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Abstract
1. Non-native insects pose threats to forest health and often spread via stratified 

dispersal in which long-distance jumps cause elevated rates of range expansion. 
Quantifying patterns and developing models of spread are central to understand-
ing drivers of invasion and forecasting future invasions.

2. We investigated the utility of models for characterizing and predicting spread of 
emerald ash borer (EAB), quantified temporal dynamics of spread and identified 
correlates of county-level invasion risk.

3. We estimated rates and frequency of EAB spread and length of long-distance 
jumps throughout the contiguous USA from 1997 to 2018 and compared observed 
patterns with model predictions. A time-to-event model was then developed at 
the county level to assess the influence of habitat characteristics and propagule 
pressure on invasion risk. The final model was used to forecast invasion risk across 
the contiguous USA.

4. Range expansion by EAB accorded well with model predictions. Following the ini-
tial establishment phase, range expansion rates were biphasic, shifting to a faster, 
linear pattern around 2002 and then declining from 2015 onwards. From 2003 
onwards, EAB invaded 6–134 new counties per year, including a mean of 14 dis-
crete jumps per year averaging 93 ± 7 SE km.

5. Risk of spread was positively associated with proximity to previously invaded 
areas, human population density and densities of ash and non-ash trees in rural 
forests but negatively associated with temperature.

6. Synthesis and applications. At the regional level, the invasion by emerald ash borer 
appears to be entering the saturation phase, indicating that most high-risk coun-
ties in the eastern USA have been invaded. Even though spread has recently 
slowed, counties in close proximity to invaded areas and that have high densities 
of humans and trees are at the greatest risk of becoming invaded. Taken together, 
our findings provide insight into historical and future dynamics of range expansion 
by emerald ash borer, which can be used to guide risk assessments for potential 
invaders capable of frequent long-distance dispersal.
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1  | INTRODUC TION

Spread of non-native insects results from population growth cou-
pled with dispersal, which can be categorized into two types, short- 
and long-distance (Kot, Lewis, & van den Driessche, 1996; Liebhold 
& Tobin, 2008). Short-distance dispersal is typically achieved by ac-
tive movement by insects, such as flight, whereas long-distance dis-
persal is frequently attributed to human activities (Gilbert, Grégoire, 
Freise, & Heitland, 2004; Koch, Yemshanov, Magarey, & Smith, 
2012; Liebhold & Tobin, 2008). These two types of movement often 
occur in tandem to manifest as stratified dispersal (Hengeveld, 1989; 
Liebhold & Tobin, 2008).

Theoretical models of spread developed by Shigesada, Kawasaki, 
and Takeda (1995) posit that range expansion undergoes three 
phases. The first is establishment, a lag phase during which spread 
is minimal while populations build in the novel habitat. Next is ex-
pansion, during which spread occurs, followed by saturation, char-
acterized by deaccelerating rates of spread as suitable habitat is 
exhausted. Under this framework, spread rates during expansion can 
be linear and monophasic, linear and biphasic, or constantly increas-
ing, referred to as type 1, 2 or 3 radial range expansion, respectively 
(Shigesada et al., 1995). Type 1 range expansion is typical of invaders 
that settle in close proximity to natal patches whereas types 2 and 
3 range expansions are typical of invaders with stratified dispersal 
(Shigesada et al., 1995).

Quantifying patterns and drivers of invader spread can provide 
natural resource managers with critical information for design-
ing and implementing management programs (Liebhold & Kean, 
2019; Sadof, Hughes, Witte, Peterson, & Ginzel, 2017). Predictive 
models of range expansion can improve the efficacy of detection, 
delimitation, eradication and barrier-zone management (Liebhold 
et al., 2016; Sharov, Leonard, Liebhold, Roberts, & Dickerson, 2002) 
while providing insight into underlying drivers of invasion. Limited 
ecological information may be available for new invaders (Herms & 
McCullough, 2014) and thus initial management guidelines may have 
to rely on models developed for or patterns displayed by invaders 
with similar ecology.

Invasions by bark- and wood-boring insect species have in-
creased with use of solid-wood packaging materials and international 
trade (Aukema et al., 2010; Brockerhoff & Liebhold, 2017; Meurisse, 
Rassati, Hurley, Brockerhoff, & Haack, 2019), intensifying the need 
to identify potentially common drivers of post-establishment spread 
by borers. Spread of bark and wood-borers is often characterized 
by long-distance jumps and can be challenging to predict because 
it often occurs cryptically via human-aided movement of infested 
material such as firewood (Jacobi, Goodrich, & Cleaver, 2011; 
Jacobi, Hardin, Goodrich, & Cleaver, 2012; Koch et al., 2012) and/
or there may exist significant lags between invasion and detection. 
Habitat characteristics such as the diversity and abundance of host 
trees (Guo, Fei, Potter, Liebhold, & Wen, 2019; Hudgins, Liebhold, 
& Leung, 2017; Liebhold et al., 2013), human population density in 
source and destination locations (Gilbert et al., 2004), and climate 
can affect spread. Evaluating the relative influence of these factors 

for individual species is necessary for forecasting invasion risk and, 
potentially, guiding risk assessments for spread of future invaders.

