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1  |  INTRODUC TION

In light of the unprecedented number of introductions of non-native 
species (Mack et al., 2000), one of the most pressing research needs 
for evolutionary biologists and ecologists is to identify the factors 
that influence the establishment of species that have negative eco-
logical and economic impacts (Suarez & Tsutsui, 2008). Multiple 
introductions (Dlugosch & Parker, 2008), including cryptic ones 
(Roman, 2006), are thought to play an important role in providing 
the diversity required to overcome genetic bottlenecks associated 
with the establishment of populations in novel ecosystems (Darling 
et al., 2008; Facon et al., 2008). However, when multiple geographi-
cally disjunct populations of an invasive species become established, 

it is often unclear whether the species is a serial invader (i.e., each 
population was introduced independently) or whether the separate 
populations represent establishment from within the invasive re-
gions under a “stepping stone” model (see Cerwenka et al., 2014; 
Lombaert et al., 2010; Oficialdegui et al., 2019; Tonione et al., 2011 
for examples). Identifying which mode of introduction occurred (se-
rial invader or stepping stone) is therefore necessary for the study 
of genetic and ecological factors that drive invasion success as inde-
pendent populations are required for robust hypothesis-based test-
ing (Kang et al., 2007) – information that is also crucial for focusing 
management efforts (Floerl et al., 2009).

When reconstructing regions of origins, and determining the 
numbers of introductions of a focal organism, historical records 
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should be referenced and robust genetic analyses performed (e.g., 
Lynch & Saltonstall, 2002; Schwenk et al., 2008). Unfortunately, 
historical records may not exist for all introduced species, and it is 
not uncommon for an introduced species to go unnoticed for long 
periods of time before becoming an invasive pest. Genetic analyses 
have the ability to independently reconstruct regions of origins, and 
in some instances provide estimates for the times of introductions 
(Auger-Rozenberg et al., 2012; Barker et al., 2017; Javal et al., 2019; 
Lesieur et al., 2019; Lombaert et al., 2010; Oficialdegui et al., 2019; 
Zardus & Hadfield, 2005). However, the power of these analyses is 
constrained by numerous factors including the underlying genetic 
structure of the species, the number of generations since the intro-
duction, the effective size of the founding population(s), the strength 
of the bottleneck the population(s) experienced, and/or the pres-
ence of differing selective pressures in the native and introduced 
regions. As such, one common finding is for introduced populations 
to be reconstructed as genetically “distinct” from all sampled source 
populations (e.g., Barker et al., 2017; Wu et al., 2015). This result 
could be due to the tendency for commonly implemented Bayesian 
genetic clustering algorithms to over-split populations (Frantz et al., 
2009) or an artefact generated during the interpretation of results 
(Lawson et al., 2018).

Here, we explore the invasion history of the economically 
damaging defoliator the winter moth, Operophtera brumata L. 
(Lepidoptera: Geometridae). In its native distribution across Europe, 
North Africa, and western Asia, winter moth defoliates a wide 
range of tree and shrub species (Ferguson, 1978). Populations of 
winter moth in Europe have been used as a model for the study of 
population ecology (Varley et al., 1973), and this species has been 
critically important for understanding the importance of spatial-
synchrony (Jepsen et al., 2009) and synchrony of hatch with host 
tree bud-burst (Varley & Gradwell, 1960; Visser & Holleman, 2001) 
– a factor studied in other invasive defoliator populations as well 
(e.g., Hunter & Elkinton, 2000). The invasion history of winter moth 
in North America has been well documented, with populations of 
winter moth first reported in the 1930s in Nova Scotia (Embree, 
1967; MacPhee, 1967; MacPhee et al., 1988), the 1950s in Oregon 
(Kimberling et al., 1986), the 1970s in British Columbia (Gillespie 
et al., 1978), and in the 1990s in coastal regions of northeastern 
United States (Elkinton et al., 2010, 2014). These populations are 
thought to have been introduced by the movement of infected nurs-
ery stocks (Ferguson, 1978). However, where in Eurasia these popu-
lations were introduced from, and whether these represent a single 
introduction that was then spread across North America, or multiple 
introductions (or some combination of these) is unclear. A genetic 
examination of the invasion history of winter moth in North America 
was previously conducted, but was unable to discern these patterns 
due to low levels of mitochondrial DNA diversity in both introduced 
and native samples (Gwiazdowski et al., 2013).

