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A B S T R A C T   

We compiled data from several independent, long-term silvicultural studies on USDA Forest Service experimental 
forests across a latitudinal gradient in the northeastern and north-central U.S.A. to evaluate factors influencing 
aboveground live-tree carbon sequestration and mortality. Data represent five sites with more than 70,000 
repeated tree records spanning eight decades, five ecoregions, and a range of stand conditions. We used these 
data to test the relative influence of factors such as climate, treatment history (uneven-aged or no management), 
species composition, and stand structural conditions on aboveground live-tree carbon sequestration and mor-
tality in repeatedly measured trees. Relative to no management, we found that uneven-aged management tended 
to have a positive effect on carbon sequestration at low stocking levels and in areas of favorable climate 
(expressed as a combination of growing season precipitation and annual growing degree days > 5 ◦C). In 
addition, losses of carbon from the aboveground live-tree pool due to tree mortality were lower in managed than 
unmanaged stands. These findings suggest that there may be conditions at which rate of sequestration in living 
trees is higher in stands managed with uneven-aged silviculture than in unmanaged stands, and that this benefit 
is greatest where climate is favorable.   

1. Introduction 

Increased carbon dioxide (CO2) in the atmosphere has been linked to 
climate change and continues to be of global concern. Policy makers are 
urged to support processes or activities that limit sources of CO2 emis-
sions or remove (sequester) CO2 from the atmosphere (IPCC, 2013). 
Carbon (C) sequestration processes and activities, including forest 
management, are growing areas of forestry research (Huang et al., 
2020). As the terrestrial ecosystem’s largest carbon pool, forests have 
great potential to reduce CO2 through carbon sequestration. Trees both 
sequester C through uptake of atmospheric CO2 for photosynthesis and 

release CO2 (C loss) to the atmosphere through respiration and mortality 
(decay). The rates of C exchange in forests are influenced by tempera-
ture and local climate (Black et al., 2000) and by tree age as young, 
aggrading forests tend to have high C sequestration and low C loss 
(including tree mortality) compared to old-growth forests (Harmon 
et al., 2009). Forest management activities are often aimed at supporting 
vigorous tree growth and minimizing tree mortality and, consequently, 
increasing net C uptake (Smith et al., 1997; Society of American For-
esters, 2008). Thus, both C sequestration and tree mortality influence 
the potential of managed forests to reduce atmospheric CO2 through the 
growth processes of living trees. 
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In addition to age and climate, the balance of C sequestration in live 
trees and loss from that pool through tree mortality is influenced by a 
variety of factors, such as site quality and species composition. For 
example, aspen (Populus spp.) stands in Minnesota, U.S.A. with a higher 
site index (quality) were associated with greater C sequestration than 
lower-quality sites (Reinikainen et al., 2014). The same study found that 
composition mattered; mixedwoods of aspen and conifers had higher C 
sequestration than pure aspen stands (Reinikainen et al., 2014). Tree 
composition also had a strong effect on C sequestration in Mediterra-
nean mountain forests (Alvarez et al., 2016). Often forest compositions 
that include late-successional species maintain higher C sequestration 
rates longer than compositions dominated by pioneer species (Jandl 
et al., 2007a). Moreover, stand density influences stand-level C 
sequestration, with high density often associated with greater C stores or 
sequestration but not both (D’Amato et al., 2011; Harmon et al., 2009). 

Forest management activities also have potential to be highly influ-
ential on C sequestration with expectations for live and dead tree pools 
consistent with patterns observed for stand-level growth and mortality 
in past work examining growth-growing stock relationships. With few 
exceptions (i.e., salvage), harvesting removes trees to produce wood 
products before they succumb to natural mortality (C loss) such that 
post-harvest stocking is often lower than in the pre-harvest stand (e.g., 
D’Amato et al., 2011). In the case of thinning, which is often applied in 
dense, immature stands, the management objective is to redistribute 
aboveground growth, or aboveground C sequestration, from many, 
small trees to few, large trees for the purpose of growing more valuable 
trees faster than in unmanaged forests (Curtis et al., 1997; Zeide, 2001). 
The residual trees in managed stands such as these tend to be more 
vigorous than in dense, unmanaged stands, increasing tree-level 
sequestration and reducing losses of C from the live-tree pool through 
mortality (Jandl et al., 2007b). At the forest scale, managed forests 
typically contain younger stands, which can have higher C sequestration 
rates than unmanaged forests of older stands (Jandl et al., 2007b). 
Managed forests with lower stand densities also tend to have more 
available nutrients, less inter-tree competition, and lower total C stocks 
than unmanaged forests (Noormets et al., 2015). Overall, the improved 
growing conditions (e.g. lower density) resulting from silvicultural 
treatments may facilitate the effect of favorable climate by minimizing 
other factors limiting growth, further enhancing growth and C seques-
tration in managed stands (e.g., Dié et al., 2015). 

Less clear is how management strategy affects C exchange. Even- 
aged management focuses on removing all mature trees in one or few 
harvests to regenerate a new cohort. Though young stands sequester C 
rapidly, replacing the C stores that were on site before harvest can take a 
substantial length of time (Harmon et al., 2009). In contrast, uneven- 
aged management aims to maintain multiple cohorts within the same 
stand; harvests remove only a portion of the residual stand at intervals 
such that on-site C stores remain relatively stable. Over a 60-year period, 
selection cutting, an uneven-aged method, resulted in higher C storage 
than clearcutting, an even-aged method, in a northern conifer forest in 
Maine, U.S.A. (Puhlick et al., 2016). Uneven-aged methods had favor-
able C sequestration outcomes relative to other management strategies, 
according to a simulation study of aboveground tree biomass and har-
vested wood products in the northeastern U.S.A. (Nunery and Keeton, 
2010). Uneven-aged methods also usually remove less wood volume in 
one or a few entries than even-aged methods and some variants have 
been proposed as a mitigation approach for onsite retention of C (Soceity 
of American Society of American Foresters, 2008). However, this idea 
has not been fully tested across a large spatial scale and/or multiple 
forest types. 

The combination and interaction of factors that affect C exchange are 
also unclear. For instance, a study of harvest, climate, and CO2 con-
centrations found rotation age to be an important explanatory variable, 
in that longer rotations increased C sequestration (Ueyama et al., 2011). 
In a different study, among structural diversity, composition, density, 
soil, and light variables, the most important factors explaining net C 

changes were tree density, composition, and soil characteristics (Cai 
et al., 2020). However, density was the overall best predictor of residual- 
tree C sequestration (Cai et al., 2020). Density and climate appear 
important to C sequestration and mortality patterns but their relative 
influence, along with other site and stand factors across multiple scales 
and different management histories, has not been studied. Evaluating 
multiple factors can highlight the most influential factors to C exchange 
and areas to adjust forest management activities. 

