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A B S T R A C T   

The United Nations Framework Convention on Climate Change requires annual estimates for forestry and 
ecological indicators to monitor the change in forest resources, the sustainability of forest management, and the 
emission and sink of forest carbon. It is particularly important to update estimates of forestland area in a timely 
fashion and at flexible geographical scales, not only for its value in monitoring biological diversity at the 
ecosystem scale, but also because of its close association with other indicators such as forest biomass and carbon. 
However, in the US, the Forest Survey Handbook advises that the sampling error should not exceed 3% per 
404686 ha (one million acres) of forestland area, a demanding standard barely met by pooling the Forest In
ventory and Analysis (FIA) panel data measured in an inventory cycle of 5–10 years. Consequently, this study 
aims to propose and illustrate an updating procedure using data assimilation that integrates a design-based 
estimator with a model-based mixed estimator for updating annual estimates at two population levels, the 
state- and county-levels. The three states in the USA, Minnesota (MN), Georgia (GA) and California (CA), rep
resenting the Northern, the Southern and the Pacific Northwest FIA programs, constitute the study areas. FIA 
data collected were based on a 5-year inventory cycle for MN (2006–2010) and GA (2005–2009), and a 10-year 
cycle for CA (2001–2010). The total number of sample plots was 17764 for MN, 6323 for GA, and 16740 for CA. 
Distinguishing features attribute to this procedure include: (1) unbiasedness: the integration of design-based 
estimates into the mixed estimator introduces a favorable property – unbiasedness, which could be the prop
erty national forest inventories concern the most; (2) efficiency: considerable improvements in estimation pre
cision greater than 55%, achieving sampling errors as small as those relying on using 5–10 years pooled FIA data; 
(3) time: compared with the temporal trends reflected by design-based estimates, the updated trends were of 
much smoother trend lines and narrower confidence intervals that would better depict temporal changes for a 
population at flexible spatial scales; (4) space: this procedure is scale-invariant, meaning its efficiency is not 
affected by an inventory employing either a large- or small-area estimation, which was demonstrated at the two 
population levels; and (5) generalizability: this procedure is unbiased and efficient, 100% compatible with the 
FIA database which is readily available to the public, and thus suitable for various official reporting instruments.   

1. Introduction 

Intergovernmental organization and processes including the United 
Nations Framework Convention on Climate Change require annual es
timates for forestry and ecological indicators to monitor the change in 

forest resources, the sustainability of forest management, and forest 
carbon emissions and sinks. In the United States, the National Report on 
Sustainable Forests provides a new opportunity to produce and 
distribute these updates (NRSF, 2019). Among the indicators, forestland 
area is particularly important because of its immediate association with 
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others such as forest biomass and carbon. For example, with the gain- 
loss approach, emissions and sinks for a land use change class are esti
mated as the product of the class area estimate and the per unit area 
estimate of carbon change for the class (GFOI, 2016; IPCC, 2006). 
Therefore, the national Greenhouse Gas Reporting Program has a 
similar, yet stronger need for updating estimates of forestland area in the 
U.S., not only in a timely fashion but at flexible geographical scales 
(GHRRP, 2019). 

The Forest Inventory and Analysis (FIA) national program of the 
Forest Service, U.S. Department of Agriculture, conducts annual forest 
inventories in all states. The U.S. Agricultural Research Extension and 
Education Reform Act of 1998 requires the measurement of 10–20% of 
the permanent sample plots in each state each year to construct panel 
data spanning a measurement cycle of 5–10 years. Sample rates vary 
between and within FIA regions, states, and measurement years due to 
budgetary and operational factors (FIA, 2019). Permanent plots are 
subsequently remeasured on a 5- or 10-year interval. Forestland area is 
estimated from measurements in the sample plots, different with many 
other countries where the estimation is made from maps or satellite 
information. These data are stored in an extensive FIA database, publicly 
available for producing estimates with associated measures of uncer
tainty. The U.S. Forest Service Handbook (FSH 4809.11) advises that the 
uncertainty measure using sampling error should not exceed 3% per 404 
686 ha (one million acres) of productive forestland area, resulting in a 
base sample intensity of one plot per 2400 ha. This demanding accuracy 
standard is barely achievable by pooling all panel data of respective 
years on a 5- or 10-year rotating basis (Bechtold and Patterson, 2005). 
To further reduce the sampling error, some states and National Forests 
choose to intensify their sample at e.g., two times or greater rates than 
the base sample intensity. 