To overcome this limitation, we examined the invasion history 
of winter moth in North America using microsatellite loci ampli-
fied from individuals collected across its native and introduced re-
gions. Here, we specifically examine how many times winter moth 

was introduced to North America, and when possible, determine 
the specific source location. Lastly, we comment on the effects of 
genetic bottlenecks on the establishment of invasive winter moth 
populations.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Winter moth males were collected using pheromone-baited traps 
(Elkinton et al., 2010, 2011) from locations in Europe, North Africa, 
and western Asia, as well as from the four regions in North America, 
where established winter moth populations have been recorded 
(Nova Scotia, British Columbia, Oregon, and the northeastern United 
States). In addition, larval individuals and adult females, which are 
wingless and do not fly, were opportunistically collected (see Table 
S1 for complete collection information, including life stages, and 
Figure 1).

After collection, adult moths were placed in glassine envelopes 
(Uline Corporation) and stored at either –20 or –80°C, and larval 
caterpillars were placed in 95% ethanol and stored at –20°C. For 
many of the moths included in our analysis (1361 out of 1839), col-
lection and genotype information have been previously reported by 
us in studies of winter moth population structure in the native or in-
troduced ranges (Andersen et al., 2017; Andersen, Havill, Broadley, 
et al., 2019; Andersen, Havill, Mannai, et al., 2019; Andersen et al., 
2021; see Table S1).

2.2  |  Microsatellite genotyping

Genomic DNA was extracted using the EZNA Tissue DNA extrac-
tion kit (Omega Bio-tek), following the manufacturer's protocols. 
For adult males, prior to extraction, the wings and genitalia were 
removed and stored as vouchers. For adults and larvae, the remain-
ing body parts were then homogenized, using 3/16” stainless steel 
beads (GlenMills Inc.) with a FastPrep-24 sample homogenizer (MP 
Biomedicals). After extraction, 24 microsatellites including 15 dinu-
cleotide, 14 trinucletotide, two tetranucelotide, and one pentanu-
cleotide loci (see Havill et al., 2017 for sequence information and 
amplification methods) were genotyped at the DNA Analysis Facility 
on Science Hill at Yale University, using a Thermo Fisher Scientific 
3730xl DNA analyser. Fragment lengths were determined using 
the microsatellite plugin in the software program geneious v. R11 
(https://www.genei​ous.com) in comparison to the GeneScan 500 
LIZ size standard (Thermo Fisher Scientific).

Only individuals from which ≥20 microsatellite loci were success-
fully amplified were included in the analyses. In addition, since winter 
moth has been reported to hybridize with Bruce spanworm (O. bruce-
ata Hulst) in all of its invaded regions (Andersen, Havill, Broadley, 
et al., 2019) the data set was further filtered to remove hybrids by 
comparing assignment probabilities based on 12 microsatellite loci 

https://www.geneious.com
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that coamplify in both species (described below). Microsatellite gen-
otypes are provided as a tab-delimited structure-formatted supple-
mental file titled “WinterMothOriginsStructure.txt”.

2.3  |  Population genetics statistics

For each locality in Europe, North Africa, and western Asia from 
which ≥10 winter moth individuals were collected, standard popula-
tion genetic statistics were estimated from the microsatellite geno-
types scores, using genodive (Meirmans & Van Tienderen, 2004). In 
the introduced region, we prioritized sampling a small number of in-
dividuals from a large number of locations in each region to obtain 
a broader representation of genetic diversity (see Suarez & Tsutsui, 
2008). Null allele frequencies for each locus were estimated using 
Dempsters EM method as implemented in genepop (Raymond & 
Rousset, 1995; Rousset, 2008). In addition, for each invasive winter 

moth population, we counted the number of alleles found in both the 
introduced and source populations for each locus.

2.4  |  Bayesian sample assignment

To assign individuals to genetic clusters, a two-step approach was 
taken. First, genotypes for all North American samples were added 
to the data set presented in Andersen, Havill, Broadley, et al. (2019), 
and the probability of assignment (Q) of sampled individuals to one 
of two distinct genetic clusters (K) representing either pure win-
ter moth or pure Bruce spanworm was calculated using structure 
v.2.3.2 (Falush et al., 2003; Pritchard et al., 2000). These analyses 
were based on the analysis of 12 microsatellite loci that coamplify 
between the two species, and ten independent analyses were run 
using the admixture model, correlated allele frequencies, and de-
fault settings, with random starting values, runtimes of 1,000,000 

