Overall, these
diagrams indicate that it is certainly possible for different land
cover types to exhibit nearly identical values of TC brightness,
greenness, or wetness at a specific month of an year, such as
an agricultural field might be mistaken for a young stand of
trees at the peak of the growing season. That reinforces the
proposed approach in Section 3.1 for considering the TC fea-
tures as functional covariates because if we consider the series
of monthly TC values over an year, it is much less likely that
two different land covers have nearly identical series of those
values over the course of an entire year. For example, late in
the autumn, the harvested agricultural field devoid of green
vegetation will have a much different TC profile than a young
stand of evergreen trees, or even a young stand of deciduous
trees that exhibit a different rate of change in TC metrics across
months.

It is also of interest to explore how percentages of missing
data in a month influence predictive uncertainty of TC values
at those missing locations. Figure 4 shows bar plots of the
predictive uncertainty for all TC features. Here, we distribute
the months in seven different groups (as shown in the diagram)
based on the missing proportion of monthly TC data and then
compute the average of 90% HPD interval width over missing
cells across all months within each group.

Figure 4 indicates that, as expected, for all TC variables
the uncertainty goes up with the increase in the percentage
of monthly missing data and, cells with no available data in a
month exhibit the highest uncertainty. Moreover, among these
features, TC1 shows relatively larger predictive uncertainty than
the rest. This is due to the fact that, in the transformed scale,
the TC1 values are more evenly distributed across the range
than TC2 and TC3 values, which are mostly concentrated within
the upper half of the range. It should also be noted that this
comparison of predictive uncertainty was carried out using the
log-transformed TC values (the scale they were modeled at)
instead of the original TC values. This was necessary because an
exponential transformation, to take them back to the original
scale, would make the uncertainty dependent on the mean,
confounding the effect of extent of missingness with high and
low values of these features.

4.2. Comparison of Constrained and Unconstrained
Models

We start with a comparative evaluation of the two models for y(2)

sk
with and without the constraint. The comparison is based on the
206 available nonzero basal area measurements. The MCMC is
run for 60,000 iterations, discarding the first 10,000 iterations
and thinning the rest at every 10th draw. Predictive performance
under each model is examined using two different criteria.
First, we calculate log-likelihood and Bayesian predictive infor-
mation criterion (BPIC, Ando 2007; Li, Jun, and Zeng 2017).
The model with the lowest BPIC is considered to be the best.
Additionally, cross-validation is performed using the holdout
method by repeatedly splitting the data into training sets and
test sets, training the model on the former, and evaluating the
predictive accuracy of the model on the latter. Every time we
move 10 randomly chosen nonzero basal area observations to
the test set and repeat the procedure 36 times such that all
available observations are considered in the test set at least once
and at most twice. We use three measures for assessment: (i)
absolute bias, computed as the difference between the hidden
test observations and their corresponding posterior medians;
(ii) uncertainty, measured as the width of 90% HPD interval
and (iii) empirical coverage, calculated as the proportion of
test observations that are within the corresponding 90% HPD
interval. These measures are averaged across replications. The

Figure 4. Averaged predictive uncertainty (90% HPD interval width) of missing TC values grouped by monthly percentage of missing data, in log-transformed scale.
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Table 1. Influence of the constraint on the model for y(2) .

Comparison statistic Unconstrained model Constrained model

Likelihood-based model comparison

LLa −3.969 39.093
BPIC 38.304 −107.254

Cross-validation

Absolute biasb 8.620 8.389
Uncertaintyb 31.529 45.184

Empirical coverage 0.828 0.917

a LL refers to posterior median of log-likelihood. b Bias and uncertainty are mea-
sured in m2/ha.

Figure 5. Observation-wise posterior median likelihood for y(2) with and w/o
constraint.

model that attains the desired coverage level with minimum bias
and uncertainty is deemed to be the best. The summary output
is presented in Table 1.

