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Abstract The rarity of rapid campaigns to charac-

terize soils across scales limits opportunities to

investigate variation in soil carbon stocks (SOC)

storage simultaneously at large and small scales, with

and without site-level replication. We used data from

two complementary campaigns at 40 sites in the

United States across the National Ecological Obser-

vatory Network (NEON), in which one campaign

sampled profiles from closely co-located intensive

plots and physically composited similar horizons, and

the other sampled dozens of pedons across the

landscape at each site. We demonstrate some consis-

tencies between these distinct designs, while also

revealing that within-site replication reveals patterns

and predictors of SOC stocks not detectable with non-

replicated designs. Both designs demonstrate that

SOC stocks of whole soil profiles vary across conti-

nental-scale climate gradients. However, broad cli-

mate patterns may mask the importance of localized

variation in soil physicochemical properties, as cap-

tured by within-site sampling, especially for SOC

stocks of discrete genetic horizons. Within-site repli-

cation also reveals examples in which expectations

based on readily explained continental-scale patterns

do not hold. For example, even wide-ranging drainage

class sequences within landscapes do not duplicate the

clear differences in profile SOC stocks across drainage

classes at the continental scale, and physicochemical
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factors associated with increasing B horizon SOC

stocks at continental scales frequently do not follow

the same patterns within landscapes. Because infer-

ences from SOC studies are a product of their context

(where, when, how), this study provides context—in

terms of SOC stocks and the factors that influence

them—for others assessing soils and the C cycle at

NEON sites.

Keywords Soil carbon stocks � Pedogenesis �
Climate � Land use � Parent material � National
ecological observatory network

Introduction

Most of the factors related to spatial variation in soil

organic carbon (SOC) stocks have been known for

some time, as has the reality that their relative

influences vary across scales (Wiesmeier et al.

2019). From molecular structures and particle sizes

factors at pore to ped scales (Sollins et al. 2006; von

Lutzow et al. 2006), to topography and moisture at

pedon to landscape scales (Doetterl et al. 2016;

Adhikari et al. 2020), to climate and vegetation at

regional to global scales (Jobbagy and Jackson 2000;

Post et al. 1982), a large body of research readily

explains why SOC varies so remarkably from place to

place. The strongest studies also acknowledge that

soils are dynamic through time, unique at sites and

scales that cannot be captured by even strong gener-

alizations, and therefore conclude that further inves-

tigations into factors influencing SOC storage will

continue to refine our understanding of how much is

present, where, and why.

In the body of research exploring patterns and

predictors of variation in SOC storage, a vast number

of studies have reported factors influencing SOC for

part of the spectrum of spatial scales (e.g., Davidson

1995; Goidts et al. 2009; Huang et al. 2017; Minasny

et al. 2013; Mishra et al. 2010; Patton et al. 2019a;

Paustian et al. 1997; Schimel et al. 1994; Thompson

and Kolka 2005; Wynn et al. 2006). The ability to

make inferences across the full range of spatial scales

from global to landscape has largely derived from

reviews of this literature, such as Wiesmeier et al.

(2019, and references therein), and from multi-site

inventories or large data syntheses that have used

extensively (but not intensively) distributed observa-

tions to assess patterns at regional or larger scales

(e.g., Doetterl et al. 2016; Cotrufo et al. 2019). In the

context of these approaches to addressing SOC stocks

and predictors as a function of scale, large networks

that allow for investigation of patterns across and

within sites have much to add, especially when such

networks are sampled expeditiously and according to

common protocols.

Studies that explore processes of SOC and soil

organic matter (SOM) stabilization report mechanisms

that may relate to patterns of SOC storage. This

literature has particularly focused on soil physico-

chemical and biogeochemical mechanisms promoting

SOC stability, such as physical protection, mineral or

metal association, and molecular complexity (Crow

et al. 2007; Kallenbach et al. 2016; Kramer and

Chadwick 2018; Mao et al. 2000; Preston and Schmidt

2006; Sollins et al. 2006; Six et al. 2002; von Lutzow

et al. 2006). These and other studies have specifically

pointed to extractable metals (e.g., Fe, Al), exchange-

able base cations (e.g., Ca, Mg), and soil fine fraction

contents (especially clays) as having controlling

influence over the stability of SOC (Chen et al.

2019; Heckman et al. 2018a, b; Lawrence et al. 2015;

Rasmussen et al. 2018). If these processes and

mechanisms that confer SOM persistence also result

in larger quantities of SOC being present at a point in

time, they may provide a foundation for hypotheses

addressing physicochemical predictors of variation in

SOC stocks at varying scales.

The literature on pedogenesis and soil taxonomy

also offers a strong foundation for assessments of SOC

patterns and predictors at distinct scales. Genetic soil

taxonomy uses morphologic and physicochemical

properties to infer processes of soil formation, many

of which involve gains, losses, transfers and transfor-

mations of materials which are dominantly comprised

of, or critically affected by C (Marbut 1921; Simonson
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1959). In light of the many interacting processes and

factors in soils, all of which vary continuously, genetic

soil taxonomy provides a structure for managing this

complexity, creating categorical groups that reflect

fundamental differences between soils. This categor-

ical system is also hierarchical, integrating broad

distal (e.g., climatic) and local proximal factors (e.g.,

physicochemical properties) at steadily increasing

resolution, to describe soils ultimately as unique

bodies, which often differ in SOC stocks (Wills et al.