F I G U R E  1  Winter moth sample 
localities in the Pacific Northwest (top 
left); northeastern United States and 
Nova Scotia (top right); and in Europe, 
North Africa, and western Asia. Sample 
localities are coloured following the 
results presented in Figure 3
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generations, and burnin periods of 100,000 generations. Results 
were then summarized across runs using clumpak (Kopelman et al., 
2015), and hybrid individuals were identified as those receiving 
scores of Q < 0.75 to both the Bruce spanworm and the winter moth 
genetic clusters. Hybrid individuals were then removed from the 
data set, and the filtered data set (≥20 loci for each individual) was 
used to estimate values of Q for all individuals (both native and intro-
duced regions) for values of K = 2 through K = 14 in structure using 
the run parameters described above. To determine the optimal num-
ber of clusters present in the data set, the ∆K statistic (Evanno et al., 
2005) was calculated in structureharvester (Earl & vonHoldt, 2012), 
and independent runs were again summarized for major and minor 
partition schemes using clumpak. Additional analyses also were con-
ducted for a data set that included only the winter moth individuals 
from North America, with values of Q estimated for each individual 
to clusters of K = 2 through K = 10 as described above.

For the full data set that included native and invasive winter 
moth populations, each value for ∆K with a distinct peak repre-
senting a positive rate of change identified using structureharvester, 
the summarized “popfile” of cluster membership coefficients for 
the major mode calculated in clumpak was used to create a distance 
matrix using the “dist” function in R v. 4.0.0 (R Core Team, 2020). 
The resulting matrices were then used to calculate “NeighborNet” 
networks using splitstree v.4.14.2 (Huson & Bryant, 2006), and the 
outputs were examined to identify geographic patterns.

2.5  |  Approximate Bayesian computation

To determine whether populations of North American winter moth 
in distinct geographic regions were the result of a single introduc-
tion to Nova Scotia (the first introduced region recorded in North 
America) that was then subsequently spread to additional locations 
in North America (i.e., following a stepping stone model), or whether 
each invasive population represents a novel introduction (i.e., a serial 
introduction model), or some combination of these, we compared 
the relatedness of each invasive population to each other and to the 
“Eastern European”, “Central European”, and “Western European” 
winter moth genetic clusters previously reported in Andersen et al. 
(2017, 2021) using approximate Bayesian computation (ABC), as 
implemented in the software program diyabc v.2.1.0 (Cornuet et al., 
2008). For these analyses, 30 individuals were selected randomly 
from each of the three European clusters and from each of the four 
invasive regions. Ideally, comparisons of all possible scenarios that 
included representatives from all native clusters and invasive regions 
would be performed, however; the number of possible scenarios in-
creases at an unmanageable rate with each population added (e.g., 
there are 10,395 possible “scenarios” in a seven-population analysis). 
Therefore, we utilized an approach similar to “tournament-ABC” as 
presented in Stone et al. (2017).

As in Stone et al. (2017), we use a series of hierarchical ABC 
analyses where subsets of scenarios are first compared in “tour-
naments” to reduce computational complexity. Here, we first fixed 

the relationship among the Eastern, Central, and Western European 
genetic clusters following Andersen et al. (2017), where it was de-
termined that the Central European cluster was probably the result 
of admixture between the Eastern and Western clusters following 
the post-glacial recolonization of the European continent after the 
last glacial maximum. To this topology, we also added an unsampled 
“ghost” population to represent a possible extra-European origin for 
each invasive population. Tournament scenarios were then built se-
quentially, following the documented order of the invasion history 
(graphical representations of scenarios from each tournament are 
presented in Figures S1–S4). The first tournament compared four 
scenarios where the Nova Scotia population could have originated 
from one of the European clusters or the extra-European “ghost” 
population. In the second tournament, five scenarios were com-
pared testing the relationship of the Oregon population to each 
putative source population with the relationship of the Nova Scotia 
population set based on the “best” scenario from Tournament 1. In 
the third tournament, six scenarios were compared testing the rela-
tionship of the British Columbia population to each putative source 
population with the relationships of the Oregon and Nova Scotia 
populations set based on the “best” scenario from Tournament 2. 
Finally, in the fourth tournament, seven scenarios were compared 
testing the relationship of the Northeastern United States popula-
tion to each putative source population with the relationship of the 
British Columbia, Oregon, and Nova Scotia populations set based on 
the “best” scenario from Tournament 3.