For producing the annual estimates from FIA data, there have been at 
least three approaches considered (McRoberts, 1999, 2001). The most 
straightforward approach simply uses the panel data to obtain estimates 
in the current year for reflecting current conditions. A drawback to this 
approach is that the inferential precision may be unacceptable for most 
forest attributes and ecological indicators due to the small annual 
sample size based on 10–20% of plots measured in any year. The second 
approach is a moving average estimator currently adopted by FIA 
(Patterson and Reams, 2005; Edgar et al., 2019). The precision of this 
approach is increased because data for all sample plots are used for 
estimation, but the downside is that the estimates reflect a moving 
average of conditions over the measurement cycle and trail current 
conditions in the presence of temporal trends (Van Deusen, 2002). A 
third approach is to update to the current year the initial estimates ob
tained from an estimator that can be design- or model-based. If the 
updating procedure is unbiased and precise, this approach can provide 
nearly the same precision as using pooled data without suffering from 
the adverse effects of using outdated information. Today, updating 
procedures of this kind are categorized as data assimilation. 

Data assimilation (DA) is an umbrella term for a broad category of 
mathematical procedures that update existing parameter estimates for 
the purpose of estimating as precisely as possible the state of a system 
through the integration of multisource information (Fletcher, 2017; 
Lahoz et al. 2010). DA problems can be solved using various updating 
procedures rooted in estimation theory including the mixed estimator, 
Kalman filter and Bayesian statistics (Blayo et al., 2014; Katzfuss et al., 
2016; Theil and Goldberger, 1961). Apart from forestry, DA has already 
been used in many domains such as biogeography and meteorology 
typically entailing estimation of parameters, calibration of observation 
networks, and prediction of missing values (Lahoz and Schneider, 2014; 
Robinson, 1991). 

Distinct from Bayesian statistics, the best linear unbiased predictor 
(BLUP) is a frequentist counterpart formula for estimating the condi
tional mean for multivariate normal vectors (Henderson, 1975; Hou 
et al., 2019; Robinson, 1991). BLUP essentially adjusts the parameters of 
the marginal distribution of a random variable to the parameters of its 

conditional distribution given the jointly distributed variables observed. 
Although BLUP is mostly used for predicting random effects for mixed 
models, it is the equation from which the Kalman filter was mathe
matically derived (Czaplewski, 1990; Kalman 1960; Robinson, 1991). 

Like the Kalman filter, the mixed estimator (ME) is also derived from 
BLUP and is regarded as a compromise between frequentist and 
Bayesian approaches (Kangas, 1991; Theil 1971). Mathematically, the 
form of ME is the same as the BLUP for predicting the random effects 
when there is no fixed effect (section 5.2 in Robinson, 1991). In theory, 
ME is equivalent to the Kalman filter under specific assumptions (Dixon 
and Howitt, 1979); in use, ME was more efficient for shorter time series 
compared to the Kalman filter, because ME does not require unknown 
starting values that adversely influence short-term Kalman filter results 
(Van Deusen, 1991, 1999, 2002), a feature advantageous to updating 
annual forest inventories typically ranging from five to 10 years. 

Consequently, the objectives of this study were threefold: (1) to 
compare two design-based estimators, the expansion estimator and the 
post-stratified estimator, for the annual estimation of forestland area at 
both the state- and county-levels; (2) to propose and illustrate a DA- 
based updating procedure that integrates the design-based estimators 
with the model-based mixed estimator for updating annual estimates at 
the two population levels; and (3) to compare the inferential properties 
before and after applying the updating procedures for the multiple 
scenarios. A highlight of this updating procedure resides in its combi
nation between the first and third approaches introduced above for 
producing the annual estimates, thus ensuring unbiasedness of the 
procedure as illustrated below. 

2. Materials 

2.1. Populations 

The three states in the USA, Minnesota (MN), Georgia (GA) and 
California (CA), representing the Northern, the Southern and the Pacific 
Northwest FIA programs, constitute the study areas. In accordance with 
the national Greenhouse Gas Reporting Program on conducting in
ventories at flexible geographical scales, the population was defined for 
two-levels, the state-level and the county-level. At the state-level, each 
state is a population; and at the county-level, each county is a popula
tion. In this study, the inference is about the total of forestland area in a 
population. 

2.2. FIA data 

For MN and GA, FIA measures one panel of sample plots per year that 
comprises a base sampling intensity of 20% of all plots in each state 
within a complete inventory cycle of five-years. California conducts FIA 
annual inventory on a ten-years cycle, making a panel per year 
comprised of 10% of all plots. 

The Forest Service has established field plot centers in permanent 
locations using a quasi-systematic sampling design that is regarded as 
producing an equal probability sample (McRoberts et al., 2010). Each 
sample plot consists of four 7.32 m radius circular subplots, configured 
as a central subplot and three peripheral subplots with centers located at 
36.58 m and azimuths of 0◦, 120◦, and 240◦ from the center of the 
central subplot. Exhaustive information on measuring trees, conditions, 
and plots is described in Bechtold and Patterson (2005) and FIAFG 
(2019). 