2013). As soils are inherently multi-factor, these distal

and proximal factors are not completely independent

of each other. Nonetheless, this pedogenic framework

provides structure for a conceptual model (Fig. 1) that

can be applied at any number of scales. In this model,

distal and proximal controls mediate each other, with

distal controls dominant in extreme climates (frozen,

saturated, or arid conditions) and proximal controls

becoming more important in the mesic, temperate

middle, and within landscapes where climatic varia-

tion is narrower.

The present study is based upon this conceptual

model, which seeks to rectify the more proximal

factors recognized in the mechanistic biogeochemical

literature with the distal climatic factors long associ-

ated with more ecological analyses of SOC. This study

is enabled by the continental-scale National

Ecological Observatory Network (NEON); as such it

is intended to provide context for studies at and across

NEON sites, and to test hypotheses related to SOC

stocks and their variation as influenced by scale and

study design. Data for testing these hypotheses derive

from two complementary campaigns, in which one

sampled profiles from closely adjacent intensive plots

and physically composited similar horizons, and the

other sampled dozens of pedons across the landscape

at each site. Owing to the differing levels of replication

of these two campaigns, they afford opportunities to

assess SOC stocks across the entire network and

within sites, i.e., at continental and landscape scales.

Our (6) hypotheses, enumerated below, are informed

by literature reporting predictors of SOC storage

across scales, and by the SOM stabilization literature,

though it is important to note that they address SOC

stocks in terms of patterns, not stabilization as a

mechanistic process. (1) Regarding whole soil pro-

files, we hypothesized that the two designs reveal the

same continental-scale patterns and sources of varia-

tion in terms of soil taxonomy, climate and soil

wetness influences on SOC stocks. (2) We further

hypothesized that profile SOC stocks vary according

to soil wetness within landscapes in the same pattern

as at the continental scale. (3) Regarding discrete

genetic horizons, we hypothesized that A horizon

Fig. 1 Conceptual model relating proximal versus distal

influences on SOC storage across ecologic and pedologic scales

of investigation. At broad scales and where climate is extreme,

distal climatic factors have greater influence on SOC stocks. At

more localized scales and in moderate climates, proximal

variation (e.g., in physicochemical properties) is more important
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stocks are predicted more by land cover/use than

parent material, with the reverse being true for B

horizons, and the pattern being consistent for the two

study designs. (4) Regarding illuvial horizons specif-

ically, we hypothesized that within-site replication

reveals a wider suite of physicochemical variables

influencing SOC stocks in B horizons, even at the

continental scale, and (5) that the physicochemical

predictors of B horizon SOC differ between distinct

pedogenic pathways. (6) Lastly, we hypothesized that,

within landscapes consisting of soils forming along

distinct pedogenic pathways, the predictors of B

horizon SOC stocks are the same, and follow the

same patterns as observed at the continental scale.

Methods

Study sites and data sources

The NEON design includes 47 terrestrial sites,

distributed across 20 the conterminous United States

(CONUS), Alaska, Hawaii, and Puerto Rico. This

study utilizes soil observations from the 40 CONUS

and Alaska NEON sites comprising the Soil Organic

Matter—Mechanisms Of Stabilization (SOM-MOS)

project (Heckman et al., this issue). In this paper, we

present results from two complementary sampling

campaigns at these 40 NEON sites. The first is the

SOM-MOS project, which sampled five profiles in

close association with the centrally located eddy-

covariance tower at each NEON site, on the locally

dominant soil map unit. The SOM-MOS project

conducted standard soil characterization tests and

complemented them with a suite of mechanistic

measurements, including density fractionation, radio-

carbon, laboratory incubations, and a wide range of

spectroscopic analyses. The present analysis does not

address mechanisms and utilized only the standard soil

characterization data from SOM-MOS. The second

campaign is the network-wide, NEON-coordinated

sampling of dozens of soil profiles collected across the

landscape at each site, intended to characterize

standard soil properties (the initial characterization

campaign). The former of these campaigns is referred

to hereafter as the ‘‘non-replicated’’ or SOM-MOS

dataset, to distinguish its limited, highly localized

within-site replication as compared to the ‘‘replicated’’

or initial characterization dataset.

SOM-MOS soil sampling and data synthesis

Samples were collected for the SOM-MOS project

from each of the five centrally located Soil Array Plots

immediately surrounding the eddy-covariance tower

at each NEON site between February 2015 and

October 2018. At each site, NEON staff used a

hydraulic corer (7.6 cm diameter for permafrost,

4.5 cm diameter for all others) to sample in 1 m

increments to a depth of refusal by rock, 2 m (most

soils), or 3 m (when possible in permafrost soils).

Cores, capped and contained in clear butyrate plastic

liners, were shipped on ice to the Oregon State

University Core Marine Geological Repository Lab-

oratory, where they were stored up to 8 weeks at 4 �C
until processing and description, typically within

2 weeks of arrival, according to U.S. Department of

Agriculture-Natural Resources Conservation Service

(USDA-NRCS) protocols (Schoeneberger et al. 2012).