For each tournament, a reference table of 1,000,000 genera-
tions per scenario was generated. Under each scenario we included 
multiple parameters to allow for changes in population sizes, fol-
lowing splitting/merging events, include genetic bottlenecks during 
the introduction of each invasive population (modeled following 
Lombaert et al., 2014), utilize default mutation model parameters, a 
minimum mean mutation rate of 1 × 10−5, and the maximum values 
for the mean and individual locus coefficient P’s were both set to 
1.0. As per Andersen et al. (2017, 2021), we removed four loci with 
especially large allelic ranges (02339, 00925, 02191, and 12042) to 
improve the shape of the cloud of simulated data sets. We calculated 
three, one sample summary statistics (mean number of alleles, mean 
genetic diversity, and mean size variance) and three two sample 
summary statistics (FST, classification index, and [dμ]2 distance). For 
each tournament, the scenario representing the ancestral origin of 
each invasive population was determined by comparing the results 
from the Logistic Regression test implemented in diyabc based on 
comparisons of 1% of simulated data sets (~10,000) closest to the 
observed data. Model checking for each tournament was performed 
by calculating the type I error rate for the “best” scenario from 
each tournament and type II error rates from all other scenarios in 
each tournament using the Evaluate Confidence in Scenario Choice 
command in diyabc under the Prior Based Error model following the 
Scenario Specific approach with parameters being drawn from the 
prior distribution and 500 pseudo-observed test data sets analysed 
for each scenario under each tournament. Prior distributions for all 
parameters in all tournaments are presented in Table S2.
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3  |  RESULTS

3.1  |  Microsatellite genotyping

In total, we genotyped 1839 individuals, and after filtering to in-
clude only individuals with genotype scores from ≥20 microsatellite 
loci, 1588 samples were retained for subsequent analyses. When 
the North American samples were analysed using the 12 micros-
atellite loci that co-amplify between Bruce spanworm and winter 
moth, four individuals were classified as being Bruce spanworm 
and four individuals were identified as probable hybrids. The final 
data set therefore included 1580 pure winter moth individuals, of 
which 1543 were adult males, one was an adult female, and 36 were 
larvae. For the data set that included Bruce spanworm and winter 
moth individuals, the average probability of assignment score for 
Bruce spanworm individuals was 0.9878  ±  0.0016, and the aver-
age probability of assignment score for winter moth individuals was 
0.9935 ± 0.0011. The geographic locations of all included samples 
are presented in Figure 1.

3.2  |  Population genetics statistics

Standard population genetic statistics were calculated for 53 popu-
lations from the native distribution of winter moth, as well as from 
each of the four invasive North American populations (Table S3). In 

addition, we calculated these same summary statistics for each of 
the European genetic clusters presented in Figure 1, and compare 
these results to the diversity observed in the random sub-samples 
for the diyabc analyses (Table 1). Populations had on average 7.8 al-
leles per locus (± 1.71 alleles per locus), with the invasive populations 
having equal to, or greater allelic diversity than the native popula-
tions (average of 8.06 ± 2.05 alleles per locus). The greatest allelic 
diversity was observed in the population from Pančevo, Serbia (av-
erage of 12.04 alleles per locus), and the population with the lowest 
allelic diversity was Reykjavík, Iceland (average of 3.42 alleles per 
locus). As per previous winter moth population genetic analyses, all 
populations showed evidence of deviations from Hardy-Weinberg 
equilibrium (p < 0.05 for all; Table S3). The average amount of miss-
ing data per locus was 4.12%, with locus 02191 having the most 
missing data (15.3%) and locus 32985 having the least (0.4%). The 
British Columbia population displayed the greatest proportion of al-
leles shared with its source European lineage (0.54; Table 2), while 
the Oregon population had the fewest (0.33; Table 3).

3.3  |  Bayesian sample assignment

On average, negative log-likelihood scores for the independent 
Structure runs increased from K = 2 through K = 13, before decreas-
ing at K = 14 (Figure S5). Based on the ∆K method implemented in 
structureharvester, the optimal partition scheme was determined to 

Population clusters n Num
Eff_
num Ho Hs GIS HWE

Eastern Europe 288 21.3 6.2 0.583 0.738 0.211 0.001

Central Europe 412 21.7 5.1 0.621 0.742 0.163 0.001

Western Europe 422 18.1 4.1 0.547 0.672 0.186 0.001

Spain 37 7.4 3.2 0.500 0.591 0.154 0.001

Tbilisi, Rep. Georgia 28 7.7 3.6 0.519 0.590 0.12 0.001

Reykjavík, Iceland 27 3.4 2.0 0.359 0.414 0.134 0.001

Orti, Italy 26 8.3 4.3 0.592 0.670 0.117 0.001

Mzara Forest, Tunisia 17 4.8 2.8 0.45 0.488 0.078 0.010

Nova Scotia 89 7.4 3.0 0.481 0.610 0.211 0.001

British Columbia 85 10.9 4.1 0.568 0.689 0.175 0.001

Oregon 18 6.0 3.2 0.427 0.656 0.349 0.001

Northeastern United 
States

124 8.0 3.1 0.522 0.633 0.175 0.001

Subsamples

Eastern Europe 30 8.2 3.8 0.534 0.661 0.192 0.001

Central Europe 30 9.3 4.6 0.609 0.718 0.152 0.001

Western Europe 30 10.7 5.7 0.568 0.744 0.237 0.001

Nova Scotia 30 5.8 2.9 0.485 0.604 0.198 0.001

British Columbia 30 7.5 3.9 0.559 0.682 0.181 0.001

Northeastern 
United States

30 1.0 2.9 0.496 0.598 0.171 0.001

Note: Population genetic summary statistics are presented for all sampled populations in Table S2.