1.1. Scale and synthesis in ecological research 

Addressing knowledge gaps in the ecology and management of for-
ests has mostly been based on site-specific studies. Recently, the emer-
gence of research questions at regional and continental scales has 
generated scientific interest in large-scale, long-term dynamics of forest 
ecosystems and variability therein (Baeten et al., 2013; Burton, 2006; 
Hobbie et al., 2003). The synthesis of silvicultural experiments, in 
particular, provides unique opportunities to understand mechanisms 
behind ecological processes associated with various human and natural 
disturbances (Knapp et al., 2012). The U.S. Department of Agriculture 
(USDA) Forest Service experimental forests and ranges (EFRs) have a 
wide range of manipulative and observational silvicultural and ecolog-
ical studies across North America that span multiple decades to over a 
century (Adams et al., 2010; Hayes et al., 2014). Some EFR studies have 
been synthesized with methodologies and analyses that were not 
intended by the initial study design, e.g., an observational continental- 
scale study of ice phenology (Baker et al., 2000), multi-site studies of 
managed stand structure and composition (D’Amato et al., 2011), and 
drought and competition effects on tree growth (Gleason et al., 2017). 
This scientific approach is potentially important for unraveling the 
complex effects of climate, management, and other factors on forest C 
cycles. 

The goal of the work reported here is to use harmonized forest in-
ventory data from multiple silvicultural experiments in the northeastern 
and north-central U.S.A. to determine whether uneven-aged silviculture 
(as a low-intensity management strategy) has a detectable effect on C 
exchange compared to no management, and whether outcomes can be 
generalized with similar effects on live-tree C sequestration and mor-
tality across forest types regardless of the variety of factors, such as site 
or climate, that might be influential. Our focus is on C sequestration and 
loss from the aboveground portions of live trees, i.e., exclusive of ex-
change in other ecosystem pools such as coarse woody material and the 
forest floor (a sizable pool in forested ecosystems also affected by 
disturbance; Puhlick et al., 2016) or harvested wood products. Specific 
research objectives were to (1) use robust exploratory methods (i.e. 
machine learning) to identify influential stand, site, and climate factors 
on live-tree C sequestration and mortality; (2) evaluate effects of iden-
tified influential factors with formal statistical hypothesis testing after 
accounting for the hierarchical nature of the data (i.e. using linear mixed 
models); and (3) assess predicted trends across the full range of condi-
tions analyzed. Of the various factors considered (e.g. climate, density, 
diversity, soil, silviculture, and composition), we expected climate and 
density to have a greater relative influence on C sequestration and tree 
mortality than other factors and that would vary based on past silvi-
culture across sites. 

2. Materials and methods 

2.1. Study area 

We limited our scope of inference to the northeastern quadrant of the 
U.S.A. This area encompasses a complex mosaic of temperate forest 
types, ages, compositions, densities, and climatic and biophysical set-
tings (Shifley et al., 2012). It provides a temporally rich research 
resource under the unified jurisdiction of the USDA Forest Service, 
Northern Research Station (NRS), which includes 22 EFRs. We limited 
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our study sites to those with silvicultural experiments, although other 
types of experiments exist on EFRs (e.g., paired watershed studies). 
Silvicultural experiments on EFRs include very detailed tree-level 
measurements on repeatedly sampled permanent plots with data re-
cords spanning decades – facilitating flexible, multi-scale tree to stand 
analyses. 

2.2. Site selection 

We queried NRS EFRs for silviculture studies with long-term (mini-
mum 20-year) responses and paired stands of unmanaged areas (i.e. 
unharvested control treatment) and managed areas treated with uneven- 
aged silviculture (i.e., selection cutting). Selection cutting is applied to 
improve residual stand composition, growth, quality, and structure by 
removing mature trees, tending immature growing stock, and estab-
lishing new cohorts at regular intervals. Harvests of individual or small 
groups of trees are conducted at intervals and generally maintain re-
sidual stocking at a higher level and with a narrower range than some 
even- or two-aged silvicultural methods (Frank and Bjorkbom, 1973; e. 
g., Niese and Strong, 1992). By limiting our sample to those sites where 
the selection system had been applied on approximately 10-year cutting 
cycles, we were able to investigate a common and comparable silvi-
cultural treatment with similar disturbance intervals across multiple 
locations. 

Five EFRs had suitable study designs and data (Fig. 1), representing a 
range of forest types, geology, physiography, and physical site 

characteristics typical across the northeastern and north-central U.S.A. 
(Table 1). The five specific locations used in this analysis were: 

1. The Argonne Experimental Forest (AEF) study area is located on 
the Chequamegon-Nicolet National Forest in northeastern Wisconsin 
where loamy soils (Alfic Oxyaquic Fragiorthods and Alfic Oxyaquic 
Haplorthods) formed in glacial till or mudflow deposits and the climate 
is humid continental. The northern hardwood stands are second-growth 
that originated from region-wide exploitive harvests circa 1905. Sugar 
maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis 
Britton), American basswood (Tilia americana L.), and eastern hemlock 
(Tsuga canadensis (L.) Carr.) with minor components of black cherry 
(Prunus serotina Ehrh.), quaking aspen (Populus tremuloides Michx.), 
northern red oak (Quercus rubra L.), and ironwood (Ostrya virginiana 
(Mill.) K. Koch) dominate the study area. Long-term silvicultural studies 
at the AEF are the basis for regional northern hardwood management 
guides (e.g., Tubbs, 1977). 

2. The Dukes Experimental Forest (DEF) study area is located in the 
Upper Peninsula of Michigan where soils are moderately to somewhat 
poorly drained sandy loams (Argic Fragiaquods) that formed in glacial 
till and the climate is humid continental. While settlement in the region 
(late 1800 s to early 1900 s) resulted in largely second-growth forests, 
the DEF study area was not cleared during that time and was an old, late- 
successional forest when the study began in the 1920 s. The species 
composition is similar to AEF. Results from the long-term silvicultural 
studies were used to develop one of the earliest marking guides for 
northern hardwoods (Arbogast, 1957). 

Fig. 1. Locations of five sites and associated ecoprovinces used for creation of the database used for this study.  
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3. The Fernow Experimental Forest (FEF) study area is located in the 
central Appalachian Mountains in West Virginia where soils are well- 
drained, medium-textured loams and silt loams (Typic Dystrudepts) 
formed in residuum from sandstone and siltstone and the climate is 
humid continental. The central hardwood forests are second-growth 
originating from region-wide exploitive harvests between the late 
1800 s and early 1900 s. Northern red oak, sugar maple, chestnut oak 
(Quercus prinus L.), and red maple (Acer rubrum L.) constitute the 
dominant species. The long-term silvicultural studies there were the 
basis of regional central hardwood management guides (e.g., Trimble Jr. 
and Smith, 1976). 