Emerald ash borer Agrilus planipennis Fairmaire (EAB) is a phloem 
and wood boring beetle native to eastern Asia that was initially dis-
covered in North America near Detroit, MI, USA in 2002 (Poland 
& McCullough, 2006), and apparently invaded Europe around that 
same time (Baranchikov, Mozolevskaya, Yurchenko, & Kenis, 2008; 
Valenta, Moser, Kapeller, & Essl, 2017). The insect likely became es-
tablished in North America in the early 1990s, began killing trees 
by 1997 (Siegert, McCullough, Liebhold, & Telewski, 2014), and has 
since killed millions of Fraxinus spp. in the eastern USA (Herms & 
McCullough, 2014; Morin, Liebhold, Pugh, & Crocker, 2017), result-
ing in significant biomass losses (Fei, Morin, Oswalt, & Liebhold, 
2019). Initial radial range expansion by EAB at the sub-county level 
occurred at ~4 km/year between 1998 and 2001, and ~13 km/year 
between 2001 and 2003 (Siegert et al., 2014).

Spread of EAB is facilitated by human activity, particularly move-
ment of infested firewood (BenDor, Metcalf, Fontenot, Sangunett, 
& Hannon, 2006; Muirhead et al., 2006; Prasad et al., 2010; 
Yemshanov et al., 2015). Sub-county level analyses in the USA have 
highlighted the role of human activity and spatially proximate inva-
sions (BenDor et al., 2006; Muirhead et al., 2006; Prasad et al., 2010; 
Yemshanov et al., 2015) as well as ash phloem resources in aiding the 
spread of EAB (Mercader et al., 2016; Mercader, Siegert, Liebhold, 
& McCullough, 2009, 2011). Spread at the county level—the spa-
tial unit at which quarantines on ash materials are imposed—such 
as radial spread rates and changes therein, frequency or length of 
long-distance jumps, and the effects of propagule pressure and hab-
itat characteristics on invasion risk have not been quantified; how-
ever, such knowledge of spread dynamics is critical for developing 
successful management and quarantine programs.

We investigated patterns of spread across the United States 
from 1997 to 2018 and examined the utility of theoretical models 
for characterizing range expansion by EAB, an invader with highly 
stratified dispersal. Study aims were to (a) quantify rates of radial 
range expansion and assess if the range has expanded in a manner 
consistent with invasion theory, (b) characterize patterns of short- 
versus long-distance dispersal through time and (c) quantify drivers 
of invasion risk at the county level across the contiguous USA and 
forecast invasion risk. We intend that our research findings will pro-
vide insight into the past and future invasion dynamics of EAB in 
North America while elucidating patterns that might help guide fu-
ture risk assessments for invasions by other wood borers.

2  | MATERIAL S AND METHODS

New records of established EAB populations in the USA are reported 
by state and federal forest health agencies along with discoveries 
made by citizens. The United States Department of Agriculture, 
Animal and Plant Health Inspection Service (USDA APHIS) has annu-
ally compiled these records into county-level data detailing the dis-
tribution of EAB since 2002 (Figure 1). We defined ‘adjoining’ versus 
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‘isolated’ counties as those that became invaded in year t and were 
or were not, respectively, neighbouring at least one county invaded 
as of year t − 1 (Figure 1b). For most counties, there likely exists 
a lag of random length between establishment and detection that 
introduces random variation for which we are not able to account. 
Nonetheless, we use the terms ‘invaded’ and ‘detected’ interchange-
ably. Analyses throughout were conducted using R version 3.5.0 (R 
Core Team, 2018).

2.1 | Radial range expansion

We assessed if radial range expansion at the county level followed a 
type 1, 2 or 3 range expansion as defined by Shigesada et al. (1995). 
The effective range radius (ERR, km) of the invaded area per annum 
was calculated using county areas (ERRt =

�

∑n

i
Areai

�
, where i is a 

unique county identifier for each county invaded by year t). Maps 

by Siegert et al. (2014) detailing historical EAB invasion at a sub-
county level in southeastern Michigan indicated that 13 counties 
were invaded between 1997 and 2003. We combined these data 
with USDA APHIS data, in which six counties were known invaded as 
of 2002, by recording the earliest year of invasion reported between 
the two data sources for each county (i.e. some counties invaded in 
2002–2004 according to the USDA APHIS data were re-assigned to 
earlier invasion years). A comparison of range expansion rates using 
county level versus sub-county level data from Siegert et al. (2014) 
is provided in Figure S1.