Both the likelihood-based criterion as well as cross-
validation show significant gains in the predictive performance
for the constrained model over the unconstrained model. The
former has a remarkably lower BPIC than the latter. Figure 5
represents posterior median likelihood values for each avail-
able y(2)

sk observation using both unconstrained and constrained
models. It should be noted that, for the convenience of visu-
alizing their difference, the observations are ordered accord-
ing to increasing likelihood estimates from the unconstrained
model. The figure clearly indicates an increase in likelihood
for most observations following incorporation of the constraint.
Furthermore, although the mean predictive uncertainty is lower
in the unconstrained model (due to absence of the spatiotem-
poral sequence of indicator variables zsk), only about 83% data
lie inside the respective 90% HPD intervals. In contrast, the
constrained model attains the desirable coverage with similar
absolute bias, implying wider predictive intervals have actually
been beneficial in this case.

Since the comparison measures show the constrained model
as the superior one for modeling y(2)

sk , we use it inside the
hierarchical framework of (5). We also investigate the predic-
tive accuracy of the model for y(1)

sk in identifying the zero and
nonzero values of Bsk by computing area under the ROC curve
(AUROC). We do this by running a cross-validation with a
test set of 15 observations randomly chosen from all (zero and

nonzero) basal area observations and replicating the procedure
36 times such that all available observations are considered in
the test set at least once and at most twice. The AUROC turns out
to be 0.868 indicating satisfactory detection accuracy of zero and
nonzero basal area plots. We use the above-mentioned test sets
to simultaneously perform a predictive assessment for the com-
bined hierarchical model for Bsk, consisting of unconstrained
and constrained functional regression equations for y(1)

sk and
y(2)

sk , respectively. The predictive performance for the combined
model is reported using three previously defined measures,
averaged across replications: an empirical coverage rate of 93%
for the 90% credible interval along with an average absolute
bias of 7.787 m2/ha and average uncertainty of 37.104 m2/ha.
Note that these numbers correspond to validation analysis of
the combined hierarchical model for all zero and nonzero Bsk
measurements whereas the numbers shown in Table 1 corre-
sponds to the model for y(2)

sk applied on the subset of nonzero
measurements only.

4.3. Comparison Against Existing Nonparametric
Approaches

In the literature, there exist several nonparametric approaches
that have been used for predictive mapping of forest attributes.
These include random forests (Baccini et al. 2008), stochastic
gradient boosting (Moisen et al. 2006), artificial neural network
(Foody, Boyd, and Cutler 2003), generalized additive models
(Frescino, Edwards, and Moisen 2001), nearest neighbors algo-
rithm (Eskelson et al. 2009), and support vector regression
(Chen and Hay 2011). Recently, convolutional neural networks,
a deep learning method, have been used with high resolution
imagery for forest classification and prediction of continuous
forest variables (Chang et al. 2019). Shataee et al. (2012) gave
a detailed comparison between some of these approaches in
imputing several forest attributes such as tree volume, basal
area, and number of stems using thermal and reflective bands
of multispectral imagery. Moisen et al. (2006) also presented a
comparative analysis for predictive mapping of basal area.

Below, we evaluate the proposed model’s predictive perfor-
mance relative to three competing approaches: support vec-
tor machine (SVM), stochastic gradient boosting (SGB), and
generalized additive model (GAM), implemented in R using
e1071 (Meyer et al. 2019), gbm (Greenwell et al. 2019), and
gam (Hastie 2019) packages, respectively. In all of these meth-
ods, first the data on nonzero versus zero basal area are mod-
eled using a binary regression and then, the data on loga-
rithm of nonzero basal area measurements are fitted using a
continuous regression. In GAM, the predictors are included
in the model after smoothing with default parameters. While
implementing these algorithms from above-mentioned pack-
ages, we retained their default settings as much as possible,
see the files Nonparametric_Models_for_y1_cv.R and Nonpara-
metric_Models_for_y2_cv.R in the supplementary materials for
details.

To compare these models using cross-validation, we gen-
erated the test sets exactly as mentioned in Section 4.2. For
classification of zero and nonzero test observations, we com-
puted AUROC using probabilities predicted under each model.
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Table 2. Model comparison against nonparametric methods.