TA B L E  1  Genetic summary statistics 
for winter moth (Operophtera brumata) 
genetic groups (as per Figure 1) including 
the number of individuals sampled per 
population (n), the average number of 
alleles per locus (Num), the effective 
number of alleles per locus per population 
(Eff_num), the observed heterozygosity 
(Ho), the expected heterozygosity (Hs), the 
inbreeding coffecient (GIS), and whether 
or not the population showed significant 
deviation from Hardy-Weinberg 
equilibrium (HWE)
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be K = 3 (Figure S6). However additional peaks, potentially repre-
senting additional partition schemes, were detected at K = 6, K = 8, 
and K  =  13. Individual probabilities of assignment (Q) for major 
modes for values of K = 3, K = 6, K = 8, and K = 13 (Figure 2) show the 
clustering of the invasive populations relative to those in the native 
range. Major modes for values of K = 2 through K = 1, and the num-
ber of independent runs associated with each mode are presented 
in Figure S7. Sequentially, at K  =  2, all eastern European samples, 
the samples from Tunisia and southern Italy, and the samples from 
the northeastern United States were assigned to one cluster, while 
all other samples were assigned to a second. At K = 3, the samples 
from the northeastern United States emerged as a unique cluster. At 
K = 4, the samples from Nova Scotia emerged as a unique cluster. At 
K = 5, the samples from Central Europe and British Columbia were 
separated from those from Western Europe. At K = 6 and K = 7, the 
samples from remote locations (i.e., Iceland, Tunisia, southern Italy, 

Georgia) received partial assignment to novel clusters. At K = 8, the 
samples from British Columbia emerged as a unique cluster. At K = 9, 
the samples from southern Italy and Georgia emerged as unique 
clusters. At K = 10, the samples from Iceland emerged as a unique 
cluster. At K = 11, the samples from northern Fennoscandia emerged 
as a unique cluster. At K = 12, the samples from Oregon emerged as a 
unique cluster, and finally at K = 13 and K = 14 no additional biogeo-
graphic structuring was observed. A summary of the biogeographic 
patterns based on the distance matrix analysis of the population 
membership coefficients (structure “popfiles”) for K = 6, K = 8, and 
K = 13 are presented graphically in Figures S8, Figure 3, and Figure 
S9, respectively.

For the analysis that included only individuals from the introduced 
populations, the negative log-likelihood scores for the independent 
structure runs increased from K = 2 through K = 5, (Figure S10), and 
based on the ∆K method implemented in structureharvester, the 

Locus

Central 
Europe Nova Scotia British Columbia Northeastern U.S.

N Alleles Shared Private Shared Private Shared Private

01619 7 3 0 5 0 3 0

02339 14 4 3 7 0 5 0

28247 37 13 0 19 0 15 0

34463 26 14 0 20 0 8 0

07650 28 7 1 11 0 8 0

29309 18 7 0 9 0 8 0

02565 11 5 0 9 0 6 0

32985 7 3 1 4 0 3 1

00952 55 7 2 19 3 10 0

03475 7 3 0 3 0 4 2

12853 10 6 1 6 0 3 0

31399 17 7 0 12 1 5 1

02191 40 9 4 9 5 11 2

00672 25 7 0 13 1 11 1

01585 22 7 0 11 0 10 0

24979 19 5 1 8 0 6 0

12042 59 7 0 24 2 11 0

24011 26 9 0 13 1 8 0

03280 15 7 0 10 0 4 0

18760 11 6 0 7 0 6 0

05159 18 5 0 10 5 9 1

16696 13 4 0 6 1 7 0

03270 10 5 6 7 1 6 4

01762 25 9 1 10 3 10 3

Average 
ratio

0.36 0.54 0.39

Note: Statistics include the number of alleles in the source population (N Alleles), the number 
of alleles shared between each invasive population and the source population (Shared), and the 
number of alleles found in each invasive population but not in the source (Private). The average 
ratio of the number of shared alleles in each invasive population compared to the number of alleles 
in the source population is presented in bold.