4. The Penobscot Experimental Forest (PEF) study area is located in 
east-central Maine where soils are characterized by thin, shallow, often 
wet soils that range from well-drained sandy loams (Typic Haplorthods) 
on glacial till ridges to very poorly drained silt loams (Typic Epiaquepts) 
on glaciomarine sediments and the climate is humid continental. The 
PEF was repeatedly partially cut for lumber and pulpwood between the 
late 1700 s and early 1900 s. Dominant species include red spruce (Picea 
rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), eastern hemlock, 
northern white-cedar (Thuja occidentalis L.), eastern white pine (Pinus 
strobus L.), red maple, paper birch (Betula papyrifera Marsh.), and aspen 
(Populus spp.). Long-term silvicultural studies at the PEF were the basis 
of regional spruce – fir forest management guides (e.g,. Frank and 
Bjorkbom, 1973). 

5. The Vinton Furnace State Experimental Forest (VFSEF) is located 
in southern Ohio where soils are well-drained silt loams (Typic Dys-
trudepts) formed in residuum derived from sandstone and conglomerate 
and the climate is humid continental. The study area was heavily har-
vested for timber and fuelwood in the 1860 s. Main tree species include 
chestnut oak (Quercus prinus L.), scarlet oak (Quercus coccinea 
Muenchh.), black oak (Quercus velutina Lam.), white oak (Quercus alba 
L.), red maple, hickories (Carya spp.), Ohio buckeye (Aesculus glabra 
Willd.), and yellow poplar (Liriodendron tulipifera L.). Results of these 
long-term studies informed regional management recommendations for 
central hardwoods (e.g, Roach and Gingrich, 1968). 

Available primary and secondary data were harmonized, synthe-
sized, and compiled with the finest level of detail at tree-level data so 
that common patterns across sites could be identified. Ancillary data 
(soils, growing degree days, etc.) were integrated at the stand and site 
levels. The unmanaged and uneven-aged managed (single-tree selec-
tion) treatments from the five sites resulted in 1,812 repeated plot 
measurements (71,320 repeated live tree-level records) in our analyses 
(Table 2). The measurement inventory intervals varied greatly between 
sites and were often much shorter than the 10-year cutting cycle. The 
percentage of forest composition in hardwood species ranged from 0 to 
100% of plot-level basal area; stand density ranged from 99 to 1,050 
trees ha− 1. Measurement period-specific climatic factors varied, with 
mean annual temperature ranging from 3.3 to 12.1 ◦C and mean annual 

precipitation ranging from 67.8 to 146.8 cm (Table 1). Additional details 
about data compilation and data types can be found in Appendix A. 

2.3. Statistical analysis 

With the compiled dataset, we calculated periodic annual above-
ground woody carbon sequestration rates (CSEQ, Mg C ha− 1 y-1), or ac-
cretion on trees ≥ 11.7 cm in diameter at breast height (DBH) surviving 
the beginning and end of each measurement period (ingrowth was 
included once it exceeded the DBH threshold) (Kershaw et al., 2017), 
and periodic annual carbon loss from the live-tree pool through mor-
tality (CLOSS, Mg C ha− 1 y-1) as the response variables. Harvested trees 
were not considered mortality and therefore not included in the CLOSS. 
Aboveground total woody carbon stock (CSTOCK, Mg C ha− 1) in the live- 
tree pool was calculated by quantifying aboveground total biomass 
estimated at the tree scale using species-specific estimators from Jenkins 
et al. (2003) and then converting individual tree biomass into carbon 
mass using carbon content estimators from Lamlom and Savidge (2003), 
Thomas and Martin (2012), and Martin et al. (2015). A conversion factor 
of 0.5 was used for observations with missing species- and genus-specific 
carbon content estimators. 

Due to the complexity and amount of data, and number of potential 
predictor variables, we used variable selection random forest models 
(explained further below) by treatment (unmanaged or managed 
stands), as well as site and the function VSURF (Genuer et al., 2015) of 
the programming software R version 3.5.1 (R Core Team, 2018), to 
determine the number and importance of various influences on CSEQ and 
CLOSS. VSURF was used to screen and select potentially important 
covariates given the high number of variables considered and relatively 
high correlations among them. Once variables were selected, linear 
mixed-effects modeling was then utilized to test variable significance 

Table 1 
Description of study sites. Site abbreviations are listed in Fig. 1. Growing degree days were calculated using 5̊C as a generalized base temperature. References refer to 
datasets that are available online or described with more detail in another publication.  

Site Forest Types Ecoregion1 (section) Parent 
Material 

Primary 
Landform 

Precipit- 
ation2 (cm) 

Growing Degree 
Days2 (◦C) 

Latitude, 
Longitude 

Reference 

AEF Northern 
Hardwood 

Southern Superior 
Uplands 

Glacial Drumlins and 
Moraines 

79 ± 6 2,349 ± 127 45.750, 
− 89.000 

Strong et al. (1995) 

DEF Northern 
Hardwood 

Northern Great Lakes Glacial Moraines 86 ± 5 2,322 ± 30 46.350, 
− 87.166 

Eyre and Zillgitt (1953); 
Gronewold et al. (2010) 

FEF Appalachian 
Hardwood 

Allegheny Mountains Residuum Mountains and 
Ridges 

140 ± 4 2,589 ± 60 39.054, 
− 79.680 

Schuler et al. (2017) 

PEF Mixed Northern 
Conifer 

Central Maine Coastal 
and Interior 

Glacial Drumlins and 
Plains 

105 ± 8 2,533 ± 51 44.866, 
− 68.633 

Brissette et al. (2012) 

VFSEF Central 
Hardwoods 

Southern Unglaciated 
Allegheny Plateau 

Residuum Hills 106 ± 10 2,891 ± 134 44.866, 
− 68.633 

Brown et al. (2004)  

1 As defined in Bailey (1983). 
2 Climate data (mean ± SE) for individual factors were extracted from the PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 

Feb 2004. 

Table 2 
Plot and data record information (for trees ≥ 11.7 cm diameter at breast height) 
for studies included in the database. Site abbreviations are listed in Fig. 1. 
Treatment type abbreviations are unmanaged (UN) and uneven-aged (UEA) 
treatments.  

Site Number Years of Data Record Number of Tree 
Records 

Mean 
Inventory  

of Plots (Number of years) by Treatment 
Type 

Interval (Years)    

UN UEA  

AEF 60 1951–2006 (55) 6,938 11,160 2.1 
DEF 123 1932–1973 (41) 969 9,388 5.4 
FEF 16 1979–2009 (30) 4,919 1,938 5.6 
PEF 55 1977–2014 (37) 4,338 10,502 5.4 
VFSEF 7 1976–2010 (34) 12,055 9,113 1.2  

C.C. Kern et al.                                                                                                                                                                                                                                  

http://prism.oregonstate.edu


Forest Ecology and Management 493 (2021) 119266

5

and potential interactions after accounting for the hierarchical and 
repeated nature of the underlying data. 