Data used in the present study were based on a 5-year inventory cycle 
for MN (2006–2010) and GA (2005–2009), and a 10-year cycle for CA 
(2001–2010). The total number of sample plots was 17764 for MN, 6323 
for GA, and 16740 for CA. GA and CA plots were sampled at the base 
intensity; MN plots were sampled at twice as many, resulting in one plot 
per 1200 ha. These data are publicly available and can be extracted from 
a large, relational FIA Database (FIADB, 2018). 
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3. Methods 

3.1. Expansion estimator 

With a simple random sampling or (quasi) systematic sampling 
design, a population parameter such as the total or mean can be esti
mated using the expansion estimator (Royall and Herson, 1973). This 
estimator is simple to use, but may not be efficient at reducing variances, 
particularly for small sample sizes, n, or relative to the spatial hetero
geneity of the attribute of interest in a population (Brewer and Gregoire, 
2009; Hou et al., 2015). The expansion estimator is probability-based 
and design-unbiased, a favorable feature ensuring the unbiasedness of 
inference, which is particularly important for official reporting in
struments. In this study, the expansion estimator was applied to FIA 
panel data for obtaining the initial annual state- and county-level esti
mates that will be updated to the same year with the mixed estimator in 
Section 3.3. 

For estimating the total forestland area, A, the attribute of interest is 
the proportion of the sample plot i categorized or mapped as forestland, 

Pid =

∑4
j

∑Kij
k amijkδijkd

amPm
, where amijk is the mapped area of the jth subplot 

covering condition k in the ith sample plot, i.e. accessible forestland;δijkd 

is a zero-one domain indicator, which is one if amijk belongs to the 
domain of interest d; Kij is the number of conditions; amis the plot area; 
and Pm =

∑n
i
∑4

j
∑Kij

k
amijkδijk

amn , is an adjustment factor representing the 
mean proportion of mapped plot areas within the geographical bound
ary of the population, with δijk indicating a zero-one domain indicator, 
which is one if amijk is inside the boundary. 

The mean forestland proportion of the population can then be esti

mated using Pd = 1
n
∑n

i Pid with V̂ar
(

Pd

)

=

∑n
i
P2

id − nP
2
d

n(n− 1) . Finally, the 

expansion estimator for the total forestland area can be expressed as 

ÂEXP = APPd with V̂ar
(

ÂEXP

)

= A2
P V̂ar

(

Pd

)

, where AP is the total area 

of the population (Cochran, 1977; Thompson, 2012). 

3.2. Post-stratified estimator 

For post-stratified estimation, a population is partitioned into strata, 
and a previously established sample is assigned with those strata. 
Because the assignments are made independently between strata, vari
ances estimated with a post-stratified estimator for individual strata can 
be summed together to obtain the variance for the population (Cochran, 
1977; Holt and Smith, 1979). Variance reduction and flexibility for 
assigning different stratifications to a fixed sample are the advantages of 
using post-stratified estimation, but the disadvantages are that the ho
mogeneity of post-stratification may affect the inferential precision and 
a small stratum could contain few sample plots (Ghosh and Vogt, 1993; 
Little, 1993). The post-stratified estimator can reduce to the expansion 
estimator in a way that any hierarchical structures in the sample data are 
discarded as if there was just a single stratum (Bechtold and Patterson, 
2005, p.49). Like the expansion estimator, the post-stratified estimator 
is also design-unbiased, applied to FIA panel data for obtaining the 
initial annual state- and county-level estimates that will be updated to 
the same year with the mixed estimator in the next section. 

The attribute of interest is the proportion of the sample plot cate

gorized as forestland, Phid =

∑4
j

∑Khij
k amhijkδhijkd

amPmh
, where Phid is the proportion 

of plot i in the domain d for plots assigned to stratum h; amhijk is the 
mapped area of subplot j covering condition k, i.e. accessible forest
land;δhijkd is a zero-one domain indicator, which is one only if amhijk 

belongs to d; Khij is the number of conditions; amis the plot area; and 

Pmh =
∑nh

i
∑4

j
∑Khij

k
amhijkδhijk

amnh
, is an adjustment factor representing the mean 

proportion of mapped plot areas within the geographical boundary of 

the population, with nh indicating the sample size assigned to stratum h, 
δhijk another zero-one domain indicator, which is one if amhijk falls inside 
the boundary. 

The stratum-specific mean can then be estimated using Phd = 1
nh

∑nh
i Phid 

with V̂ar
(

Phd

)

=

∑nh
i

P2
hid − nhP

2
hd

nh(nh − 1) . Finally, the post-stratified estimator for 

the total forestland area takes the form ÂSTR = AP
∑H

h WhPhd with 

V̂ar
(

ÂSTR

)

=
A2

P
n

[
∑H

h Whnh V̂ar
(

Phd

)

+
∑H

h (1 − Wh)
nh
n V̂ar

(

Phd

)]

, 

where Wh is the weight for stratum h (Bechtold and Patterson, 2005, 
section 4.3). Conveniently with FIA data, a population was readily post- 
stratified using satellite data, and the information about each variable 
required for applying the post-stratified estimator was readily available 
(FIADB, 2018). 