Range expansion can be categorized as a type 1, 2 or 3 ex-
pansion depending on changes in spread rates between the 
end of the establishment phase and the onset of the saturation 
phase (Shigesada et al., 1995). The end of the EAB establish-
ment phase likely occurred in ~1997, the first year in which trees 
were known to have been killed by EAB and landscape-level 
spread commenced (Siegert et al., 2014). To identify changes in 
spread rates, piecewise regressions were fit using the segmented 
package in r (Muggeo, 2008), which can be used to objectively 
identify breakpoints in bivariate relationships. The segmented() 
function was parameterized to search for three breakpoints in 
the relationship between ERR and year (1997–2018), but the 
approximate years of breakpoints were not specified. Potential 
breakpoints could include (a) a single increase in spread rates, 
indicative of type 2 expansion (b) several increases in spread, po-
tentially indicative of type 3 expansion (i.e. nonlinear increases 
in spread) and (c) deaccelerating spread indicative of the satu-
ration phase. For example, only one breakpoint located at the 
onset of the saturation phase would indicate type 1 expansion. 
Three breakpoints—2002, 2012 and 2015—were identified (see 
Section 3), however, potentially indicating type 3 expansion. To 
further disentangle a type 2 versus 3 range expansion, we quan-
tified ln(ERR) as a function of time across 1997–2014. For this 
analysis, which was conducted to determine if spread increased 
nonlinearly, data from 2015 onwards were considered part of the 
saturation phase and not included.

Rates of increase in the ERR with time (years; 1997–2018) 
were then characterized using a generalized additive model (GAM) 
in which time was fit as a smoothing function. For this analysis, 
increases in ERR, for example, from 2002 to 2003 and 2003 to 
2004 were paired with time values of ‘2003’ and ‘2004’, respec-
tively. GAMs were fit using the mgcv package (Wood, 2011). We 
caution that county shape and size could influence modelled re-
sults; however, no temporal trends in the size of invaded counties 
were detected (Figure S2) and finer resolution data documenting 
the invasion are not available. Moreover, Siegert et al. (2014) es-
timated radial spread from a network of trees for which year of 
death was reconstructed using dendrochronology, likely a much 
more sensitive and accurate sampling approach than those used 
to detect county level invasions comprising the USDA APHIS data. 
Thus, data from Siegert et al. (2014) were not included in any en-
suing analyses, which focused solely on county level USDA APHIS 
data (2002–2018).

F I G U R E  1   (a) Progression of emerald ash borer invasion in the 
USA at the county level as of 31 December 2018 according to data 
from United States Department of Agriculture, Animal and Plant 
Health Inspection Service. (b) Same as in panel (a), except counties 
with invaded neighbouring counties prior to the year they became 
invaded are depicted in yellow (i.e. adjoining counties) and counties 
without invaded neighbours prior to their invasion are depicted in 
green (i.e. isolated counties)

(a) Counties invaded by EAB

2000

2018

(b) Adjoining and isolated counties

Adjoining
Isolated
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2.2 | Invasion of adjoining and isolated counties

We quantified patterns in the number of counties invaded per year. 
Three separate GAMs were used to estimate the number of newly 
invaded counties per year as a function of a smoothing term for time 
(2003–2018), with one model fit using all counties, another model 
fit to adjoining counties and a third fit to isolated counties. Spread 
distances between counties were estimated by assigning randomly 
spaced points across each county and calculating the minimum dis-
tance between points located in each newly invaded county and 
points located across all previously invaded counties. The number of 
points placed in each county was set to the highest value of either 
one point per 100 km2 or a minimum of 15 total points. The randomly 
spaced points were generated using the spsample() function in the sp 
package (Bivand, Pebesma, & Gómez-Rubio, 2013; Pebesma & Bivand, 
2005) and distances were calculated using the pointDistance() func-
tion from the raster package in r (Hijmans, 2017). This approach pre-
cluded spread distances of zero km into adjacent counties and was 
analogous to methods used by Kovacs et al. (2010) in developing the 
dispersal kernel we used to forecast spread (see below).