During processing, the five SOM-MOS profiles per

NEON site were described individually, and identical

genetic horizons were composited across those cores

possessing them. Individual composited horizon sam-

ples were homogenized, split, and shared among

collaborating facilities where characterization was

completed according to NRCS methods (Burt et al.

2004) as detailed in Heckman et al. (this issue). We

addressed variation in the designations and thick-

nesses of major horizons across cores by expressing

total profile SOC stocks mathematically as site-level

‘‘composite profiles’’ based on the number of cores in

which a given horizon was observed and the thick-

nesses of that horizon among those cores in which it

was observed. We averaged the thicknesses of similar

and composited horizons across cores, where the

thicknesses of horizons that were absent in a core

equaled zero. Horizons from all cores were reassem-

bled into a master chronology and the computed

thicknesses were then used to calculate depths for each

horizon. Bulk density was measured on every horizon

from each core, and a weighted average based on

thickness was used to calculate bulk density of the

composite horizon. Of the individual horizons ulti-

mately present in each site-level composite profile,

only the uppermost mineral (typically A), uppermost

B, and lowermost B horizons were subjected to full

laboratory characterization, e.g., C concentrations,

extractable ion concentrations, particle size distribu-

tions. For purposes of whole profile SOC stock
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calculations, organic C concentrations for non-char-

acterized horizons were modeled from diffuse reflec-

tance Fourier transform mid-infrared (FT-IR) spectra

of those horizons, according to methods described in

detail elsewhere (Dangal et al. 2019). Briefly, a local

modeling approach called Memory Based Learning

(Ramirez-Lopez et al. 2013) was applied using the

USDA-NRCS Kellogg Soil Survey Laboratory

(KSSL) spectral library, consisting of[ 50,000 soil

samples with FT-IR spectra and measured OC data.

The FT-IR based predictions showed excellent per-

formance for the subset of SOM-MOS samples that

were independently measured for OC concentration

(R2 = 0.99, n = 87). Of the total 289 OC concentra-

tions in the SOM-MOS dataset, 117 were measured by

elemental analysis, 121 were predicted from their FT-

IR spectra, 28 were the linear interpolation of values

for super- and supra-adjacent horizons, and 23 were

assumed to be equal to the value reported for that site

and most similar horizon in the NEON Megapit soil

characterization data product (National Ecological

Observatory Network (NEON) 2020;

DP1.00097.001). We computed SOC stocks of each

SOM-MOS horizon as % C 9 Db 9 horizon thick-

ness, scaled to Mg C ha-1, and truncated the OC

stocks of horizons spanning 100 cm to a depth of

100 cm.

NEON initial characterization soil sampling and data

synthesis

At each NEON site, 10–26 soil profiles were observed,

described, and quantitatively sampled by professional

soil survey staff from NRCS according to standard

field methods (Schoeneberger et al. 2012). Sampling

took place between September 2015 and August 2018,

with sampling at most sites typically occurring within

a one-week period. At each site, profiles were sampled

from a subset of the Distributed and Tower Base Plots,

which are collectively arrayed across a landscape of

hundreds to thousands of hectares surrounding each

NEON site’s centrally located eddy-covariance tower.

Soil survey staff with local expertise selected a subset

of these plots at each NEON site for sampling, with the

intent of capturing the range of variability in dominant

soil map units within the footprint of the overall

NEON site. Most profiles were excavated as pits (i.e.,

full pedons); at some sites or under specific soil

conditions (e.g., deep dry sands or saturated organic

wetland soils), augers were used to observe, describe,

and collect samples. After collection, samples were

shipped on ice to the KSSL in Lincoln, NE, where they

were processed and characterized according to stan-

dard protocols (Burt et al. 2004). These characteriza-

tion data, as well as descriptive information such as

site and pedon descriptions are available from NEON

at https://www.neonscience.org/data-collection/soils-

sediments.

We began our analysis of NEON Distributed Plot

soils with data for 2627 individual soil horizons from

615 profiles across 40 NEON sites, as sampled and

characterized by NRCS. Soil C concentrations were

determined as percent total C at the KSSL using an

elemental analyzer; for soils containing measureable

inorganic C concentrations, we subtracted the percent

inorganic C (reported as % of mass in CaCO3

equivalents) from the total C to yield a computed %

organic C value. We assumed that % total C = %

organic C for soils that did not report a % inorganic C

value (n = 565); of these, 491 were pH\ 7.0. We

calculated SOC stocks using C concentrations and

bulk density (Db) values, a majority of which were

measured by the clod method (n = 1213; Burt et al.