3.3. Data assimilation with ME 

Data assimilation with the mixed estimator (ME) was used for 
updating the annual forestland area estimates initially obtained from the 
expansion estimator and the post-stratified estimator at the state- and 
county-levels. ME is model-based, developed from Durbin (1953), Theil 
and Goldberger (1961) and Theil (1971), and related to mixed 
modeling, because ME can be regarded as a special case of a mixed 
model without any fixed effects (Goldberger, 1962; Henderson, 1963, 
1973; Robinson, 1991). Under a common construct, the context of BLUP 
is a linear mixed model, y = Xβ + Zu + e, where y is a vector of ob
servations; β is a vector of unknown parameters having fixed values, i.e. 
the fixed effects; X and Z are known matrices; and u and e are vectors of 

random effects such that E(u) = 0, E(e) = 0 and Var
[

u
e

]

=

[
G 0
0 R

]

, 

where G and R are known positive definite matrices. The BLUP for β and 
u are solutions to the simultaneous equations 
{

X’R− 1Xβ + X’R− 1Zu = X’R− 1y
Z’R− 1Xβ +

(
G− 1 + Z’R− 1Z

)
u = Z’R− 1y (Henderson, 1950); when 

there are no fixed effects, the random effects are simply u =
(
Z’R− 1Z + G− 1)− 1Z’R− 1y with Var(u) =

(
Z’R− 1Z + G− 1)− 1(Robinson, 

1991, section 5.2), elucidating the origin of ME and relationships with 
other theories in statistics. 

Consider a model that denotes the total forestland area estimated 
using the expansion estimator or post-stratified estimator at year t, At =

at + εt, where εt is a random error with a mean of zero and variance γ2
t 

(Cassel et al., 1977). This formulation indicates at as a random variable 
instead of a fixed parameter. To constrain the change of at over time, a 
transition equation was applied, at − at− 1 = vt , t = 2, ⋯, T, where vt is 
another random variable, independent of εt, with a mean of zero and 
variance qγ2

t ; and q is an unknown scaling factor to be estimated. This 
transition constraint is essentially a numerical approximation to the first 
derivative of the underlying temporal trend in the forestland areas over 
years (Van Deusen, 1996, 1999). Compactly, these relationships can be 

expressed in a matrix form as 
[

A
0

]

=

[
I
C

]

a+
[

ε
v

]

(Theil, 1963, 1971; 

Theil and Goldberger, 1961), where A = [A1,A2,⋯,AT]
’, a =

[a1, a2,⋯, aT]
’, ε and v are vectors of random errors; 0 is a vector of 

zeros; I is an identity matrix; and C is a constraint matrix implementing 
the transition equation, with a dimension of (T − 1)× T, and on each row 
a sequence of [ − 1 1 ] for elements starting at column t and zeros 
elsewhere. The covariance matrix of ε is denoted as Σ = E(εε’), and the 
transition covariance matrix as Ω = E(vv’) consisting of a 
(T − 1) × (T − 1) submatrix of Σ multiplied by q, i.e. Ω =

diag
(
qγ2

2,⋯, qγ2
T
)
. When Σ and q are estimated, the form of ME under this 

construct can be expressed as â =

(
1
q̂
C’ Ω̂

− 1
C + Σ̂

− 1
)− 1

Σ̂
− 1

A with 
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V̂ar(â) =
(

1
q̂
C’ Ω̂

− 1
C + Σ̂

− 1
)− 1 

(Kangas, 1991; Van Deusen, 1999). Note 

the similarity between â and u, V̂ar(â) and Var(u). For consistency, we 

denote ÂME = â and V̂ar
(

ÂME

)

= V̂ar(â). The ÂME and V̂ar
(

ÂME

)

give respectively the updated annual estimates and the updated variance 
estimates for the total forestland area. 

Technically, all terms required by applying ME were estimated based 
on either the expansion estimator or the post-stratified estimator intro
duced in Sections 3.1 and 3.2. The vector A consisted of the area estimates 
ÂEXP or ÂSTR at respective years. The covariance matrix Σ̂ was assumed to 

be diagonal, consisting of elements 
[

γ̂2
1, γ̂2

2,⋯, γ̂2
T

]

, where γ̂2
t is the esti

mated variance V̂ar
(

ÂEXP

)

or V̂ar
(

ÂSTR

)

at year t. Although the diag

onal assumption does not account for covariances among observations for 
remeasured plots, the updating procedure illustrated here allows for 
incorporating covariances. The unknown scaling factor q was estimated 
with the maximum likelihood by assuming ε and v come from a multi
variate normal distribution. The form of the joint log-likelihood function of 

ε and v is L∝1
2

[

log(|Σ| ) +(A − a)’Σ− 1(A − a)+1
qa’C’Ω− 1Ca+log(|qΩ| )

]

, 

and q̂, â and V̂ar(â) were simultaneously obtained by minimizing L 
through conducting a grid search for q over the range of 0.01 to 1 at 0.01 
increment (Van Deusen, 2002). In this study, ME was applied to updating 
the initial annual estimates respectively obtained with the expansion 
estimator and the post-stratified estimator at the state- and county-levels. 
Under this construct, ME is unbiased because these two estimators are 
design-unbiased. Excellent discussions about the unbiasedness of ME and 
the correction when a bias does occur are given by Teräsvirta (1981), 
Toutenburg (1982) and Kangas (1991). 