Effective management immediately following discovery of a 
newly invading species hinges on reliable forecasts for lengths 
of long-distance jumps. For isolated counties, we estimated the 
M ± 95% confidence limits for jump distances. Moreover, theoretical 
models from Shigesada et al. (1995) provide a useful framework for 
estimating potential jump distances for invaders with type 2 range 
expansion based on the rate of range expansion during the first phase 
of biphasic expansion. Given that spread by EAB closely resembled 
type 2 biphasic expansion (see Section 3), we compared expected 
jump distances, L, with observed mean (±95 CI) jump distances using:

where L is the expected length (km) of long-distance jumps, c is the 
rate (km/year) of expansion during the first phase of biphasic range 
expansion and ts is the time in years from establishment until range ex-
pansion switches to a faster, constant rate (Shigesada et al., 1995). The 
parameter c was estimated using two different approaches: (a) as the 
slope coefficient for a segment spanning 1997–2002 estimated from 
our piecewise regression analysis of county-level data (see Section 3) 
and (b) as the slope coefficient from a regression of radial spread dis-
tances on year (1997–2002) using sub-county level data from Siegert 
et al. (2014). In both instances, slopes and 95% confidence intervals 
were estimated and input into Equation 1. This approach enabled us 
to compare sensitivity of predicted jump distances when using data 
collected at different scales. The parameter ts was assigned a value of 
5 (=2002 − 1997), given that spread accelerated to an approximately 
constant rate following 2002 (see Section 3).

2.3 | Risk of invasion at the county level

We used a Cox proportional hazards model, which enabled the inclu-
sion of time-dependent and time-independent predictors (Therneau, 

Crowson, & Atkinson, 2019; Thomas & Reyes, 2014), to estimate 
time-to-invasion as a function of propagule pressure and habitat in-
vasibility. Similar survival analyses have been used to quantify inva-
sion risk as a hazard function (Hastings et al., 2005; Jules, Kauffman, 
Ritts, & Carroll, 2002). The invasion status for each county was 
treated as time-to-event data in which each county was assigned a 
‘0’ value on an annual basis until invasion occurred at which point a 
‘1’ was assigned.

The inclusion of time-varying predictors is a potentially useful 
approach for analysing invasion data given that invasive range size 
changes through time. The one time-dependent predictor, ‘EAB pres-
sure’, Pj,t, was calculated as:

where Pj,t is the probability of county j becoming invaded from any pre-
viously invaded county i at time t, β was 0.94, α was 0.06, d is distance 
from county i to county j and n includes all invaded counties as of time 
t − 1. Values for dispersal kernel parameters (α and β) were previously 
estimated in an effort to reconstruct county level spread of EAB across 
a smaller geographic distribution in the eastern USA (Kovacs et al., 
2010). Distances between counties in Equation 2 were calculated as 
described above. Similar models have been used to estimate propagule 
pressure and/or spread for EAB (Kovacs et al., 2010; Muirhead et al., 
2006; Orlova-Bienkowskaja & Bieńkowski, 2018).

Additional county-level predictors included density of ash trees 
(m3 of Fraxinus spp. per ha of forested land; ‘AshVolDen’), density 
of non-ash trees (‘NonAshVolDen’), human population density per 
county area in 2010 (individuals per km2; ‘HumPop2010’), and two 
predictors derived from monthly temperature and precipitation data 
(see below). Tree volumes were estimated from USDA Forest Service 
Forest Inventory and Analysis (FIA) plot data. Data were extracted 
using the FIA EVALidator (v. 1.8.0.00; https://apps.fs.usda.gov/
Evali dator /evali dator.jsp) and covered survey periods from 2000 
to 2012. Forested land was defined as land greater than 1 acre in 
size and stocked at least 10% by forest trees of any size, or formerly 
having such tree cover, and not currently developed for non-forest 
uses (https://www.nrs.fs.fed.us/fia/data-tools /state -repor ts/gloss 
ary/). Counties (n = 197, 6.3%) that did not contain forested land 
were assigned ‘0’ for ash and non-ash tree volume. Estimates for 
human population density per county were obtained from the USA 
census (https://www2.census.gov/progr ams-surve ys/popes t/datas 
ets/2010-2017/count ies/total s/).