Criterion Proposed model SVM SGB GAM

AUROC 0.868 0.854 0.845 0.796
Relative MSPE 0.794 0.812 0.894 1.679
Correlation 0.497 0.435 0.410 0.306

For nonzero basal area measurements, we compared the test
response values against their point predictions. For SVM, SGB,
and GAM, these predicted values were obtained using functions
from above-mentioned packages. For the proposed Bayesian
approach, empirical medians from respective posterior pre-
dictive distributions were used as predicted response values.
We used them to calculate (i) relative mean square prediction
error (relative MSPE), measured as the ratio of MSPE (average
of squared differences between true and predicted basal area
values) obtained using the model and MSPE obtained by naively
using the mean of training data for prediction, and (ii) cor-
relation coefficient between test responses and their predicted
values. A smaller relative MSPE value (less than one) and a larger
positive correlation coefficient are indicative of a better model
fit. Table 2 displays those statistics, computed using true and
predicted response values pooled from 36 replications of test set.

Table 2 shows that, across all criteria, the proposed model
uniformly provides the highest predictive accuracy. SVM
achieves the second best accuracy followed by SGB, and GAM
is vastly outperformed in all cases. Moreover, none of these
competing algorithms can easily be amended if one wants to
incorporate the constraint on temporal change of basal area
from Section 3.2. An added benefit of the proposed approach
is that, for every point prediction, its reliability can readily be
estimated using posterior predictive uncertainty, to be presented
in the following section.

4.4. Posterior Predictive Analyses of Basal Area

Now that we have completed a detailed validation and com-
parison analyses for the proposed model, we move to the

spatiotemporal prediction of basal area. As mentioned in the
end of Section 3.3.2, we collect posterior samples of Bsk values
for all location-year combinations barring the ones with avail-
able basal area values. For the latter, we retained the original
measurements. Figure 6 shows gridcell-wise posterior median
of yearly average basal area values across the study area. The
spatial and temporal patterns observed therein correspond well
to known land cover and disturbances. The linear boundaries of
Menominee County are quite visible in the southeastern portion
of the image. This heavily forested county, with corresponding
large basal area values throughout the years, is the least populous
in Wisconsin and corresponds to the extent of the Menominee
Indian Reservation. The land and forest management practices
of the Menominee Tribe differ dramatically from those of neigh-
boring communities. There are large tracks of undisturbed for-
est, with few and relatively small harvested areas. As mentioned
before, the dynamic pattern of the model predictions along the
tornado trajectory is of particular interest. The time series of
basal area maps depicts a relatively stable landscape up to 2006.
Since the tornado occurred around the middle of 2007, the
yearly average basal area panel for 2007 shows its path with a
lighter shade, reflecting an average of the dense forest and near-
complete removal of live tree basal area before and after the
event, respectively. The panels for 2008 to 2012 exhibit a period
of gradual recovery along the tornado swath. We note that, at the
chosen scale of aggregation (16 × 16 pixels), the exact tornado
path is less than 2 gridcells wide, on an average, with a significant
fraction of the swath partially encompassing the pixels along its
edges.

Also of interest is the reliability of model prediction, quanti-
fied using the posterior uncertainty, the width of the 90% HPD
interval. We present 10-year averaged uncertainty maps using
absolute and relative scales in panels (a) and (b), respectively, in
Figure 7. For the 146 gridcells that have two recorded basal area
measurements each, uncertainty averages were calculated based
on the posterior predictions for the remaining eight years. The
relative uncertainty is computed using the ratio of uncertainty to
the median basal area. Since very small values of median basal

Figure 6. Posterior median of yearly average live tree basal area during 2003–2012 (in m2/ha). Panels are to be read year-wise left to right in the top row, then right to left
in the bottom row.
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Figure 7. Maps of posterior uncertainty in absolute and relative scales: 10-year averaged (a) 90% HPD interval width (in m2/ha) and (b) ratio of 90% HPD interval width
and median for yearly average live tree basal area.