3.4. Comparison of inferential precision 

The sampling error, SE% = 100×

̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar(Â)

√

Â
, reflects the inferential 

precision on a percentage basis and enables comparisons among esti
mators. Given the fact that the updating procedure is unbiased, a smaller 
SE% represents greater inferential precision, or equivalently, a less 
inferential uncertainty. The SE% is a measure officially used by FIA as 
the basis for 67% and 95% confidence intervals which can be approxi
mated under a normality assumption for the sampling distribution of 
estimates (Bechtold and Patterson, 2005; Hou et al., 2015). SE% was 
evaluated for comparing the inferential precision obtained from the 
post-stratified estimator, expansion estimator, and the mixed estimator 
at the state- and county-levels. 

Further, the sampling error standard, SE%STD = 100× 0.03×
̅̅̅̅̅̅̅̅̅̅̅̅
404686

Â

√
, was evaluated for assessing if an SE% met the official precision 

standard mandated by the Forest Service directive (USDA, 2008). This 
directive requires that, for area estimation, the SE% shall not exceed 3% 
per 404686 ha (approximately one million acres) of forestland. 
Although achieving SE%STD is not a specific objective of this study, 
SE%STD reflects from an official reporting perspective the target precision 
for a forest inventory estimate. A satisfactory official inventory estimate 
in the USA, either on an annual or periodic basis, is expected to meet 
SE% ≤ SE%STD. 

4. Results and discussion 

4.1. Annual inventories at the state-level 

Although the national forest inventory in the USA has been in a 
transition from the periodic to an annual system, the estimates used for 
official reporting purposes do not have an annual temporal resolution 

and rely on pooling all sample plots measured during an inventory cycle 
of five or 10 years (Bechtold and Patterson, 2005). An important motif of 
using pooled panels roots in meeting the mandated SE%STD per the Forest 
Service directive, and therefore effective estimators that support annual 
inferences to satisfy this criterion without altering current FIA protocols 
would contribute to the success of this transition (McRoberts, 2001; 
Roesch, 2009; Van Deusen, 2002). 

The estimates obtained with the post-stratified and expansion esti
mators for MN, GA and CA using pooled and annual FIA data collected 
from an inventory cycle of five or 10 years are summarized in Table 1. 
The estimates using the pooled data are categorized by “all-yr” (all- 
years). For the post-stratified estimator, the “all-yr” estimates of 
respective states were identical to those appearing in official reports 
(Brandeis, 2015; Christensen et al., 2016; Miles and Kepler, 2017). The 
SE%STD criterion was met for MN and GA, but not for CA even with 10 
years of pooled data. This would, on one hand, suggest extraordinary 
heterogeneity in the CA data, and, on the other hand, motivate steps to 
improve the inferential precision. Although the estimates ÂEXP were 
close to ÂSTR, the SE% of the expansion estimators was 42% to 108% 
larger than those of the post-stratified estimator, violating SE% ≤ SE%STD 
for the three states. 

The annual estimates using the FIA panel data are categorized by 
respective years. For the post-stratified estimator, the annual ÂSTR es
timates were somewhat erratic but still similar to each other, indicating 
a minor variation in areal changes over the years. This was also reflected 
by the annual ÂEXP estimates. For ÂSTR, SE% ≤ SE%STD was achieved for 
pooled estimates in MN and GA, but not for CA, nor for ÂEXP estimates in 
any of the three states. For both estimators, SE% ≤ SE%STD was not 
satisfied for any annual estimates, for any of the three states, suggesting 
that the use of design-based inference alone would not be an efficient or 
viable option. Nevertheless, it is interesting to conclude that the SE% of 
an individual year is about 

̅̅̅
T

√
times the SE% of “all-yr” for the post- 

stratified estimator, and about T times for the expansion estimator, 
reiterating the benefit of post-stratification from improving the 
precision. 

4.2. Updated annual inventories at the state-level 

The annual estimates updated by ME based on the initial post- 
stratified and expansion estimations for MN, GA and CA are summa
rized in Table 2. Two updating phenomena were noted. First, the 
updating procedure was quite effective for increasing inferential preci
sion. For the post-stratified estimator, the updated annual estimates 
mostly met SE% ≤ SE%STD for MN and GA, with the SE% reduced by 55% 
on average from the initial estimates (Table 1). Although for CA this 
criterion was not satisfied, the SE% was significantly smaller, by 66% on 
average, illustrating the power of data assimilation. Similarly, for the 
expansion estimator, the SE% was reduced by 54% to 66% from the 
initial estimates for the three states, but none of them met SE% ≤ SE%STD. 