2004) or as oven-dry soil mass divided by soil volume

at field moisture content (n = 220). We created a

structured approach to gap-filling the 1194 missing Db

values that emphasized measurements most closely

aligned with the fine earth fraction. In order of

preference and limited by data availability, we gap-

filled Db data using the (1) mean of the clod

measurements for the other samples with an identical

horizon designation from that NEON site (n = 695),

(2) mean of that master horizon across the entire

dataset of measured clod values (n = 166), (3) site-

level estimate for that horizon based on the most

closely matched SOM-MOS (n = 169) or NEON

Megapit (n = 103) samples, or (4) mean of the field-

collected samples with the most similar horizon

designations (n = 61). Although measurements are

preferred, even carefully measured Db values are still

only estimates of a notoriously variable soil property

(Patton et al. 2019a, b; Throop et al. 2012). Our gap-

filling approach (using the average or point estimate of

measured values for similar horizon types) avoids

problems of non-independence arising when one soil

property of interest (Db) is predicted from another (%

C) via a pedotransfer function; considering the distri-

bution of gap-filled values across the entire
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Distributed Plot dataset, it is unlikely to result in any

directional bias in our SOC stock calculations.

Furthermore, we conducted a critical statistical

appraisal of gap-filled estimates generated from

pedotransfer functions (% C vs. Db) vs. horizon

means, which revealed no benefit of pedotransfer

functions in terms of prediction intervals, and consis-

tently significant differences between discrete types of

horizons for the horizon mean approach. Follow the

same calculations as with the SOM-MOS dataset, we

computed SOC stocks of each sampled horizon in the

Distributed Plot dataset as % C 9 Db 9 horizon

thickness, scaled to Mg C ha-1, and truncated the

OC stocks of horizons spanning 100 cm to a depth of

100 cm, assuming a homogenous vertical distribution

of OC within such horizons.

Data analysis

As is typical in soils datasets, SOC stocks of whole

profiles and individual horizons were for typically

skewed right in the SOM-MOS and initial character-

ization datasets; we used ln transformation to address

non-normality (Grigal et al. 1991). We ran parametric

statistical tests (categorical: ANOVA with Fisher’s

Least Significant Difference multiple comparisons,

t test; continuous: best subsets, simple or multiple

linear regression) on transformed response variables,

but present most results as back-transformed means

and 95% confidence intervals to aid in interpretation.

In some cases, we used non-parametric tests (Kruskal–

Wallis or Mann–Whitney) and report results as

medians and quartiles. All statistical tests were

performed with SigmaPlot (SYSTAT Software, San

Jose, CA US).

We selected specific statistical analyses to address

our hypotheses. To test H1 and H2, we used one-way

ANOVAs to test whether soil taxonomic groups

(Order, Suborder, Great Group, Subgroup) soil tem-

perature regime, moisture regime, were significant

categorical predictors of variation, followed by Fish-

er’s tests to identify significantly different groups at

continental (H1) and landscape (H2) levels. We

performed these tests separately for the non-replicated

SOM-MOS (one composited profile per NEON site)

and replicated initial characterization (many profiles

per NEON site) datasets. We ranked the ability of

categorical variables to explain variation among the

observations by examining: (1) the proportion of total

variation among observations that was explained by

either variable [sum of squares between groups/total

sum of squares]; (2) theF statistic associated with each

categorical variable, which controls the comparison of

variance for the degrees of freedom associated with

each categorical variable. To test H3, we used two

one-way ANOVAs (one for A, one for B horizons) to

test whether land cover/use and parent material groups

differed significantly SOC stocks, again repeating

these tests for SOM-MOS vs. initial characterization

datasets. To test H4, we used best subsets regressions

to identify variables explaining the largest shares of

variation in SOC stocks for A and B horizons; similar

to other tests, these were conducted separately for the

SOM-MOS and initial characterization datasets. Each

best subsets model run was allowed to select from a

common field of predictor variables, which we

selected before running tests based on factors reported

in the literature summarized in ‘‘Introduction’’ sec-

tion. In terms of soil physicochemical properties

(derived from soil characterization tests), these

included particle size distribution (% of mass in sand,

silt, and clay size fractions), volumetric coarse frag-

ment content (% coarse fg.), pH in 2:1 water:soil

slurry, oxalate extractable aluminum (Al_ox) and iron

(Fe_ox) and dithionite-citrate extractable Al and Fe

(Al_dith, Fe_dith) as % of mass, ammonium acetate

extractable Ca (Ca_NH4) and CEC (CEC_NH4)

contents as cmol ? per kg of soil (Burt et al. 2004).

In terms of climate variables, these included site-level

mean annual temperature (MAT), mean annual pre-

cipitation (MAP), and a climatic leaching index

calculated as the difference between MAP and annual

evaporation (MAP-ERef). All climate variables were

generated with the ClimateNA v5.10 software pack-

age, at 4 km resolution and using 30-year means

(Wang et al. 2016). To characterize land cover and use

(not differentiated), we used the categories of the

National Land Cover Dataset (NLCD; Homer et al.

2015), as provided by NEON for each plot from which

soils were sampled for the two sampling campaigns.

We selected the strongest predictive model in each test

by inspecting the adjusted R2 values of each succes-

sively larger model (in terms of P predictors) and

accepted the largest model that increased the adjusted

R2 by at least 0.05 relative to the one with P - 1

predictors. This a priori approach protects against

over-fitting by selecting models with many added

predictor variables that do little to increase proportion
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of explained variation, and which often appeared to

suffer serious multicollinearity or spurious relation-

ships in our datasets. In cases where the selected

model had variables with strong multi-collinearity

[variance inflation factors (VIF)[ 4.0], we defaulted

to the next smallest model without any VIF val-

ues[ 4.0. To test H5, we used the nonparametric

Kruskal–Wallis test to assess whether median values

of B horizon properties in the initial characterization

dataset differed between three pedogenically defined

groups at the continental scale, and subsequently the

Mann–Whitney test to compare medians (for two of

the three pedogenic groups) at each of three NEON

sites. To test H6, we used the same best subsets

regression process described for H4 three times (once

for each NEON site assessed under H5) to identify

continuous variables explaining the largest share of

variation in B horizon SOC stocks.