Monthly climate normals for minimum temperature (°C), max-
imum temperature (°C) and precipitation (mm) were obtained for 
the period 1981–2010 from PRISM at a 4 km × 4 km resolution 
raster across the contiguous USA (PRISM, 2019) such that each 
grid cell in the raster contained 36 data points. We then scaled 
([x – mean]/SD) each of the 36 climate variables and conducted a 
principal components analysis (PCA) at the grid cell level. Rotated 
principal components for each grid cell of the raster were aggregated 
to the county level by averaging values for all cells whose centroids 

(1)L = 2cts,

(2)Pj,t = 1 −

nt−1
∏

i

(

1 − �e−�di,j
)

,

https://apps.fs.usda.gov/Evalidator/evalidator.jsp
https://apps.fs.usda.gov/Evalidator/evalidator.jsp
https://www.nrs.fs.fed.us/fia/data-tools/state-reports/glossary/
https://www.nrs.fs.fed.us/fia/data-tools/state-reports/glossary/
https://www2.census.gov/programs-surveys/popest/datasets/2010-2017/counties/totals/
https://www2.census.gov/programs-surveys/popest/datasets/2010-2017/counties/totals/
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occurred within a given county boundary. This approach reduced di-
mensionality and collinearity of multiple potential predictors into two 
values (‘PC1’ and ‘PC2’); Haynes, Bjørnstad, Allstadt, and Liebhold 
(2013) used an equivalent approach, fitting PCA scores in a regres-
sion framework to quantify climatic effects on landscape dynamics 
of invasive forest insects. The first and second principal components 
explained 59.5% and 22.6%, respectively, of the variation in climate 
variables (Figure S3.1a). Minimum and maximum monthly tempera-
tures had high loadings on the first component whereas precipitation 
had high loadings on the second (Figure S3.2b). Detailed descriptions 
(Table S1) and county level maps (Figure S4) of each predictor are 
provided in Supporting Information.

Non-significant (p < 0.05) terms were removed and the final 
model was used to estimate risk of invasion on an annual basis from 
2019 to 2030 across the contiguous USA. For each county, an-
nual invasion status was determined using a random draw from a 
Bernoulli distribution parametrized with the predicted probability 
of invasion according to our final Cox proportional hazards model. 
Thus, a new probability was predicted for each year × county com-
bination as EAB pressure was updated with changes in the predicted 
invaded range. We ran 1,000 simulations and invasion risk was taken 
as the number of simulations resulting in invasion/1,000 on an an-
nual basis. For all results, point estimates are expressed as M ± SE 
unless stated otherwise.

3  | RESULTS

3.1 | Radial range expansion

Note that results in this section include sub-county level data ag-
gregated to the county level (1997–2003) along with those based on 
county-level USDA APHIS data (2002–2018). Fitting a piecewise re-
gression model to assess changes in the ERR with time (1997–2018) 
indicated that shifts in spread rates occurred at three time points: 
2002, 2012 and 2015 (Figure 2a). The range of EAB expanded at 
14 km/year from 1997 to 2002, 31 km/year from 2002 to 2012, 
56 km/year from 2012 to 2015 and 35 km/year from 2015 onwards 
(Figure 2a). Thus, from 2015 onwards, in accordance with observed 
patterns in the number of counties invaded per year (Figure 3; see 
below), the invasion appeared to have entered the saturation phase.

When analysing ERR from 1997 to 2014 (i.e. before saturation), 
a biphasic piecewise regression provided a superior fit (R2 > 0.99) to 
a linear model (indicative of type 1 expansion) and nonlinear model 
(indicative of type 3 expansion), demonstrating that the invasion of 
EAB has most closely resembled a type 2 range expansion (Figure S5). 
Analysing the incremental increases in the radius per year further 
elucidated this pattern (Figure 2b). On average, annual increments 
in spread were approximately 11 km/year until 2002, followed by an 
increase to an average of 37 km/year from 2003 to 2014. Average 
increases were 43 km/year from 2015 to 2018; however, the largest 
single-year increase occurred in 2014 (58 km) and was followed by a 
decrease in each year to 31 km in 2018 (Figure 2b).

3.2 | Invasion of adjoining and isolated counties

Note that results in this section and all subsequent sections were 
derived solely from county-level USDA APHIS data. EAB had in-
vaded 1,041 counties as of 2018, with six initial counties identified 
as invaded in 2002. From 2003 onwards, 65 ± 10 counties have 
been invaded per year (range: 16–134 counties; Figure 3a). Of those 
counties, 50 ± 9 per year were adjoining. After 2002, the lowest 
number of newly invaded adjoining counties in a given year was six, 
occurring in 2003 (Figure 3b). The number of newly invaded adjoin-
ing counties increased nonlinearly to a maximum of 115 in 2016. In 
2017 and 2018, however, the number of newly invaded adjoining 
counties declined to 88 and 62, respectively. An average of 14 ± 2 
isolated counties became invaded each year from 2003 to 2018, 

F I G U R E  2   Patterns of historical emerald ash borer spread in 
the USA according to county-level invasion data from Siegert et al. 
(2014; white circles) and United States Department of Agriculture, 
Animal and Plant Health Inspection Service (red circles). Years 2002–
2004 included some data from Siegert et al. (2014) because county 
invasion status was recorded as the earliest year reported between 
the two data sources (see main text). Grey circles indicate changes 
in spread rates identified by piecewise regression. White, black and 
grey circles were analysed, whereas red circles are provided for 
comparison only. (a) Effective range radius (ERR =