Figure 8. Maps of yearly variations (in m2/ha) in posterior estimates: (a) change in estimated live tree basal area averaged over 2008–2012 compared to its average from
the period 2003–2007 and (b) standard deviation of yearly average live tree basal area estimates.

area will lead to overly inflated values of relative uncertainty, we
mitigate the inflation using a linear approximation of the ratio
only for observations below a threshold of 0.001th quantile of
the nonzero median basal area values. Panel (a) clearly shows
heteroscedasticity in the uncertainty of the model predictions,
with higher uncertainty associated with the dense forests of the
Menominee Indian Reservation. This is a characteristic of the
log-Gaussian distribution whose uncertainty increases propor-
tionally with median. That is why, in relative terms in panel
(b), the uncertainty appears to be essentially constant across
those forested areas. The greatest relative uncertainty is associ-
ated with the town of Antigo, near the left edge of the figure,
about two-thirds of the way from the bottom to top edge. This
uncertainty is likely due to the pattern of tightly interspersed
streets, lawns, and trees associated with urban and suburban
settlements, which is exaggerated by the scale of aggregation
(16 × 16 pixels), with resulting cells being predominately mixed
due to the relatively smaller size of features in these land uses.

Now, we focus on exploring between-year variation in the
posterior estimates of yearly average basal area during 2003–
2012. Figure 8(a) depicts the change (can be positive or negative)
in five-year average basal area during the remeasurement period
of 2008–2012 relative to the its value during initial measurement
period of 2003–2007. The impact of the tornado is readily

apparent in the image, with the initially large basal area values
being reduced to zero directly along the tornado’s path. The
image also suggests a smaller reduction in basal area near the
path, possibly due to damage from high winds. There are also
some smaller areas to the southeast of the path that correspond
with known harvest activity or regrowth from previous harvests,
during the remeasurement period, that appear as brown/yellow
and blue/green pixels, respectively. Standard deviation of 10
yearly average basal area values from each gridcell is plotted
in Figure 8(b). As expected, the largest between-year variability
is observed along the tornado trajectory that experiences near-
complete removal of the live tree basal area around the middle of
the study period and gradual regeneration in the following years.
This variability is also due to the presence of gridcells along the
edge of the tornado swath with mixed land covers. Agricultural
fields around the town of Antigo mostly show no year-to-year
variation, due to near-complete absence of any live tree basal
area at those gridcells, as corroborated by Figure 6.

5. Conclusion

We have developed a hierarchical approach for utilizing time
series of satellite imagery for dynamic prediction of live tree
basal area. Through use of functional predictor regression, we
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have established that the seasonal variation in these measure-
ments provides significant information about live tree basal area
distribution and can be used to complement the relatively sparse
(in space and time) data collected from FIA plots. This repre-
sents a significant addition to the FIA modeling literature that
has so far mostly considered remote sensing measurements for
a single point in time or summarized as a composite image over
a period of time. Augmenting one more level in the hierarchy,
we adjust the regression equation to address the biased nature
of temporal variation in basal area. The model fit is shown to
improve significantly after this modification. It should be noted
that, unlike the model for TC features, we did not use spatial
and/or temporal random effects in the regression equation for
basal area. That is due to the scarcity of available basal area
measurements. At any given year, we have measurements for
around 0.3% of the gridcells, that are significantly distant from
each other (due to sampling design) across the study area.
Temporally, for any gridcell, we have data for at most two of
the ten years, separated by a period of around five years (the
time difference between measurement and remeasurement in
the same plot). In case of datasets that are significantly denser
across spatial and temporal scales, inclusion of spatial as well as
temporal random effects and associated gain in model fit can be
explored.

The hierarchical structure developed for TC features
(Appendix A.1 in the supplementary materials) as well as
for basal area (Section 3) can be generalized to any region of
interest with any spatial or temporal scale, even if different from
ours. For example, if one wants to summarize the TC features
seasonally or model the variation in basal area distribution at a
multi-year scale instead of a year-to-year basis, that can easily
be accommodated in the present setting. The work of Wilson,
Lister, and Riemann (2012), using only a vegetation index
from Moderate Resolution Imaging Spectroradiometer sensor,
efficiently modeled forest conditions across a range of climatic
and topographic conditions, as well as forest types. Given that
the Landsat ETM+ sensor was used in the current study, we
have not only a similar measure of the seasonality of growing
vegetation (i.e., TC2 greenness), but also seasonal information
related to surface albedo (TC1 brightness) and ground moisture
(TC3 wetness). All of these TC components would be sensitive
to the presence of trees, regardless of their environment.