Second, the smaller the initial SE% obtained with an estimator, the 
smaller the SE% obtained with the updating procedure, which is 
consistent with our findings for a different type of data assimilation 
being temporally invariant (Hou et al., 2019). After updating, the SE% 
for an individual year is slightly larger than the SE% of “all-yr” for the 
post-stratified estimator – more so for CA than for MN and GA, and about 
T/2 times larger than for the expansion estimator. An estimator used for 
obtaining the initial estimates also reflects the magnitude of inferential 
precision after implementing the updating procedure. Therefore, the 
estimator selected for making the initial estimation should be as precise 
as possible, which can be a rule of thumb for selecting candidate esti
mators in preparation for the data assimilation. 

4.3. Temporal trends in forestland areas 

The temporal trends in forestland areas over an inventory cycle of 
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five years for MN and GA and 10 years for CA are graphed in Fig. 1 using 
the initial and updated annual estimates, with the shaded areas repre
senting the 95% confidence intervals. The left panels of subgraphs A, C 
and E contrast the initial with the updated trends, and the right panels of 
subgraphs B, D and F contrast the updated trends with the flat lines using 
“all-yr” estimates. 

The initial trends were somewhat erratic between adjacent years, 
although generally flat across the complete inventory cycles. Fluctua
tions in trend lines and confidence intervals are inherent in both the 
panel data and the estimator. Compared with the expansion estimator, 
the trend lines and confidence intervals were smoother and narrower for 
the post-stratified estimator. However, whether the change in forestland 
areas was truly fluctuated is questionable per the initial estimates due to 

the large confidence intervals, apart from the fact that forestland was 
less likely to experience drastic gain and loss under natural or undis
turbed conditions. 

Compared with the initial trends, the ME updated estimates were 
much smoother trend lines and narrower confidence intervals that better 
depict credible changes in forestland areas for the three states. The 
updated trend lines and confidence intervals were within the confidence 
intervals of the initial estimation, and to a large extent intersected or 
overlapped the “all-yr” results, suggesting improved credibility and 
consistency of the updated trends. This advancement would better serve 
the gain-loss approach for estimating emissions and removals in 
greenhouse gas inventories for which forestland area is a key variable 
(GFOI, 2016; IPCC, 2006). 

Table 1 
Initial estimates for Minnesota (MN), Georgia (GA) and California (CA) based on annual and pooled (all-yr) FIA data collected for a complete inventory cycle of five or 
ten years.  

State Year n  Expansion estimation Post-stratified estimation 

ÂEXPha  V̂ar
(

ÂEXP

)
SE%  SE%STD  ÂSTRha  V̂ar

(

ÂSTR

)
SE%  SE%STD  

MN all-yr 17764 6740546 5256399726 1.08 0.74 6997405 1331732401 0.52 0.72 
2006 3546 6469742 132047887058 5.62 0.75 6790954 6314979330 1.17 0.73 
2007 3550 7062823 131793482602 5.14 0.72 7155721 6842220410 1.16 0.71 
2008 3551 6926595 131621671743 5.24 0.73 7036936 6354969624 1.13 0.72 
2009 3563 6529995 130750051814 5.54 0.75 6972608 7479573380 1.24 0.72 
2010 3554 6714018 131351820595 5.40 0.74 7001025 7122041508 1.21 0.72  

GA all-yr 6323 10087766 7213516937 0.84 0.60 10037894 3514922164 0.59 0.60 
2005 1275 10302876 177699233521 4.09 0.59 10036741 16178157609 1.27 0.60 
2006 1290 9939856 173496369761 4.19 0.61 10082548 18521115004 1.35 0.60 
2007 1281 10330597 176086808266 4.06 0.59 10065393 17779467554 1.32 0.60 
2008 1224 9807896 192957710052 4.48 0.61 10007579 19376082853 1.39 0.60 
2009 1253 10046290 183817015835 4.27 0.60 10014772 17810295395 1.33 0.60  

CA all-yr 16740 12957850 21757827197 1.14 0.53 13297969 6753369244 0.62 0.52 
2001 1713 13123324 2078351256595 10.99 0.53 13104235 66599498652 1.97 0.53 
2002 1677 13305233 2169128372414 11.07 0.52 13678681 68095577961 1.91 0.52 
2003 1672 12756528 2181629623118 11.58 0.53 12959839 68750679939 2.02 0.53 
2004 1677 13036517 2168439149784 11.30 0.53 13166207 73921199944 2.07 0.53 
2005 1677 13582265 2170739397142 10.85 0.52 13409791 67081921449 1.93 0.52 
2006 1700 13127039 2110276072273 11.07 0.53 13159545 65841613369 1.95 0.53 
2007 1685 12850706 2147917604148 11.40 0.53 12769068 73927418753 2.13 0.53 
2008 1658 12748697 2218658711914 11.68 0.53 13054659 71476538933 2.05 0.53 
2009 1655 12418151 2228216360656 12.02 0.54 12581240 66309590568 2.05 0.54 
2010 1626 12580213 2307494153021 12.07 0.54 12962762 62695908898 1.93 0.53  

Table 2 
Updated annual estimates for Minnesota (MN), Georgia (GA) and California (CA) based on the initial estimates of the post-stratified and expansion estimations.  