√

Area invaded∕�)  
as a function of time (1997–2018). Dashed lines are linear models 
for each interval of time (1–4) between breakpoints (grey dots). 
(b) Annual increase in ERR as a function of time. For example, the 
increase in the radius from 2002 to 2003 was ~35 km and was 
assigned a time value of 2003. Generalized additive model (GAM) 
statistics (dashed line) for the term s(time): edf = 5.97, refdf = 7.09, 
F = 6.74, p = 0.0008; deviance explained = 84.6%
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totalling 231 jumps (Figure 3c). The lowest and highest numbers of 
newly invaded, isolated counties were five, occurring in 2007, and 
32, occurring in 2014.

The average distance between newly invaded counties and 
the closest invaded county was 28 ± 2 km (Figure 4a), although 
we caution that this distance is largely determined by our random 
point sampling procedure used to estimate distances between 

adjoining counties. Long-distance jumps into isolated counties av-
eraged 93 ± 7 km (95% CI: 80−106; Figure 4b) but distances jumped 
did not change significantly through time (Figure 4c). The farthest 
jump to date by EAB was made in 2013 when the beetle invaded 
Boulder County, Colorado (Figure 1), ~800 km from the nearest 
previously invaded county (Platte County, MI) and ~1,700 km 
away from Wayne County, MI. Otherwise, 2%, 6%, 10% and 29% 
of jumps have surpassed 400, 300, 200 and 100 km, respectively 
(Figure 4b).

F I G U R E  3   Numbers of counties invaded by emerald ash borer 
in the USA from 2003 to 2018 according to data from United 
States Department of Agriculture, Animal and Plant Health 
Inspection Service. Dashed lines in all panels are from generalized 
additive models (GAMs). (a) Number of counties that became 
invaded per year as a function of time. GAM statistics for the term 
s(time): edf = 4.74, refdf = 5.75, F = 60.82, p < 0.0001; deviance 
explained = 98.4%). (b) Same as in (a), but only adjoining counties 
are depicted. GAM statistics for the term s(time): edf = 5.14, 
refdf = 6.16, F = 57.38, p < 0.0001; deviance explained = 98.7%. 
(c) Same as in (a), but only isolated counties are depicted. GAM 
statistics for the term s(time): edf = 7.64, refdf = 8.51, F = 4.84, 
p = 0.0217; deviance explained = 81.5%
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F I G U R E  4   Spread distances by emerald ash borer in the USA 
at the county level from 2003 to 2018 according to data from 
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Expected lengths of long-distance jumps, L (Equation 1), over- 
or under-estimated observed jump distances (93 km) depending 
on the data used to estimate c. Using county-level data to estimate 
spread rates from 1997 to 2002 (Figure 2a) resulted in predicted 

long-distance jumps of 138 km (95% CI 98−178), or 45 km farther 
than observed. Using sub-county level data and regressing ERR on 
time from 1997 to 2002 indicated that radial expansion occurred 
at 4.7 km/year (slope: 4.74 ± 0.85, t4 = 5.56, p = 0.0051; 95% CI: 

Predictor Estimate SE Z p
Hazard ratio 
(95% CIa )

(a) Full model (AIC: 13,244)

EAB pressure 4.05 0.10 39.49 <0.0001 60 (49–74)

HumPop2010b  0.22 0.02 9.23 <0.0001 1.25 (1.19–1.31)

AshVolDenb  0.11 0.03 3.49 0.0005 1.11 (1.05–1.18)

NonAshVolDenb  0.37 0.04 8.56 <0.0001 1.45 (1.33–1.57)

PC1 −0.05 0.01 −4.17 <0.0001 0.95 (0.93–0.98)

PC2 0.01 0.03 0.35 0.72 1.01 (0.95–1.07)

(b) Reduced model (AIC: 13,242)

EAB pressure 4.10 0.10 39.67 <0.0001 60 (49–74)

HumPop2010b  0.22 0.02 9.57 <0.0001 1.25 (1.20–1.31)

AshVolDenb  0.11 0.03 3.51 0.0005 1.11 (1.05–1.18)

NonAshVolDenb  0.37 0.04 9.21 <0.0001 1.45 (1.34–1.57)

PC1 −0.04 0.01 −4.16 <0.0001 0.95 (0.93–0.98)

aChanges in expected hazards. For example, in model (a) and holding all else equal, a one unit 
increase in ln-transformed human population density was associated with a 1.25× (i.e. 25%) 
increase in the expected hazard, taken here as an estimate for the risk of invasion. 
bln-transformed. 