In all statistical tests, we set P\ 0.05 as the

threshold for accepting test results as significant. In

addition to assessing statistical significance according

to P values, we also assessed whether patterns and

statistical significance were robust to alternative

models by performing separate tests aimed at each

hypothesis. Namely, for hypotheses addressing SOC

stocks as a function of categorical variables (H1-H3,

H5), we ran nonparametric Kruskal–Wallis and

Mann–Whitney tests (as appropriate to the number

of groups) on non-transformed SOC stocks for the

initial characterization dataset. For hypotheses incor-

porating both continuous and categorical predictors,

we ran best subsets regressions focused on B horizon

properties twice: once for the full initial characteriza-

tion dataset of B horizons and again using only the

uppermost B horizon from each initial characteriza-

tion pedon (most pedons had 1–2 B horizons). The

results of these additional tests are not reported in this

paper; in general, we found very few (and minor)

exceptions to patterns reported in this paper when

substituting alternative models. When deviations were

noted, they involved minor changes, e.g., in multiple

comparisons P values for categorical groups, or the

partial t values of individual variables in best subsets

models. Overall, we report this here to encourage

multi-model analyses as a practice, and emphasize the

robustness of our results to alternative analytical

frameworks in the remainder of this paper.

Results

Hypothesis 1: patterns and sources of variation

in whole profile SOC stocks at the continental scale

At the continental scale, nearly all tested predictor

variables were significant sources of variation in

whole profile SOC stocks in both the SOM-MOS and

initial characterization datasets (Table 1). Among the

three climatic predictor variables tested, both datasets

indicated that temperature regime explained more of

the observed variation in whole profile SOC stocks

than drainage class, whether assessed in terms of the

proportion of total variance explained (SSb/SSt) or

when comparing F statistics to control for the differing

degrees of freedom of the three predictor variables.

Regarding variation as explained by soil taxonomy,

the initial characterization dataset with its high level of

within-site replication suggested that finer taxonomic

classifications were mostly able to explain larger

proportions of total variance in profile SOC stocks.

However, comparing F statistics to control for the

differing degrees of freedom across taxonomic levels,

the coarsest level of classification (soil order) was the

strongest predictor. NEON sites also differed signif-

icantly from each other in profile total SOC stocks,

despite considerable within-site variation in soils

present and SOC stocks (Supplementary Tables S1,

S2). Assessing between-site differences was not

possible with the SOM-MOS dataset, which possessed

no within-site replication and also had limited statis-

tical power for testing variation at finer levels of

taxonomic classification. Specifically, while SOM-

MOS spanned 9 orders (compared to ten for the initial

characterization dataset), most suborders, great

groups, and subgroups had only n = 1 profile, and

highly significant P values reflected large differences

between a small number of highly different mean

values for certain soil taxa (Fisher’s test comparisons,

results not shown).

The SOM-MOS and initial characterization data-

sets both spanned the full range of temperature

regimes in USDA Soil Taxonomy, and temperature

regime explained 70 and 39% of the total variance in

profile total SOC (as SSb/SSt) for the two datasets,

respectively. Both datasets showed the same general

pattern (Fig. 2), with the largest profile SOC stocks at

the cold, and the smallest at the warm end of the

spectrum, and many though slightly different
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significant differences between intermediate temper-

ature regimes. The SOM-MOS dataset, with its far

smaller number of total profiles, had wider 95%

confidence intervals than the initial characterization

dataset for every temperature regime, though the

confidence intervals of the two datasets overlapped in

every temperature regime. In terms of specific pat-

terns, the larger sample size of the initial

Table 1 Categorical sources of variation in profile total SOC stocks at the continental scale in the SOM-MOS (left) and initial

characterization (right) datasets

SOM-MOS (non-replicated) Initial characterization (replicated)

Factor df_b SSb SSt SSb/SSt F P df_b SSb SSt SSb/SSt F P

Temperature 5 19 27 0.70 15.6 \ 0.001 5 196 504 0.39 72.6 \ 0.001

Drainage 4 10 27 0.37 5.0 \ 0.001 6 177 547 0.32 48.5 \ 0.001

Moisture 4 5 27 0.19 2.1 0.102 7 76 476 0.16 13.5 \ 0.001

Order 7 19 27 0.70 10.2 \ 0.001 9 299 547 0.71 81.0 \ 0.001

Suborder 13 22 27 0.81 7.1 \ 0.001 31 348 547 0.64 32.6 \ 0.001

Great group 11 24 27 0.87 8.9 \ 0.001 61 388 547 0.71 21.1 \ 0.001

Subgroup 5 26 27 0.95 28.5 \ 0.001 94 446 547 0.82 19.9 \ 0.001

Site 39 391 547 0.71 36.9 \ 0.001

For each dataset and predictor variable, the between-group degrees of freedom (df_b) and sum of squares (SSb), total sum of squares