Random forest is a non-parametric technique that combines many 
binary decision trees (Breiman et al., 1984) built using several bootstrap 
samples coming from a learning sample and choosing randomly at each 
node a subset of explanatory variables (Breiman, 2001; Genuer et al., 
2015). The technique is useful for data with non-linear responses, 
multiple types of predictors, and complex predictor interactions, which 
can be used to effectively discern the influence of factors (Cutler et al., 
2007). We used random forest scores of importance to quantify 
explanatory variable significance in explaining the responses, CSEQ and 
CLOSS (Cutler et al., 2007; Genuer et al., 2015). Based on the random 
forest technique, VSURF calculates random forest importance scores and 
out-of-bag error (prediction error in terms of mean square residuals) for 
all explanatory variables and eliminates variables that are unimportant 
for predicting the response based on a data-driven threshold for variable 
importance (Teets et al., 2018). Explanatory variable-specific impor-
tance scores were derived as averages over 50 forests with 2,000 trees, 
five variables per node, and an approximate 35% out-of-bag sample (the 
percentage of data excluded from bootstrap samples and used to esti-
mate classification error as trees are added to the forest) (Genuer et al., 

2015). 
Exploratory analysis of over 40 explanatory variables of six different 

variable classes related to silvicultural treatment, stand density and 
composition, diversity (Shannon index) in species and tree DBH, 
climate, and soils data were used to populate our models (Table 3). 
Climate data (e.g. growing season precipitation (GSP), annual growing 
degree days > 5 ◦C (DD5) and the combination of both (GSPDD5 =
GSP*DD5/1000)) were extracted from the PRISM Climate Group (Ore-
gon State University, http://prism.oregonstate.edu) based on the dates 
of the specific measurement intervals. Thus, the climate varied over 
time, representing weather of the specific time period, which was ex-
pected to be more directly related to observed patterns than climate 
normals. For interpretation, the random forest models were derived by 
treatment as well as by site. Treatment-level random forest models 
(managed and unmanaged stands) were then used to identify the most 
influential variables for each treatment. Variables deemed most influ-
ential and thus significant were those indicated in the prediction step of 
the VSURF analysis (Genuer et al., 2015). In addition, average impor-
tance score by explanatory variable class (Table 3) and EFR site were 
evaluated to detect trends across sites not evident in the treatment-level 
random forest models. 

Table 3 
Comprehensive listing of explanatory variables used in this study. Variables were collected at the plot level except climate (site-level) and soil factors (replication- 
level). Variable “Class” is the broad theme of a group of related variables.  

Class Acronym Mean SD Min Max Description 

Silviculture TRT 0.68 0.47 0 1 Treatment factor, 0 = unmanaged, 1 = managed  
TSH 3.45 3.13 0 9.5 Years since last harvest, control = 0 

Density CSTOCK 83.13 32.36 10.10 179.42 Total aboveground woody carbon stock, Mg C ha− 1  

TPH 328.91 167.08 98.84 1,050.20 Live trees ha− 1  

QMD 31.49 6.16 15.68 47.50 Quadratic mean diameter, cm  
BA 23.35 8.28 5.44 60 Standing live basal area, m2 ha− 1  

SDI 406.57 143.17 112.38 1,072.34 Additive stand density index, trees ha− 1 1  

RD 0.48 0.16 0.09 1.02 Relative density 2 

Diversity DBHRANGE 38.88 13.17 7.11 92.46 Range in DBH, cm  
DBHSD 11.43 3.65 2.27 22.13 Standard deviation of DBH, cm  
GINIDBH 0.21 0.06 0.03 0.36 DBH based Gini coefficient  
SKEW 0.42 0.63 − 1.39 2.85 Skewness of DBH distribution  
KURT 2.60 1.12 1.07 12.1 Kurtosis of DBH distribution  
SPPDIV 3.91 2.79 1 19 Species richness  
HSPP 0.80 0.58 0 2.22 Shannon diversity index 

Composition PBAHW 86.90 29.35 0 100 Percentage of basal area in hardwood species  
PBASHADE 71.23 31.95 0 100 Percentage of basal area in shade-tolerant species  
SHADE 4.22 0.55 2.54 4.84 Average plot-level shade tolerance weighted by basal area  
SHADESD 0.52 0.34 0 1.40 Standard deviation of plot-level shade-tolerance  
GINISHADE 0.06 0.05 0 0.24 Plot-level shade tolerance-based Gini coefficient  
HSHADE 0.71 0.56 0 2.22 Plot-level shade tolerance-based Shannon diversity index 

Climate MAT 5.44 2.04 3.32 12.05 Mean annual temperature, ◦C  
MAP 88.57 16.29 67.83 146.82 Mean annual precipitation, mm  
GST 15.76 1.42 13.98 20.43 Mean growing season temperature, ◦C  
GSP 47.90 6.66 35.30 70.87 Growing season precipitation, mm  
MTCM − 9.66 3.38 − 14.09 2.88 Mean temperature of the coldest month, ◦C  
MINTCM − 18.28 3.98 − 24.26 − 2.43 Minimum temperature of the coldest month, ◦C  
MTWM 18.94 1.48 16.42 23.50 Mean temperature of the warmest month, ◦C  
MAXTWM 27.01 1.58 24.17 32.29 Maximum temperature of the warmest month, ◦C  
MINGST 2.77 2.18 − 0.47 10.87 Minimum growing season temperature, ◦C  
MINGSP 38.76 8.96 22.01 66.08 Minimum growing season precipitation, mm  
DD5 2,423.62 190.29 2,076.49 3,165.60 Annual degree days > 5 ◦C, ◦C  
GSPDD5 116.17 19.73 87.61 195.24 GSP*DD5/1000, mm ◦C 

Soil WHC 2.31 1.10 1 5 Water holding capacity class: 1 = 0–8 cm, 2 = 8–15 cm, 3 = 15–21 cm, 4 = 21–30 cm, 5 = 30–37 cm  
DTWT 2.55 1.79 1 5 Depth to water table class, 1 = 0–51 cm, 2 = 51–102 cm, 3 = 102–153 cm, 4 = 153–203 cm, 

5=>203 cm  
DTRL 4.61 1.07 1 5 Depth to restrictive layer class: 1 = 0–51 cm, 2 = 51–102 cm, 3 = 102–153 cm, 4 = 153–203 cm, 