TA B L E  1   Summary statistics from 
a Cox proportional hazards model 
predicting time-to-invasion, indicative of 
risk of invasion, by emerald ash borer at 
the county level across the contiguous 
USA. Model was developed using county-
level invasion data from United States 
Department of Agriculture, Animal and 
Plant Health Inspection Service (2002–
2018). Detailed variable descriptions are 
provided in Table S1

F I G U R E  5   Predicted invasion risk for 
emerald ash borer at 2-year increments 
from 2022 to 2030 in the USA. Probability 
of invasion for each county was estimated 
on an annual basis using the model in 
Table 1b
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2.4−7.1). Substituting the estimated slope coefficient and associ-
ated confidence limits as c in Equation 1 predicted jump distances 
of 47 km/year (95% CI: 24−71), or 46 km shorter than observed jump 
distances. Thus, county-level data predicted jump distances >90 km 
farther than sub-county level data.

3.3 | Risk of invasion at the county level

Analyses of time-to-invasion data using a Cox proportional haz-
ards model identified EAB pressure as the most significant predic-
tor. Indeed, spatially proximate propagules were substantially more 
important for predicting invasion risk (Z = 39.49) than other predic-
tors we considered (Z ≤ 9.23; Table 1a). In addition to EAB pressure, 
human population density was positively correlated with risk of 
invasion (Table 1). Forest composition also appeared important, as 
counties with higher volumes of ash and non-ash hosts were more 
likely to become invaded. PC1, which had high loadings from temper-
ature, was negatively associated with time-to-invasion. PC2, which 
had high loadings from precipitation, was positively associated with 
time-to-invasion but this relationship was not statistically significant 
(Table 1a). The model with PC2 removed (Table 1b) was used to fore-
cast risk of invasion and indicated that, outside of continued range 
expansion in the eastern United States, areas surrounding Boulder 
County and heavily populated areas of northwestern Washington 
were the most at risk for future invasion (Figure 5).

4  | DISCUSSION

Effective management of biological invasions relies on knowledge 
of spread rates and the factors that govern them (Liebhold & Tobin, 
2008). Quantifying patterns of range expansion by EAB indicated 
that the invasion has proceeded through establishment and expan-
sion phases (Shigesada & Kawasaki, 1997), similar to invasions by 
other forest insects in North America (Liebhold & Tobin, 2006). The 
invasion, which has been characterized by exceptionally frequent 
long-distance jumps (Figure 4b,c), now appears to be reaching the 
onset of the saturation phase, at least for the eastern USA, indicated 
by decreases in both incremental spread (Figure 2b) and the number 
of newly invaded counties (Figure 3a) per year from 2015 onwards. 
Slowing invasion rates may be due to exhaustion of high risk counties, 
geographical constraints from the Atlantic coast, and/or constraints 
from less suitable habitat to the south where ash species are less 
common (MacFarlane & Meyer, 2005) and temperatures are warmer 
(Liang & Fei, 2014). However, there remain large areas of suitable 
habitat in North America that have not yet been invaded (Figure 5) 
and accelerating spread rates at the sub-county level may still occur.

There was considerable variability in the distances of annual 
increments of spread (Figure 2b). We attribute slowing spread in 
recent years to saturation in the eastern USA, but decreases in in-
cremental spread from 2002 to 2004 (Figure 2b) might also indicate 
positive effects of quarantines on ash firewood and nursery stock 

coupled with increased outreach following the beetle's discovery in 
2002. Slowing spread in the early part of the invasion could have 
also resulted from the 2008 economic recession inhibiting travel, 
changes in travel costs, weather or other factors. However, spread 
rates in 2002–2004 may have also been artificially heightened due 
to intense survey efforts immediately following the initial detection, 
which could have unearthed several satellite populations that were 
established several years prior to detection (Figure 2b).

Observed jump distances were also quite variable (Figure 4b,c) 
and comparing predicted versus observed jump lengths provided 
mixed results. Predicted lengths were influenced by the scale of 
data used to estimate parameter c in Equation 1: use of sub-county 
level data underestimated distances, whereas use of county-level 
data overestimated distances. Shigesada et al. (1995) assumed con-
stant jump distances, which—given the inherent variability of spread 
(Melbourne & Hastings, 2009) and variability in jump distances ob-
served here (Figure 4c)—could limit the utility of Equation 1 for fore-
casting invader spread rates. Moreover, there were several jumps 
beyond 100 km (Figure 4b), and use of sub-county level data would 
fail to predict such events. Coupling data collected at an equivalent 
scale—the county level for the EAB invasion—with models developed 
by Shigesada et al. (1995), however, could produce conservative es-
timates of long-distance jump lengths for a variety of organisms, 
including wood borers, early in an invasion. This approach could in-
form trapping and delimitation surveys, and when qualitatively com-
bined with other factors that influence county invasion risk (Table 1), 
could help municipalities anticipate and prepare for invader arrival.