(SSt), proportion of explained variation (as SSb/SSt), and F and P statistics are shown

Fig. 2 Whole soil profile SOC storage, to a depth of refusal or

1 m, for the six soil temperature regimes inUSDASoil Taxonomy

as represented across NEON sites.Open squares, large error bar
whiskers, and lower case letters denote back-transformed means,

95% confidence intervals, and significant differences between

temperature regimes for profiles from the SOM-MOS dataset,

which were not replicated within sites. Filled circles, small error
bar whiskers, and capital letters denote the same for the initial

characterization dataset, in which many profiles were sampled

within each NEON site. The number of profiles for SOM-MOS

and initial characterization datasets, respectively, are given

parenthetically for each temperature regime
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characterization dataset showed that soils with gelic

temperature regimes [mean annual soil temperature

(MAST) of\ 0 or\ 1 �C, depending upon level of

taxonomic classification] had the largest profile SOC

stocks. Cryic and frigid temperature regimes, possess-

ing MAST of 0–8 �C (but frigid regimes possessing

more intra-annual variation) had similar profile total

SOC stocks, which were in turn larger than the

remaining temperature regimes. Soils with mesic

temperature regimes (MAST[ 8,\ 15 �C) had sig-

nificantly larger profile SOC storage than the thermic

(MAST[ 15,\ 22 �C) and hyperthermic ([ 22 �C)
regimes, which did not differ from each other.

Natural drainage classes incorporate the climatic

and topographic conditions under which a soil has

formed, as mediated by soil hydraulic properties, and

described in reference to the depth to, frequency and

duration of internal free water. These classes are

designated at the pedon level, and as hypothesized

were a significant predictor of variation in whole

profile SOC stocks in both the SOM-MOS and initial

characterization datasets (Fig. 3). In both datasets,

drainage was a stronger predictor of observed varia-

tion than soil moisture regime (Table 1), which very

specifically characterizes the amount of soil moisture

as it varies seasonally within a typical year for some

superficial portion of the pedon (the control section),

in reference to temperature and biological activity.

The internally replicated (within NEON sites) initial

characterization dataset spanned a wider range of

natural drainage classes overall, possessed larger

sample sizes within each, and revealed significant

differences between most groups. Namely, very

poorly drained (free water very shallow, persistent to

permanent), poorly drained (free water shallow or very

shallow, common to persistent), and somewhat poorly

drained soils had the largest, second-, and third-largest

mean profile total SOC stocks, respectively. Profile

total SOC stocks of moderately well drained soils (free

water moderately deep, transitory to persistent) ranged

into those of well-drained soils (free water deep to

very deep), which in turn differed from the smallest

mean values for somewhat excessively and exces-

sively drained soils, which have very deep, very rare

occurrences of free water and high to very high

hydraulic conductivity. None of the SOM-MOS soils

possessed very poorly drained classifications; among

those represented, poorly drained soils differed from

all others, which did not differ from each other.

Similar to soil temperature regimes, 95% confidence

intervals for whole profile SOC stocks among SOM-

MOS soils were much wider than for initial charac-

terization soils, but overlapped for all mutually

sampled drainage classes.

Fig. 3 Whole soil profile SOC storage, to a depth of refusal or

1 m, for the seven natural drainage classes in USDA Soil

Taxonomy as represented across NEON sites. See Fig. 2 caption

for explanation of sample sizes, means, confidence intervals,

andmultiple comparisons for the two datasets. Note x-axis break
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Soil taxonomic classifications reflect a multitude of

factors influencing the development and hence mor-

phology and properties of soils. Thus, soil taxonomic

patterns in profile SOC (Table 1) are not independent

of the presented climatic patterns (Figs. 2, 3). How-

ever, soil taxonomy also incorporates additional

factors, and provides a framework for differentiating

soils at hierarchically more specific levels. Consider-

ing the two datasets and four levels of classification

tested here (Table 1), the coarsest (soil order) provided

the best overall performance in terms of explaining

total variation in SOC stocks between soil profiles

across NEON sites (SSb/SSt), while avoiding prob-

lems with overfitting or limited within-group replica-

tion (assessed in terms of F statistics). In terms of

specific patterns, the initial characterization dataset

showed significant differences in profile total SOC

between many soil orders (Fig. 4), with very large

means (and variances) for the frozen and often

saturated Gelisols and mostly saturated Histosols, to

small mean values for the widely distributed, weakly

developed Entisols (82 Mg C ha-1) and the Aridisols

(23 Mg C ha-1). Intermediate values, many of them

significantly different, were observed for other min-

eral soil orders. The SOM-MOS dataset revealed

fewer differences between orders, but where these

were detected they followed the same patterns as

observed across the initial characterization dataset

(Fig. 4).