TA B L E  2  Comparisons of allelic 
diversity in invasive populations of 
Opterophtera brumata in North America 
and their Central European source 
population as estimated using diyabc
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optimal partition scheme was determined to be K = 3 (Figure S11). At 
K = 2, nearly every individual in the Northeastern United States was 
assigned to one distinct genetic cluster, while all of the individuals 
from all of the other invasive locations were assigned to another. At 
K = 3, all of the Nova Scotia individuals emerged as a distinct cluster, 
and at K = 4, the British Columbia and Oregon individuals emerged 
as distinct clusters at K = 5, the British Columbia individuals were 
assigned to two clusters, and at increasing values of K, the British 
Columbia and the Oregon samples were increasingly assigned ad-
mixed assignment scores (Figure S12).

3.4  |  Approximate Bayesian computation

Tournament comparisons of invasion scenarios indicated that each 
of the four invasive populations in North America were more closely 
related to populations from Europe than to each other, or to an un-
sampled extra-European “ghost” population, suggesting four separate 

introduction events from Europe for winter moth (Figure 4; Table 4). 
Comparison of the Nova Scotia population to the Western European, 
Central European, and Eastern European genetic clusters, indicated 
that it was most likely introduced from Central Europe (Figure S1), 
and this relationship received high support based on logistic regres-
sion analysis (p  =  0.865). The Oregon population most likely origi-
nated from Western Europe (Figure S2), and this relationship received 
high support based on logistic regression analysis (p  =  0.979). The 
British Columbia population most probably represents an additional 
independent introduction from Central Europe (Figure S3), and this 
relationship received high support based on the logistic regression 
analysis (p = 0.995). The population in the northeastern United States 
population was also reconstructed as a third introduction from Central 
Europe (Figure 4; Figure S4), and this relationship was also highly sup-
ported (p = 0.988). Posterior estimates for all parameters for the best 
scenario from each tournament are presented in Table S4. Type I 
error rates for supported scenarios, as estimated using the Evaluate 
Confidence in Scenario Choice command in diyabc, ranged from 0.106 
to 0.194, while type II error rates ranged from 0.003 to 0.224 (Table 4).

4  |  DISCUSSION

Identifying the number of introductions of an invasive organism is 
critical for evolutionary and ecological studies of the factors that in-
fluence the probability of establishment of invasive species and how 
non-native species adapt to their introduced environments and eco-
systems, (Allendorf & Lundquist, 2003; Dlugosch & Parker, 2008; 
Lavergne & Molofsky, 2007; Sakai et al., 2001). Unfortunately, re-
constructing the invasion histories of non-native organisms can both 
computationally demanding and/or biologically untenable due to the 
combined effects of genetic bottlenecks, hybridization, and rapid 
evolution (Buhk & Thielsch, 2015; Ficetola et al., 2008; McEvoy et al., 
2012; Mesgaran et al., 2016; Prentis et al., 2008). Using a combina-
tion of Bayesian clustering and approximate Bayesian computation 
methods, we find that invasive populations of winter moth in Nova 
Scotia, British Columbia, and the northeastern United States were 
all introduced separately from Central Europe, and that the invasive 
population in Oregon was introduced from Western Europe (Figures 
3 and 4). Distance analyses of the coefficient of membership assign-
ments from our Bayesian clustering analyses, suggest that the inva-
sive population in Nova Scotia is most closely related to a population 
of winter moth in Orleans, France, and that the invasive population 
in British Columbia is most closely related to a population of winter 
moth in Uggvallen, Sweden (Figure 3), representing potential source 
localities for both Canadian populations.

The relationships of the American populations were less clear 
based on distance analyses; however, as the Oregon population 
was closely related to a large number of populations from the 
British Isles and northern Fennoscandia, while the northeastern 
United States population was unrelated to any sampled European 
population. In a recent study of winter moth in Fennoscandia – 
where winter moth exists at outbreak densities in much of the 

TA B L E  3  Comparisons of allelic diversity in invasive populations 
of Opterophtera brumata in Oregon and its Western European 
source population as estimated using diyabc