State Year n  Updated expansion estimation Updated post-stratified estimation 

ÂMEha  V̂ar
(

ÂME

)
SE%  SE%STD  ÂMEha  V̂ar

(

ÂME

)
SE%  SE%STD  

MN 2006 3546 6739576 27852683905 2.48 0.75 6987140 1434036715 0.54 0.73 
2007 3550 6742269 27080350123 2.44 0.72 6989265 1396116817 0.53 0.71 
2008 3551 6741758 26824100123 2.43 0.73 6989694 1385593092 0.53 0.72 
2009 3563 6739413 27071832342 2.44 0.75 6989642 1404050590 0.54 0.72 
2010 3554 6739162 27838923370 2.48 0.74 6989754 1446900509 0.54 0.72  

GA 2005 1275 10093234 38132719235 1.93 0.59 10041990 3778492848 0.61 0.60 
2006 1290 10091187 37129067692 1.91 0.61 10042050 3678170630 0.60 0.60 
2007 1281 10090646 36830241194 1.90 0.59 10041719 3648825200 0.60 0.60 
2008 1224 10087423 37263804513 1.91 0.61 10041100 3691655975 0.61 0.60 
2009 1253 10087016 38349530804 1.94 0.60 10040840 3795255326 0.61 0.60  

CA 2001 1713 12980773 274067200254 4.03 0.53 13107011 8665995301 0.71 0.53 
2002 1677 12979285 257900137826 3.91 0.52 13107040 8156196300 0.69 0.52 
2003 1672 12974510 246291718266 3.83 0.53 13101297 7789470727 0.67 0.53 
2004 1677 12971931 238885475339 3.77 0.53 13096643 7535556344 0.66 0.53 
2005 1677 12968703 235342500333 3.74 0.52 13091789 7413096292 0.66 0.52 
2006 1700 12959599 235531484746 3.74 0.53 13083903 7409531518 0.66 0.53 
2007 1685 12948630 239569322939 3.78 0.53 13074200 7537786845 0.66 0.53 
2008 1658 12938310 247769932204 3.85 0.53 13067768 7775586897 0.67 0.53 
2009 1655 12929850 260208600884 3.95 0.54 13061923 8116537830 0.69 0.54 
2010 1626 12926388 277927940231 4.08 0.54 13060941 8577361543 0.71 0.53  
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Fig. 1. Temporal trends in forestland areas over an inventory cycle of five- or ten-years for Minnesota (MN), Georgia (GA) and California (CA). Shaded areas 
represent the 95% confidence intervals. Note the scale of y-axis between the left and right panels is different. 

Z. Hou et al.                                                                                                                                                                                                                                     



Forest Ecology and Management 483 (2021) 118777

7

Although the present study did not focus on analyzing ecological and 
human drivers behind the temporal changes, the updated estimates and 
trends are in a better position to serve this purpose by constraining the 
propagation of statistical uncertainty to subsequent analyses (Hou et al., 
2017, 2018; McRoberts, 2006, 2011). This is particularly useful for FIA 
data users such as forest ecologists and decision-makers for elaborating 
reliable conclusions and consistent policies (Frické, 2009; Rowley, 
2007). 

Except for CA where the updated trend lines over a duration of 10 
years indicated a clear decrease in forestland areas, the forestland areas 
are relatively stable for MN and GA. Wildfires seem to be responsible for 
the decrease in CA (Calfire, 2019), but wildfires typically have no effect 
on FIA estimates of forestland area because FIA’s definition includes 
land use. Unless wildfires – or any other canopy disturbance are directly 
associated with a permanent land use change, those areas will continue 
to be labeled as forestland. It is more feasible that land use changes like 
housing development or conversion to agriculture are affecting 

permanent loss of forests. 
Technically, the burn-in process (Fox et al., 2018) for the ME 

updating procedure was instant. This partially supports the statement in 
Van Deusen (1999) that for assimilating a short time series such as an 
inventory cycle of five or10 years, ME is more efficient than the Kalman 
filter, because the Kalman filter requires using unknown values to 
initiate the burn-in process before stabilizing. However, for a long time 
series, typically longer than 20 years, the Kalman filter may yield better 
performance (Van Deusen, 1999), despite that ME is essentially equiv
alent to the Kalman filter under specific assumptions (Dixon and Howitt, 
1979). 