Hypothesis 2: patterns of variation in whole profile

SOC stocks at the landscape level

Three NEON sites possessed localized drainage

sequences with reasonably strong replication across

drainage classes at the landscape level, enabling a test

of Hypothesis 2 with the initial characterization

dataset (Fig. 5). These sites included one in the

western Great Lakes basin (TREE; Wisconsin) and

two on the Outer Coastal Plain, in Florida (OSBS and

TALL) The only site spanning the full range of seven

natural drainage classes (OSBS) most closely approx-

imated the continental pattern of increasing profile

SOC with increasing wetness, albeit with fewer

significant differences between drainage classes. The

other two sites possessed soils from only four of the

seven drainage classes; at these, the most poorly

drained soils on the landscape tended to have more

variable profile total SOC, but only at one of them

Fig. 4 Whole soil profile SOC storage, to a depth of refusal or

1 m, for the ten orders (of 12 total) in USDA Soil Taxonomy

represented across NEON sites. See Fig. 2 caption for

explanation of sample sizes, means, confidence intervals, and

multiple comparisons for the two datasets
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(TREE) was profile SOC significantly greater with the

poorest drainage than (all other) drainage classes.

Hypothesis 3: SOC stocks in A vs. B horizons

as related to land cover vs. parent material

Topsoil (A horizon) and illuvial (B) horizon SOC

storage varied significantly with land cover/use and

parent material, for both SOM-MOS and initial

characterization datasets (Table 2). However, our

specific hypotheses were not consistently supported by

the results. In A horizons, land cover/use was a

stronger predictor of variation in SOC storage than

was parent material for both datasets, both in terms of

the proportion of total variance explained and the

F statistics of the two predictors. In B horizons, lower

Fig. 5 Whole soil profile SOC storage, to a depth of refusal or

1 m, for the USDA natural drainage classes observed at three

NEON sites with internal gradients in natural drainage. Plots
show means and 95% confidence intervals after back-

transformation from the ln-transformed values used for analysis.

Lowercase letters denote significant differences between ln-
transformed values. Note x-axis breaks
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proportions of the total variance were explained by

these two predictors, and there was no clear pattern of

either variable being a stronger predictor of observed

variation than the other. Namely, parent material

explained somewhat larger proportions of variation

than land use in terms of the fraction of total variation

between observations, but at the expense of degrees of

freedom (i.e., a much larger number of categorical

groups than land cover/use classes).

Hypothesis 4: continuous variables influencing

A and B horizon SOC stocks

Despite originating from the very same study sites and

possessing the same pool of potential predictor

variables, the SOM-MOS and initial characterization

datasets diverged in the continuously varying factors

best able to explain the variation observed in A and B

horizon SOC stocks (Table 3). Best subsets models

within the non-replicated SOM-MOS dataset nomi-

Table 2 SOC stocks for A (above dotted line) and B (below dotted line) horizons, for SOM-MOS (left) and initial characterization

(right) datasets, as related to land cover/use vs. parent material

SOM-MOS (non-replicated) Initial characterization (replicated)

Horizon/factor df_b SSb SSt SSb/SSt F P df_b SSb SSt SSb/SSt F P

A horizons

Land cover/use 6 17 28 0.61 7.7 \ 0.001 9 164 510 0.32 29.0 \ 0.001

Parent material 7 12 28 0.43 3.2 0.015 23 155 510 0.30 10.1 \ 0.001

B horizons

Land cover/use 6 33 91 0.36 6.0 \ 0.001 9 84 739 0.11 13.3 \ 0.001

Parent material 13 38 91 0.42 3.2 \ 0.001 24 148 739 0.20 9.7 \ 0.001

Table 3 Sources of continuous variation in A and B horizon

SOC storage in the SOM-MOS (for each dataset and predictor

variable, the between-group degrees of freedom (df_b) and

sum of squares (SSb), total sum of squares (SSt), proportion of

explained variation (as SSb/SSt), and F and P statistics are

shown left) and initial characterization (right) datasets

SOM-MOS Initial characterization

Factor t P VIF Factor t P VIF

A horizons R2 = 0.35 A horizons R2 = 0.51

MAT - 2.411 0.022 1.068 pH - 10.983 \ 0.001 2.234

MAP 1.927 0.063 1.277 CEC_NH4 8.542 \ 0.001 2.373

Al_dith 1.917 0.064 1.336 Ca_NH4 6.729 \ 0.001 2.933

Al_ox 4.031 \ 0.001 1.399

% Sand - 2.638 0.009 1.885

B horizons R2 = 0.25 B horizons R2 = 0.30

MAT - 4.796 \ 0.001 1.000 CEC_NH4 8.026 \ 0.001 1.372

Al_ox 3.695 \ 0.001 1.208

% Coarse fg 2.941 0.003 1.093

% Silt 2.227 0.027 1.425

For each horizon, the predictor variables in the strongest best subsets regression model are presented, along with their partial t and
P statistics and variance inflation factors (VIF), and the adjusted R2 value of the model. See ‘‘Data analysis’’ section for information

about variables and model selection
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nated climatic drivers as those explaining the most

variation, with MAT appearing first for both horizons.