Locus

Western Europe Oregon

N Alleles Shared Private

01619 7 4 0

02339 12 4 0

28247 33 10 0

34463 25 5 0

07650 17 7 0

29309 14 7 0

02565 10 5 0

32985 6 2 3

00952 34 3 4

03475 8 5 2

12853 10 3 4

31399 17 6 0

02191 36 5 7

00672 26 9 0

01585 20 4 0

24979 14 3 0

12042 47 3 2

24011 24 6 0

03280 15 6 1

18760 9 5 0

05159 18 6 0

16696 10 2 1

03270 7 3 1

01762 16 5 0

Average ratio 0.33

Note: Statistics are presented as in Table 2.
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region – we determined that the population there was introduced 
to the region ~2000  years ago from the British Isles, either via 
dispersal across the North Sea or by human-mediated dispersal 
(Andersen et al., 2021). Therefore, without finer-scale genomic 
analyses (e.g., genotype-by-sequencing), it is unlikely that we will 
be able to determine which of these two locations (British Isles 
or northern Fennoscandia) are the source of the Oregon popula-
tion. The northeastern United States population, in contrast to all 
other sampled invasive populations, was clearly distinct from other 
winter moth populations, including the invasive population in Nova 
Scotia that can be found only a short distance away across the 
Bay of Fundy. While it is possible that we have yet to sample the 
source of this invasive population, given our extensive sampling of 
the native distribution of winter moth, we believe this is unlikely. 
For example, the only regions that we did not sample from which 
winter moth has previously been reported are Japan, Taiwan, and 
the Russian far-east (Troubridge & Fitzpatrick, 1993), and in those 

locations, records of winter moth are most probably misidentifica-
tions of different species that are native to those regions (Nakajima, 
1991). In addition, our inclusion of an unsampled “ghost” popula-
tion in our diyabc analyses to represent a possible extra-European 
source was not supported in any tournament (p ≤ 0.01 in all analy-
ses). Lastly, as part of ongoing efforts to study the evolution of the 
genus Operophtera, we have worked with collaborators in both the 
Russian far-east and in Japan to collect samples using traps baited 
with the winter moth sex-pheromone, and based on preliminary 
DNA-barcoding results all samples that were collected in these 
regions have been native Operophtera species (N. P. Havill, unpub-
lished data). Therefore, we believe that the genetic distinctness of 
the northeastern United States population could be an effect of 
drift amplified by a strong genetic bottleneck associated with its 
introduction and/or possibly driven by local adaptation to its novel 
environment (similar to that seen by Butin et al., 2005) following its 
introduction from Central Europe.

F I G U R E  2  Major modes detected using clumpak for supported partitions based on the results presented in Figure S6. Samples are 
grouped by country, and locality, except in North America, where for clarity they are grouped by geographic region. Thin dark lines are used 
to differentiate sample localities, and thick dark lines to separate countries. Countries in the native range of winter moth are ordered roughly 
from west (left) to east (right) 
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4.1  |  Hybrid origins

Hybridization has long been known to play an important role in 
the evolutionary trajectories of species and populations (Allendorf 
et al., 2001), and the promotion of the establishment of invasive 
species (e.g., Allendorf & Lundquist, 2003; Benvenuto et al., 2012; 
Mesgaran et al., 2016; Sakai et al., 2001). Soon after the discov-
ery of an invasive population of winter moth in the northeastern 
United States, hybridization between the non-native winter moth 
and the native Bruce spanworm was demonstrated by sequencing 
the G6PD nuclear gene (Elkinton et al., 2010, 2014). Subsequent 
studies have found that multigenerational hybridization is occur-
ring between these two species in the northeastern United States 
(Havill et al., 2017), and that hybridization between the two species 
has occurred in all of the locations that winter moth has established 
(Andersen et al., 2019). In a recent study along a transect running 
west (primarily Bruce spanworm) to east (primarily winter moth) in 
Massachusetts with traps spaced approximately 10 km apart, ~1% of 
surveyed individuals were hybrids though in a distinct hybrid zone 
between the two species hybridization rates of over 10% were re-
ported at several locations (Griffin et al., 2021). Here we find that 
that only four individuals among our samples were classified as hy-
brids, suggesting that while hybridization occurs readily between 
these two species, genomic introgression has probably not played 
an important role in the establishment of winter moth populations. 
It is important to note, however, that this result could be driven by 
a failure of the loci to amplify in hybrids, as only 12 of our 24 loci 
have been shown to consistently amplify in Bruce spanworm (Havill 
et al., 2017), so early generation hybrids would probably have been 

filtered out by our 20-locus minimum. As such, genomic analyses 
(such as those described above) could be useful for examining intro-
gression between winter moth and Bruce spanworm populations in 
North America. It is also worth noting that all three of the invasive 
populations that originated from Central Europe are themselves the 
product of ancestral admixture between the Western and Eastern 
European winter moth lineages, and this ancestral admixture could 
have increased the likelihood of establishment of these winter moth 
lineages (see Bennet et al., 2016 for a similar example).