It should be noted that the annual average basal area maps,
presented in Figure 6, are based entirely on prediction from TC
features, without using any information on regional distribu-
tion of forested and non-forest land. There is a fundamental
limitation in determining forest land use (i.e., FIA plots with
conditions defined as forest, where basal area measurements
were taken) using remote sensing imagery alone, which reflects
land cover. However, if one is interested in basal area prediction
over forested land only, this can be obtained by limiting our pos-
terior predictive analysis to gridcells on forested land, provided
a binary forest land-use map is already available for the entire
region.

There are certain practical sources of bias in this analysis that
need to be discussed. As trees mature, the greenness is expected
to increase. However, forests with closed canopy, after a certain
level of growth, do not look very different from above even as
they keep maturing, potentially causing the greenness to change

minimally. We argue that the proposed model is robust to this
source of bias since it allows each month’s greenness to have
its own effect parameter on the yearly average basal area. As
the growth and maturity of forests are linked to the time of
the year, these effect parameters can also change accordingly.
Another source of bias arises from the fact that FIA reports
basal area from trees meeting a certain diameter threshold on
forested land. As discussed in Section 2, the threshold varies
between the subplots and the micro-plots within them, the latter
being more accurate with a lower diameter threshold covering
the saplings. Consequently, basal area from the young trees
below that threshold or from trees outside the FIA’s definition
of forested land, if any, is not taken into consideration. Hence,
in the data, (i) any plot with a reported basal area value of zero
can potentially have some basal area from unaccounted trees
and, (ii) a nonzero basal area measurement recorded in any
plot may be lower than its actual value, due to presence of such
unaccounted trees. Since TC values should be correlated with
the basal area seen in a cell by the ETM+ sensor, inference based
on this data can potentially underestimate the probability to
have a nonzero basal area and the amount of basal area present,
in a gridcell. Notably, in some instances, bias may also occur in
the opposite direction when young trees get overtopped by the
canopies of larger trees and are not detected by the ETM+ sen-
sor. Furthermore, in this analysis, we ignore the uncertainty of
the GPS measurement of the location of the FIA field plot as well
as any georeferencing errors in the satellite imagery. As common
with most of the existing literature on FIA modeling, we assume
that these sources of error have negligible influence on the final
inference. Accounting for them in the model requires making
additional assumptions or using external information, and there
exists scope of further research in this direction.

Now that we have established the feasibility of the pro-
posed approach based on the association between basal area
and TC features, its natural extension would be to scale up
the analysis to the entire H20V05 WELD tile, about ten times
as large as our study area. This will necessitate focusing on
the computational aspects of the model. More specifically, the
best candidate Model to fill in the missing values in the TC
feature imagery involves spatiotemporal random effects, and,
based on its runtime reported in Table A.1.1 of Appendix A.1.3
in the supplementary materials for the current study area, use
of low-rank approximations need to be explored to control its
computational cost in case of the entire tile. Finally, in addition
to the TC features, auxiliary data on other factors that determine
site productivity for trees, such as climate, landscape position
and soil characteristics (Wilson, Lister, and Riemann 2012) can
be utilized within this functional covariate setting to search for
the most efficient and comprehensive predictive model for forest
inventory.

Supplementary Materials

Appendix: Additional details on modeling and data analysis. (.pdf file)
Codes: All R codes (along with instructions) to run the models from this

article and the appendices to generate included tables and figures. (.zip
file)

Data: The TC dataset (.Rdata file) can be downloaded from the link
included in the ACC form. The actual basal area dataset cannot be
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shared due to the USDA Forest Service policy on data confidentiality.
So, a simulated dataset of hypothetical basal area measurements (.csv
file) is provided along with the code used to generate it.
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