5=>203 cm  
DRAIN 4.22 0.91 1 5 Drainage class: 1 = very poorly drained, 2 = poorly drained, 3 = moderately well drained, 4 = well 

drained, 5 = somewhat excessively drained  
SLOPE 2.52 0.90 1 6 Slope class: 1 = 0–1%, 2 = 1–6%, 3 = 6–15%, 4 = 15–25%, 5 = 25–40%, 6 = 25–60%  
PM – – – – Parent material class: G = glacial, R = residuum base  
CRSFRAGM 17.81 10.74 0 55 Midpoint of coarse fragments in soil by volume, %  
LF – – – – Landform: depression, drumlin, hill, kame, moraine, mountain slope, plain, ridge  

1 Stand density index was estimated with the summation methods (Weiskittel et al., 2011). 
2 Relative density is the ratio of SDI to maximum SDI with maximum SDI estimated using methodology for mixed species stands (Woodall et al., 2005) and a specific 

gravity at 12% moisture content. 
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We evaluated the findings from our final CSEQ random forest models 
using a linear mixed model approach to specifically evaluate the direct 
effect of treatment (managed and unmanaged stands) and its potential 
interaction with additional factors using the function lme of the package 
nlme (Pinheiro et al., 2018) in R. The fixed effects were those identified 
as the significant variables in the treatment-level random forest models 
and the random effects were replication within EFR site within year. 
Explanatory variables were transformed if necessary to comply with 
model assumptions. Multicollinearity among potential predictor vari-
ables was tested using the variance inflation factor (VIF), which was 
quantified using the ‘corvif’ function in R (Zuur et al., 2009). Inclusion 
of additional variable interactions was evaluated based on plausibility, 
statistical significance, and effect on model fit (prediction accuracy 
evaluated based on Akaike’s information criterion (AIC) and mean ab-
solute bias (MAB, absolute value of observed minus predicted)). Vari-
ance structures to account for variance heterogeneity (R function 
‘varComb’ (Zuur et al., 2009)) were incorporated in the final model and 
model residuals were checked for fit and concurrence with model 
assumptions. 

Because of the large number of zeros among the observed values (N 
= 1,277), CLOSS was further examined using a two-step or hurdle mixed 
effects modeling approach to verify findings of the corresponding 
random forest models. The two-step modeling approach evaluated the 
zero portion of the CLOSS data in a first step and subsequently analyzed 
the non-zero part in a second step. Using transformed binomial data (0/1 
for no/yes), the first modeling step predicted the probability of CLOSS 
occurrence (probability of tree mortality) on a certain plot on an 
absence/presence level (Zuur et al., 2009). Using presence data only by 
excluding zeros, the second modeling step predicted the amount of CLOSS 
on an individual plot. Using the nlme function of the nlme package in R, 
CLOSS occurrence in the first step was analyzed by means of a logistic 
function of the form y = (1/(1 + exp(-(Xβ))))^(1/YIP) where y is prob-
ability of CLOSS occurrence, Xβ is the model-specific explanatory variable 
design matrix with the associated estimated fixed and random param-
eters, and YIP is years in period to allow for the prediction of annualized 
values by accounting for the varying inventory intervals (Table 2). 
Because generalized liner mixed models with a Gamma error structure 
did not converge, non-zero absolute CLOSS observations of the second 

modelling step were log-transformed and analyzed with the lme func-
tion of the nlme package similar to CSEQ (Zuur and Ieno, 2016). Selection 
of fixed and random effects followed the procedures described for the 
CSEQ linear mixed-effects models. Overall, predicted CLOSSwas finally 
calculated by multiplying the outcome of modeling step 1 with the 
outcome of modeling step 2. 

3. Results 

3.1. Carbon sequestration 

Observed CSEQ was highly variable, both within and among sites, 
with an overall average of 1.90 ± 0.79 Mg C ha− 1 yr− 1 (mean ± SD) 
while varying between 0 and 4.95 Mg C ha− 1 yr− 1. Climatic predictors 
were dominant among factors identified as significant explanatory 
variables in both treatment-level (unmanaged and managed) CSEQ 
random forest models (Table 4). Variable classes of composition, den-
sity, and diversity were also important and represented in each 
treatment-level model with at least one significant predictor, while 
variables of variable class soil and silviculture were only found in the 
model of managed stands. Similar results were derived for the random 
forest model that included plots of both unmanaged and managed stands 
(Table 4). 

Evaluation of average importance scores by explanatory variable 
class and EFR confirmed findings from the treatment-level random for-
est models (Fig. 2). Climate, composition, and/or density variables were 
among the most influential predictors, but significance of each variable 
class substantially varied across EFRs. We also found additional differ-
ences across EFRs revealing trends not evident in treatment-level ana-
lyses (Fig. 2). The silviculture variable time since last harvest, for 
example, was among the major drivers of CSEQ for DEF and PEF plots, 
while importance of diversity variables in FEF plots was mainly driven 
by the Shannon species diversity index (data not shown). 

The pool of significant explanatory variables within the treatment- 
level random forest models (Table 4) was further reduced for inclu-
sion in mixed models by considering only factors with above-average 
importance scores across all variables by random forest model 
(Table 4). Moreover, because of the strong correlation among 

Table 4 
Importance scores and variable class of significant explanatory variables derived from treatment-level CSEQ random forest models for unmanaged, managed, and all 
unmanaged and managed stands combined (“All”) and as indicated in the prediction step of the underlying VSURF (Genuer et al., 2015) analyses. Bold importance 
scores signal above-average scores across all variables by random forest model. See Table 3 for variable descriptions.  

Unmanaged  Managed   All   

Variable Class Importance score Variable Class Importance score Variable Class Importance score 

MAP Climate 0.1523 RD Density 0.1184 RD Density 0.1087 
GSPDD5 Climate 0.0973 MINTGS Climate 0.1031 MAP Climate 0.0997 
PBAHW Composition 0.0807 GST Climate 0.0776 GSPDD5 Climate 0.0955 
DBHRANGE Diversity 0.0700 MTWM Climate 0.0464 GST Climate 0.0929 
GST Climate 0.0658 GSPDD5 Climate 0.0462 MINTGS Climate 0.0927 
QMD Density 0.0648 TPH Density 0.035 CSTOCK Density 0.0563 
MINTGS Climate 0.0509 MTCM Climate 0.0303 MTCM Climate 0.0555 
MTWM Climate 0.0507 SDI Density 0.0303 PBAHW Composition 0.0531 
CSTOCK Density 0.0350 SHADE Composition 0.0268 SHADE Composition 0.0426 
SHADESD Composition 0.0338 MINGSP Climate 0.0242 DD5 Climate 0.0397    