4.2  |  Effects of genetic bottlenecks

Genetic bottlenecks play an important role in the establishment of 
invasive species (Dlugosch & Parker, 2008; Suarez & Tsutsui, 2008), 
with numerous examples existing of instances where multiple in-
troductions have been important for overcoming propagule pres-
sures (Kolbe et al., 2004; Lavergne & Molofsky, 2007; Simberloff, 
2009). There is even an example where bottlenecks may have aided 
the establishment of an invasive species (Tsutsui et al., 2000). Here, 
we find evidence for multiple independent introductions of winter 
moth to North America, and that all four invasive populations ex-
perienced bottlenecks resulting in temporary reductions in their 
effective population sizes (Table S4). However, despite these bot-
tleneck events, contemporary populations in each of the invaded 
regions display genetic diversity and effective population sizes 
comparable to their European source populations (Tables 1–3, 
Table S4). This finding may not be too surprising however, given 
the large population sizes that winter moth in its invasive region, 

F I G U R E  3  neighbornet analysis of the 
population coefficient of assignments for 
the major mode of K = 8 as summarized 
by clumpak. Label names for populations 
within broader geographic clusters have 
been removed for clarity
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coupled with the complex and dynamic nature by which microsat-
ellite regions mutate within lepidopteran genomes (Zhang, 2004) 
as well as the possible effect of rapid adaptation by the invasive 
populations to their new environment (John & Stephan, 2020). As 
such, winter moth represents an ideal system to conduct compara-
tive analyses on factors that influence establishment and ecologi-
cal impact as each introduced population represents a unique and 
independent data point.

4.3  |  Distance analyses as a complement to 
ABC analyses

Historically, straightforward phylogenetic methods have been 
used to reconstruct the origins of invasive populations, particu-
larly asexual organisms (e.g., Havill et al., 2006; Qin & Gullan, 
1998). However, for sexual organisms where recombination and 

larger effective population sizes make the results from phylo-
genetic inference ambiguous, a popular workflow for determin-
ing the origin of an introduced population includes the following 
steps: (a) to identify distinct genetic clusters either using Bayesian 
algorithms such as those implemented in structure, faststruc-
ture (Raj et al., 2014), and admixture (Alexander & Lange, 2011), 
and/or to use measures of genetic distance (e.g., Latreille et al., 
2019; Negawo et al., 2020; Rahi et al., 2020); (b) to create a ran-
dom subset of equal-numbered individuals from each genetic or 
geographic cluster; and (c) to compare potential introduction sce-
narios using approximate Bayesian computation. Unfortunately, 
methods for the interpretation of “admixed” populations (i.e., 
populations with mixed probabilities of assignment) are needed as 
populations with assignment to multiple genetic clusters is a com-
mon result (as reviewed in Lawson et al., 2018). We believe that 
distance-based clustering of the population coefficients of assign-
ment from Bayesian clustering algorithms (such as the structure 

F I G U R E  4  diyabc result from the 
final tournament that included all four 
invasive populations. Time along the 
y-axis is drawn using a log10 scale. Values 
between 100 years ago and 1000 years 
ago are not shown to make the figure 
more compact. For each population, 
changes in colours represent different 
population size parameters (values shown 
in Table S3)

Tournament Four Best Scenario: PP= 0.988 (0.974, 1.000)
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“popfiles”) presents a rapid and useful approach for the recon-
struction of the regions of origins of non-native populations, par-
ticularly when populations in the native range are highly admixed 
and/or have limited genetic diversity, as we saw with populations 
of winter moth. This approach is particularly attractive in that it 
is almost instantaneous (that is, after clustering runs have com-
pleted). Additionally, the approach removes the need for the in-
vestigator to define arbitrary cutoffs for population assignments. 
For example, in instances when individuals have mixed probabili-
ties of assignment based on Bayesian assignment (e.g., Q ≤ 0.75 to 
any one cluster when averaged across structure runs), assigning 
samples or populations to distinct clusters might not be possible 
visually but is trivial for distance-based clustering algorithms, like 
the one implemented in R.

4.4  |  Conclusions

Here. we find that winter moth is a serial invader of North American 
forests and orchards, with at least four introductions from Europe. 
These populations were introduced from a diversity of locations in 
Western and Central Europe. Given the availability of a sequenced 
genome (Derks et al., 2015), and its historical use in population ecol-
ogy (Varley & Gradwell, 1960; Varley et al., 1973), we hope that our 
work encourages the use of winter moth as a model organism for 
comparative studies of the genomic factors that influence the estab-
lishment of invasive species. Lastly, we hope that our method for the 
interpretation of structure results can provide rapid and accurate in-
ferences into the geographic regions of origins of non-native species.
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