The positive effects of host (Fraxinus spp.) and non-host tree 
densities on invasion risk (Table 1) suggest that the availability of 
ash resources in rural forests or density of tree cover might affect 
population growth and/or dispersal of EAB. Previous work has im-
plicated ash density in facilitating spread (Prasad et al., 2010) and 
stand-level investigations suggest that beetles prefer to disperse to 
areas with high densities of ash phloem (Mercader, Siegert, Liebhold, 
& McCullough, 2011). The finding that non-ash tree density facili-
tates spread may be attributable to preference of beetles to disperse 
into or across forested areas and/or increased risk of firewood 
movement between forested areas (e.g. campground to campground 
movement).

In addition to rural forests, urban forests (e.g. structure and 
composition) can mediate invasion dynamics (Colunga-Garcia, 
Haack, & Adelaja, 2009; Colunga-Garcia, Haack, Magarey, & 
Margosian, 2010; Paap, Burgess, & Wingfield, 2017) and cer-
tainly played an important role in facilitating invasion of some 
counties. For example, ash in Boulder County, CO only exists in 
urban plantings. Urban forest data are becoming more available 
(Koch, Ambrose, Yemshanov, Wiseman, & Cowett, 2018), and fu-
ture forecasts of EAB dynamics and other pests will likely be im-
proved by their consideration. We note, however, that proximity 
to invaded areas is the main driver of this invasion (Table 1), and 
thus, despite the absence of rural ash, some counties in Colorado 
are at relatively high risk (Figure 5). Several counties in the Pacific 
Northwest are at elevated risk due to relatively high densities of 
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rural ash, a cooler climate, and high human population densities. 
Conversely, some counties in the southern USA are at a relatively 
lower risk owing to warmer temperatures and/or lower densities 
of humans despite having substantial volumes of Fraxinus spp. in 
their rural forests.

Several important drivers underlying patterns of range ex-
pansion by EAB are not fully understood. Establishments of sub-
county and county level satellite populations are presumably 
facilitated by movement of firewood and nursery stock (Cappaert, 
McCullough, Poland, & Siegert, 2005), but prominence of satel-
lite populations might also be due to humans planting ash species 
in urban forests as well as the increased detectability of beetle 
populations in urban versus natural forests. The transition from 
the establishment phase into the expansion phase may have been 
a function of increased prevalence of EAB in domestic invasion 
pathways, perhaps after ash trees are noticeably affected. That 
is, dead or moribund trees are presumably more likely to be cut 
and distributed as firewood. Lastly, some of our findings and fore-
casts might have been influenced by the availability and inclusion 
of comparable invasion data from Canada. Cold temperatures can 
reduce population growth (Macquarrie, Cooke, & Saint-Amant, 
2019) and warmer temperatures might inhibit spread (Table 1; 
Figure 5). Indeed, mechanistic understandings of how tempera-
ture-mediated survival (Crosthwaite, Sobek, Lyons, Bernards, & 
Sinclair, 2011) and flight (Fahrner, Lelito, & Aukema, 2015), among 
other factors, influence spread are needed to improve forecasts.

Comparing observed range expansion with predictions from 
theoretical models, in conjunction with spread forecasts, could 
help in planning and justifying management efforts. For example, 
type 2 range expansion typically results when isolated populations 
are founded following long-distance dispersal events that (a) orig-
inate from the periphery of the range and (b) travel only moderate 
distances (Shigesada et al., 1995). Thus, these findings indicate 
the continued importance of early detection of range expansion 
events and management on the periphery of the range to slow 
spread. Early detection and local eradication of satellite popula-
tions would yield considerable economic benefits (Kovacs et al., 
2011), but lack of sensitive trapping techniques, a major focus of 
ongoing research (Poland, Petrice, & Ciaramitaro, 2019), renders 
this approach impractical to implement at a continental scale at 
present. Nonetheless, surveys and quarantines remain the most 
common landscape-level management tactics, and enhanced sur-
vey efforts could be justified in high risk counties such as those 
predicted in Colorado and Washington (Figure 5). Following de-
tection, however, an integrated pest management program com-
bining insecticide treatments, girdled trap trees and biological 
control can inhibit population growth and reduce the spread of 
impacts (McCullough, 2019).
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