BA Density 0.0236 LF Soil 0.0376    
SHADESD Composition 0.0204 TPH Density 0.0318    
WHC Soil 0.0194 DBHRANGE Diversity 0.0313    
MAXTWM Climate 0.0178 HSHADE Composition 0.0231    
PBASHADE Composition 0.0177 HSPP Diversity 0.0218    
DBHSD Diversity 0.0165       
DBHRANGE Diversity 0.0156       
HSPP Diversity 0.0147       
SKEW Diversity 0.0135       
TST Silviculture 0.0129       
LF Soil 0.0090       
SLOPE Soil 0.0087       
KURT Diversity 0.0080     
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explanatory variables of the same variable class (Table 3) in the 
treatment-level random forest models (Table 4), linear mixed models 
only included total live-tree carbon stock (averaging 83.13 Mg C ha− 1 

and varying between 10.10 and 179.42 Mg C ha− 1; variable class den-
sity), treatment (silviculture), time since last harvest (0.5 to 9.5 years; 
silviculture), GSPDD5 (climate), percentage of basal area in hardwood 
species (composition), range in DBH (diversity), and mean shade 
tolerance (composition). Instead of incorporating the less easily inter-
pretable, multi-level variable landform, we created a new predictor, 
landform2 (soil), indicating depressions and plains. VIFs of these eight 
base explanatory variables were all below 5 with treatment and biomass 
exhibiting the largest VIF values of 4.2 and 3.3, respectively. 

Our formal statistical assessment (linear mixed model) of the find-
ings from the random forest models supported the notion that variables 

in addition to climate were influential on CSEQ (Table 5). While 
DBHRANGE (diversity), percentage of basal area in hardwood species 
(composition), and mean shade tolerance (composition) had a positive 
effect, landform2 (soil) resulted in decreasing CSEQ. In contrast, the ef-
fect of time since harvest exhibited unimodal behavior, peaking in effect 
on CSEQ approximately 2–3 years after treatment. CSEQ of managed and 
unmanaged stands were different from each other and that difference 
depended on live tree carbon stock and GSPDD5 (Table 5). Least-square 
means and standard error of CSEQ were overall slightly higher for un-
managed (2.46 ± 0.35 Mg C ha− 1 y-1) than managed forests (2.27 ±
0.09 Mg C ha− 1 y-1). The positive effect of management on CSEQ at 
carbon stock levels < 60 Mg C ha− 1 turned negative with further 
increasing carbon stock (Fig. 3). In contrast, we found a positive effect of 
GSPDD5 on CSEQ of managed stands at levels > 140 mm ◦C (Fig. 3). 

3.2. Carbon loss 

Observed CLOSS in the form of tree mortality was highly variable, 
both within and among sites, with an overall average of 0.40 ± 1.33 Mg 
C ha− 1 yr− 1 (mean ± SD), varying between 0 and 17.18 Mg C ha− 1 yr− 1. 
CLOSS averaged 0.94 ± 2.09 and 0.14 ± 0.57 Mg C ha− 1 yr− 1 in un-
managed and managed stands, respectively. Predictors of the variable 
class density were dominant among the factors identified as significant 
explanatory variables in both treatment-level (unmanaged and 
managed) CLOSS random forest models (Table 6). Variable classes 
climate and composition were also important, but only represented in 
the unmanaged model with one significant predictor. Similar results 
were derived for the random forest model that included plots of both 
unmanaged and managed stands (Table 6). 

Evaluation of average importance scores by explanatory variable 
class and EFR confirmed findings from the treatment-level random for-
est models (data not shown). Density variables were the most influential 
predictors of CLOSS across EFR sites. With the exception of PEF plots, 

Fig. 2. Average importance scores of explanatory variables by variable class and Experimental Forest and Range (EFR) derived from random forest models predicting 
periodic annual aboveground woody carbon sequestration (CSEQ, Mg C ha− 1 y-1). Site abbreviations are listed in Fig. 1. 

Table 5 
Parameter estimates from the linear mixed model predicting periodic annual 
aboveground woody carbon sequestration (CSEQ, Mg C ha− 1 y-1) by treatment 
(managed and unmanaged stands) and explanatory variables of significant in-
fluence. See Table 3 for explanation of explanatory variables.  

Variable Estimate SE t-value p-value 

Intercept − 9.6585 1.6421 − 5.8817 <0.0001 
ln(CSTOCK) 0.9975 0.0886 11.2532 <0.0001 
TRT − 2.9804 1.5229 − 1.9571 0.0505 
TSH − 0.1893 0.0435 − 4.3513 <0.0001 
ln(TSH + 0.1) 0.4117 0.1352 3.0452 0.0024 
ln(GSPDD5) 1.0587 0.3084 3.4328 0.0009 
sqrt(PBAHW) 0.0732 0.0074 9.8655 <0.0001 
ln(DBHRANGE) 0.2991 0.0484 6.1837 <0.0001 
ln(SHADE) 0.8216 0.1389 5.9166 <0.0001 
LF2a − 0.3037 0.0828 − 3.6663 0.0003 
ln(CSTOCK):TRT − 0.4281 0.0907 − 4.7182 <0.0001 
ln(GSPDD5):TRT 0.9843 0.2944 3.3439 0.0008  

a LF2 is a reclassification of landform indicating depressions and plains. 
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species shade tolerance associated predictors (variable class composi-
tion) were also found to be important irrespective of EFR site. We found 
additional differences across EFRs revealing trends not evident in 
treatment-level analyses. The silviculture variables were among the 
major drivers of CLOSS for AEF and PEF plots, while importance of di-
versity variables in AEF, DEF, and FEF plots was mainly driven by the 
Shannon species diversity index (data not shown). 

Consequently, explanatory variables considered in the two-step 
hurdle mixed-effects modeling approach to predict CLOSS included 
total live carbon stock (variable class density), treatment (silviculture), 
time since last harvest (silviculture), minimum growing season tem-
perature (MINGST; climate), and percentage of basal area in shade- 

tolerant species (composition). VIFs of these five base explanatory var-
iables were below 5 with treatment and time since last harvesting 
exhibiting the largest VIF values of 3.8 and 2.5, respectively. 

Our formal test (two-step mixed model) in part supported the find-
ings from the random forest models on variables influential on CLOSS 
(Table 7). While time since harvest increased CLOSS, the effect of live 
carbon stock was significantly altered by treatment. Increasing live 
carbon stock resulted in higher CLOSS in unmanaged stands (Fig. 4). In 
contrast, effects of the variables MINGST (climate) and percentage of 
basal area in shade-tolerant species (composition) on CLOSS were found 
to be not significant and/or implausible. 