4.4. Annual estimates and updated annual estimates at the county-level 

The annual county-level estimates before and after implementing the 
updating procedure are reported in Fig. 2. For simplicity, results are 
graphed just for MN because similar findings apply to GA and CA. Five 

Fig. 2. County level estimation for Minnesota. Each circle or cross represents a county.  
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findings are relevant at the county-level. First, there are 87 counties in 
MN of which 31 were excluded from the analysis because no data existed 
for one or more years. A list of these counties missing data can be 
extracted from the FIA database using EVALIDator (2019). Furthermore, 
62 of 87 MN counties contained fewer than eight forested plots during 
one or more years; eight plots is a suggested minimum sample size for 
producing FIA estimates. When all panel years were pooled, no counties 
contained zero forested plots, and only 28 of 87 counties did not meet or 
exceeded an eight-plot minimum. This emphasizes the point that even in 
the best of conditions where MN is the only FIA state with both a 5-year 
cycle and double intensity, per-county sample sizes are still limiting. 
These counties were relatively small and in sparsely forested portions of 
the State, causing counties to have insufficient sample sizes (Bechtold 
and Patterson, 2005). FIA panel data are generally adequate for making 
county-level inference for pooled panels, but often not for annual 
estimates. 

Second, the difference in SE% between the post-stratified and 
expansion estimators dissipated at the county-level (Fig. 2A). As the 
sample size decreases, the inferential precision by the post-stratified 
estimator reduces to that for the expansion estimator, because the hi
erarchical structures in the sample data became less distinguishable 
from a single stratum. Third, compared with the state-level estimation, a 
greater allowance for SE% in smaller areas at the county-level reflects the 
decrease in sample size as the estimation area decreases. FIA inventories 
were primarily designed for large areas, and as the panel data are sub
divided into smaller areas, the SE% increases, as does SE%STD. Fourth, 
regardless, the updating procedure effectively reduced the SE% from the 
initial estimates, and the smaller the initial SE% obtained with an esti
mator, the smaller the SE% obtained with the updating procedure, 
consistent with the state-level inferences (Fig. 2 C&D). Fifth, the crite
rion SE% ≤ SE%STD was not met for all counties using the post-stratified 
and expansion estimators, or for most counties using the mixed esti
mator (Fig. 2B). 

A number of challenges arise in the county-level estimations. These 
include the missing data issue and the reduced precision for small areas. 
With the exception of enlarging the sample size, which unfortunately is 
rarely considered in a national forest inventory context, it is worthwhile 
to consider statistical techniques employing missing data recovery, 
small-area estimation, model-assisted inference, and/or a joint use of 
these to obtain the initial estimates (Battese et al., 1988; Fuller and 
Harter, 1987; Henderson et al., 1959; Prasad and Rao, 1990). Data 
assimilation techniques can subsequently be used to update these 
estimates. 

5. Conclusions 

A distinguishing feature of this updating procedure resides in its 
compatibility with the FIA program by not imposing any modifications 
to the data collection protocols, and in its compatibility with alternative 
design- or model-based inferences for making the initial estimation. A 
highlight of the mixed estimator is its unbiasedness for updating design- 
based inference (Kangas, 1991); however, when updating model-based 
inference, cautions must be exercised for uncertainties related to 
adopting auxiliary data from remote sensing as an example (Hou et al., 
2017; Xu et al., 2018), because bias associated with these uncertainties 
will propagate to the mixed estimator, requiring a correction as a result 
(Teräsvirta, 1981). 

Five conclusions are relevant. First, the sampling error, SE%, of an 
annual inventory was significantly smaller for the post-stratified esti
mator than the expansion estimator at the state-level, but similar at the 
county-level. Second, only statewide estimates for MN and GA, based on 
post-stratified estimation and pooled across all years, met SE% ≤ SE%STD, 
a criterion indicating that, for area estimation, the SE% shall not exceed 
3% per 404686 ha (ca. one million acres). However, the statewide 
expansion estimates did not meet this standard, nor did either design- 
based estimator for any statewide annual estimate, suggesting that 

design-based inference alone would not be an efficient option for mak
ing annual inventories using FIA panel data, especially at the county- 
level. Third, at both population levels (state and county), the updating 
procedure using the mixed estimator effectively reduced the initial 
annual SE% obtained with the stratified and expansion estimators over 
55% on average, as well as achieving updated annual SE% comparable 
with the SE% based on using a five- or ten-years pooled FIA dataset. 
Fourth, a rule of thumb is that candidate estimators selected for making 
the initial estimation should be as precise as possible, because the esti
mator used for obtaining the initial estimates also decides the magnitude 
of inferential precision after implementing the updating procedure. Last 
but not the least, compared with the initial temporal trends, the ME 
updated trends were of much smoother trend lines and narrower con
fidence intervals that better depict temporal trends in areal changes for a 
population in question. 
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