Fig. 3. Predicted change in periodic annual aboveground woody carbon sequestration (CSEQ, Mg C ha− 1 y-1) of trees surviving the measurement period and ≥ 11.7 
cm DBH excluding ingrowth over a) aboveground carbon stock and by treatment, i.e. unmanaged and uneven-aged management with a 10-year cutting cycle 
(managed) as well as b) GSPDD5 (growing season precipitation (GSP, mm) * growing degree days > 5 ◦C (DD5, ◦C)) and by treatment. Data were derived from the 
linear-mixed effects model predicting CSEQ with explanatory variables not depicted in a graph set to their population means. Bands represent ± 1 standard error. 

Table 6 
Importance scores and variable class of significant explanatory variables derived from treatment-level CLOSS random forest models for unmanaged, managed, and all 
stands and as indicated in the prediction step of the underlying VSURF (Genuer et al., 2015) analyses. See Table 3 for variable descriptions.  

Unmanaged   Managed   All   

Variable Class Importance score Variable Class Importance score Variable Class Importance score 
BA Density 1.8378 TPH Density 0.2624 BA Density 0.7194 
SDI Density 1.6461 QMD Density 0.1833 SDI Density 0.6056 
MINGST Climate 1.2625 RD Density 0.1344 CSTOCK Density 0.5955 
PBASHADE Composition 0.9844 CSTOCK Density 0.1313 RD Density 0.5133 
CSTOCK Density 0.8913    TPH Density 0.4634       

PBASHADE Composition 0.3477  
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4. Discussion 

In this study, we evaluated the influence of uneven-aged manage-
ment (single-tree selection applied for 60 to 80 years on a 10-year cut-
ting cycle) on aboveground live-tree C sequestration and tree mortality 
over large spatial and temporal scales across various forest types using 
multiple independent and long-term silviculture studies. Relative to no 
management, uneven-aged management tended to have a slight positive 
effect on C sequestration at low stocking levels and in areas of favorable 
climate. C loss from the live-tree pool through mortality was high and 
increased with increasing stocking in unmanaged; in managed stands, 
mortality was consistently low and independent of stocking. Thus, our 
hypothesis about the relative influence of stand-level (e.g., stocking) and 
climate variables on C sequestration and tree mortality was partially 
supported at the large spatial scale and for the silviculture treatment we 
examined. 

We did not find a difference in C sequestration between managed and 
unmanaged stands at moderate densities or moderate climates. 

Nevertheless, our results suggest mitigation potential (in the form of 
increased rates of C sequestration relative to unmanaged stands) for 
uneven-aged management as applied on our study sites under certain 
conditions, i.e., at relatively low stocking levels (<60 Mg C ha− 1) and in 
favorable climatic conditions (GSPDD5 > 140). Tree mortality amounts 
were low in managed stands regardless of stocking or investigated 
climate variables. Overall, these findings suggest that some product 
extraction and mitigation objectives might both be met through appli-
cation of selection cutting, although the relative positive effect of 
uneven-aged management on C sequestration was contingent on limited 
climate and stocking conditions across the sites we examined.. 

In Japanese forests, climate explained the interannual variation of C 
sequestration and, generally, favorable climate benefited aboveground 
C sequestration (Noormets et al., 2015; Ueyama et al., 2011). Globally, 
mid-latitudes of moderate climate, such as our study area, are areas 
where forests tend to have high C pools (Liu et al., 2014). Forest struc-
ture, i.e. density, was also the best predictor of C sequestration in Chi-
nese forests (Cai et al., 2020). Lowering tree density through timber 
harvest can reduce inter-tree competition for limiting resources and 
increase growth of crop trees (Villegas et al., 2009). In a study of a range 
of cutting methods in pine and maple-dominated forests, stands with <
60 Mg C ha− 1 or low to moderate densities tended to have high C 
sequestration and represented common stocking levels of managed 
stands (D’Amato et al., 2011). Manipulating density has been founda-
tional to silvicultural treatments (Kubiske et al., 2019), and traditional 
application of single-tree selection cutting requires designation of both a 
target residual stocking and distribution of trees across size (DBH) 
classes (Nyland, 1998). The implementation of uneven-aged manage-
ment for mitigation can be guided by climate-specific density manage-
ment (site occupancy) strategies that result in positive C sequestration. 

We also found that uneven-aged management simplified the influ-
ential factors on C loss from the live-tree pool through mortality. In 
managed stands, stocking was the only influential factor on mortality, 
whereas, in unmanaged stands, a range of class factors (density, 
composition, and climate) affected C loss (Table 6). In general, mortality 
was simply less prevalent in managed than unmanaged stands, because 
uneven-aged management purposely aims to harvest trees likely to die 
before the next cutting cycle. C loss through live-tree mortality has been 
reported to be a major driver of net C change in Chinese forests (Cai 
et al., 2020). 

C sequestration was highest a few years after harvest, suggesting that 
short cutting cycles might prove advantageous for C management using 
uneven-aged silviculture of the type investigated here. This trend may 
be explained by a short-term increase in plant-essential resources 
immediately after harvest (Aakala et al., 2013; Keyser and Zarnoch, 
2012; Kuehne et al., 2016), including selection systems (Jerabkova 
et al., 2011). Few studies of cutting cycle effects on C sequestration in 
uneven-aged stands exist. Numerous studies of even-aged management 
indicate that shorter rotation ages lead to less C sequestration (e.g., 
Harmon et al., 2009). However, uneven-aged studies have been less 
conclusive on cutting cycle length; this is partially explained by complex 
stand and prescription conditions of uneven-aged stands, such as re-
sidual stocking, stand structure, age class distribution, and species 
composition traits (e.g., shade tolerance) (Parajuli and Chang, 2012). 
Puhlick et al. (2020) compared C sequestration over 65 years in selection 
stands with 5-, 10-, and 20-year cutting cycles on the PEF, but failed to 
detect a significant difference in live-tree C sequestration rates among 
cutting cycle lengths. Investigations of this factor in additional forest 
types are warranted. 

While our results suggest that uneven-aged management affected the 
factors influencing C exchange through live-tree sequestration and 
mortality, it did not override the effects of climate. The results of other 
studies suggest silviculture can have greater influence than climate on C 
sequestration in certain circumstances. For instance, in a study of har-
vesting, climate, and CO2, the harvesting disturbance was important to 
modeling observed C sequestration, and resulted in increasing 

Table 7 
Parameter estimates from the two-step hurdle mixed effect model predicting 
periodic annual carbon loss through tree death (CLOSS, Mg C ha− 1 y-1) by 
treatment (managed and unmanaged stands) and explanatory variables of sig-
nificant influence. The first modeling step predicted the probability of CLOSS 
occurrence, and the second modeling step predicted the amount of CLOSS. See 
Table 3 for explanation of explanatory variables.  

Variable Estimate SE t-value p-value 

Probability of CLOSS occurring 
Intercept − 2.3586 0.5025 − 4.6934 <0.0001 
TRT − 2.8888 0.2968 − 9.7320 <0.0001 
Intercept − 2.3586 0.5025 − 4.6934 <0.0001 
TRT − 2.8888 0.2968 − 9.7320 <0.0001 
MINGST 0.4066 0.0904 4.4973 <0.0001 
Amount of CLOSS 

Intercept − 2.4099 1.0522 − 2.2903 0.0226 
ln(CSTOCK) 0.5144 0.2248 2.2881 0.0227 
TRT 1.5386 1.2818 1.2003 0.2308 
TSH2 0.0190 0.0057 3.3223 0.0010 
ln(CSTOCK):TRT − 0.6651 0.2885 − 2.3057 0.0217  

Fig. 4. Predicted change in periodic annual aboveground carbon loss through 
tree death (CLOSS, Mg C ha− 1 y-1) for individuals ≥ 11.7 cm DBH over above-
ground woody carbon stock and by treatment, i.e. unmanaged and uneven-aged 
management with a 10-year cutting cycle (managed). Bands represent ± 1 
standard error. 
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sequestration levels above the influence of climate alone (Ueyama et al., 
2011). Our study highlights the interconnectedness of climate and 
silviculture for mid-latitude, temperate forests, especially for the 
uneven-aged approach or low-severity partial harvests of single-tree 
selection. Future analyses could reveal relationships between harvest 
level, species’ traits, competitive environments, seasonal patterns of 
temperature and precipitation, and management activities (Aussenac, 
2000; e.g., Cescatti and Piutti, 1998; Curzon et al., 2017; Niinemets and 
Valladares, 2006), thus providing additional insight into management 
opportunities and challenges under anticipated climate change. 

Lastly, our study brought the variation of sites together to identify 
general trends in live-tree C sequestration and mortality. In most cases, 
silviculture treatments are evaluated at stand scales to develop specific 
management actions to attain short- and long-term goals. Our site level 
results reveal great variation in factor influence. Yet, when combined 
across very different sites, climate and density were relatively more 
influential than other factors on live-tree aboveground C sequestration 
and mortality. This is a unique contribution to understanding the broad 
applicability of uneven-aged management potential for not only sus-
tained wood production (i.e., the purpose for which it has traditionally 
been applied), but also potential climate change mitigation. However, 
nuances of outcomes at specific sites merit further consideration before 
developing silvicultural prescriptions based on this work. For instance, 
when FEF is evaluated alone, composition is relatively important to C 
sequestration and would require further investigation in relation to 
density and climate effects. 

4.1. Potential of historical experimental forest data 

Over the years, researchers at the five EFRs used for the present 
analysis focused on developing local management guidelines as a result 
of observed treatment (silvicultural) effects. Independently, these sites 
provided specific management information for a number of major 
commercial forest types. As a result, the study areas have been foun-
dational to forest management guidelines across the northeastern U.S. 
(Table 1) (Hayes et al., 2014). Despite their focus on specific forest 
types, synthesizing data from these sites across a range of species com-
positions and growing conditions allowed us to examine regional trends 
in management, regardless of forest type. Thus, this work demonstrates 
the potential for synthesis of existing, long-term silvicultural studies to 
address new and emerging research questions outside the scope of the 
original hypotheses. Given the difficulty and expense of collecting and 
maintaining long-term data from manipulative studies, the value and 
need for repurposing existing studies as part of a portfolio of forest 
science investments is imperative. 

Our research approach quantified complicated relationships be-
tween climate, stand attributes, and forest C sequestration in living 
trees, which are important to understanding mitigation approaches to 
climate change. Due to the unique nature of this dataset, no independent 
test or validation/verification dataset was available. Consequently, the 
models developed in this analysis should not be used for extrapolations 
outside similar forest types without further validation. The continued 
measurement of these long-term studies and inclusion of additional sites 
would be the only robust means for effectively assessing the findings of 
this current analysis. 

Finally, our investigation quantified C sequestration and loss (via 
tree mortality) from the aboveground portions of live trees and did not 
include other ecosystem pools or harvested wood products. Soil (forest 
floor) C, for example, is a sizable pool in forested ecosystems affected by 
disturbance (harvesting) and deadwood decay among other processes 
(Puhlick et al., 2016). In addition, tree mortality represents not only loss 
from the live-tree pool but gain by the deadwood pool, from which C is 
lost over time at varying rates depending on a number of factors (e.g., 
contact with the forest floor, climate, etc.) (Bradford et al., 2012; 
Kuehne et al., 2008; Mackensen et al., 2003). In managed stands, cap-
ture of C in harvested wood products may contribute positively to C 

storage depending on use (e.g., fuel wood versus lumber); past research 
suggests that selection cutting results in large (sawtimber) trees with the 
potential to produce wood products with relatively long residence times 
(Puhlick et al., 2020). Though further work is needed to develop a 
complete understanding of these pools in the study stands, the work 
presented here is an important first step in investigating the effects of 
management and other factors on C dynamics across a wide gradient of 
sites, species, and climates. 

5. Conclusions 

Forests represent the largest aboveground terrestrial C pool and ex-
change large amounts of CO2 with the atmosphere. Thus, understanding 
the mitigation potential of forests and their management is an important 
area of climate change research. Although this work does not represent a 
full life cycle analysis, our findings do provide some robust evidence to 
consider uneven-aged management in the form of the selection system to 
enhance in-forest rates of sequestration in live-tree biomass. Interest-
ingly, the managed stands in this study increased the mean difference 
between C sequestration and loss via mortality in the aboveground live- 
tree pool, a difference that was about 1.5 times that observed in un-
managed stands. This large gap between C sequestration and mortality 
in the aboveground live-tree pool indicates more carbon is being 
sequestered than lost in stands managed with selection methods of the 
type included in this study than in comparable unmanaged stands in 
mid-latitude, temperate forests of the northeastern U.S. region. Further 
research on this topic is needed to address potential limitations of this 
analysis such as increased replication across forest types, more detailed 
C assessment of removals and residence times in forest products, and 
refined accounting of key local or microsite driving factors. 

Our primary results suggest that, with thoughtful application in 
forest types where it is appropriate, uneven-aged management such as 
single-tree selection used here can be used to mitigate climate change 
while supporting commercial forestry and ecological services. The cut-
ting cycle provides opportunity for regular timber product extraction 
and also C sequestration in the residual stand. Future research should 
examine specific practices and guides for uneven-aged management to 
optimize C sequestration and storage. Further, we synthesized unique 
datasets from independent manipulative experiments to address large- 
scale research questions. While this work utilizes FS data and EFR lo-
cations, we believe this approach has application to other long-term 
ecological research sites, networks, and other areas of study including 
hydrology, soil sciences, and climatology. 
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