Mean annual precipitation and dithionite-citrate

extractable Al concentrations additionally appeared

in the strongest multi-variate A horizonmodel that met

our criteria. Model predictive capacity, in terms of

proportion of variance explained, was higher for the

initial characterization dataset (R2 = 0.51 and 0.30 for

A and B horizons, respectively, vs. 0.35 and 0.25 for

the SOM-MOS dataset). The initial characterization

dataset, which spanned the same broad climatic

gradients but also replicated across soil physicochem-

ical properties within each NEON site’s climate,

suggested a stronger influence of variation in soil

physicochemical properties, while climate variables

were not present in the strongest models that met our

criteria. In A horizons, pH values predicted the largest

proportion of the variation in observed SOC stocks,

with CEC, exchangeable Ca and Al concentrations,

and sand content explaining the successive remaining

shares of residual variation. Cation exchange capacity

and oxalate-extractable Al concentration were also

selected in the B horizon model, which further

included coarse fragment and silt contents.

Hypothesis 5: pedogenic variation in B horizon

properties and SOC stocks at the continental scale

Considering all B horizons from the continental-scale,

internally replicated initial characterization dataset

revealed that nearly all measured physicochemical

properties differed significantly between argillic/

kandic, cambic, and spodic groups (Table 4; Krus-

kal–Wallis tests). The only exceptions were silt

contents of argillic/kandic (n = 548) vs. cambic

horizons (n = 295) and coarse fragment contents of

spodic (n = 110) vs. cambic horizons. In general

terms, spodic horizons tended to be coarse-textured,

acidic, high in OC and extractable metal, and low in

bulk density, extractable calcium, and CEC. In

contrast, argillic and kandic horizons were the densest,

finest-textured, highest in Ca and CEC, and lowest in

extractable metals and OC. Compared to these

extremes, cambic horizons were intermediate in most

regards but had notably high CEC. Median SOC

stocks were significantly different for all three groups,

being 16 Mg C ha-1 for argillic/kandic horizons,

23 Mg C ha-1 for spodic horizons, and 30 Mg C ha-1

for cambic horizons.

In keeping with their significant differences in

nearly all physicochemical parameters, the three types

of illuvial horizons in the initial characterization

dataset differed in the variables that best explained

variation in their SOC stocks, although several

predictors were consistent across two of the three

groups (Table 5). Predictors of SOC storage in argillic

Table 4 Physicochemical properties of illuvial (B) horizons

falling into three major pedongenic groups: clay-enriched

argillic and kandic horizons (B horizons with t and k

designations), incipient cambic horizons (w designations),

and organo-metal spodic horizons (s and h designations)

Argillic/Kandic Cambic Spodic

%Sand 37 (18–59) 44 (27–70) 74 (65–89)

%Silt 33 (18–46) 35 (21–45) 22 (8–30)

%Clay 28 (19–37) 14 (8–28) 4 (3–5)

%Coarse fg 1 (0–9) 8 (0–32) 19 (0–41)

Db 1.59 (1.50–1.67) 1.40 (1.21–1.52) 1.11 (0.93–1.31)

pH 6.6 (5.2–8.1) 5.4 (5.0–6.6) 5.0 (4.5–5.2)

%OC 0.36 (0.21–0.67) 1.06 (0.64–1.82) 1.50 (0.78–2.55)

Al_ox 0.09 (0.05–0.14) 0.19 (0.10–0.47) 0.37 (0.24–0.60)

Al_dith 0.10 (0.00–0.20) 0.20 (0.10–0.50) 0.30 (0.20–0.60)

Ca_NH4 11.2 (3.3–31.6) 2.2 (0.0–9.8) 0.4 (0.0–1.2)

CEC_NH4 13.3 (8.1–19.9) 11.5 (6.5–17.3) 7.7 (5.3–12.2)

Values reported are medians, 25th and 75th percentiles
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and kandic horizons, which were 58% of all B

horizons in the continental-scale dataset, were the

same in identity, rank, and sign as for B horizons

overall in the dataset. These included CEC, oxalate

extractable Al, coarse fragment, and silt contents.

Cation exchange capacity was also the most signifi-

cant predictor of SOC storage for cambic horizons,

followed by climatic leaching index. In spodic hori-

zons, B horizon SOC was related to oxalate

extractable Al, pH, clay and coarse fragment contents,

and MAP.

Hypothesis 6: pedogenic variation in B horizon

properties and SOC stocks within heterogeneous

soil landscapes

Three NEON sites-one each in the Appalachian

(MLBS), Rocky (NIWO), and Sierra Nevada Moun-

tains (SOAP) provided well-replicated internal con-

trasts between soils with argillic (Bt/Bk) horizons vs.

cambic (Bw) horizons. This observational design

afforded the opportunity to test whether B horizon

SOC stocks and relationships with soil

physicochemical properties followed the same pat-

terns within these local landscapes as observed across

the continental-scale dataset. In contrast to the many

significant differences in physicochemical properties

between argillic and cambic B horizons observed at

the continental scale (cf. Table 4), there were few

significant differences between argillic and cambic

horizons at these three sites (Table 6). Specifically,

clay differed significantly between groups at 2 of the 3

sites, and pH, extractable Al and Ca contents differed

significantly at one site each, respectively. Categori-

cally, B horizon SOC stocks of the two pedogenic

groups were significantly different at two of the three

sites, but best subsets model selection identified

continuously varying physicochemical properties as

better predictors of variation in B horizon SOC stocks.

However, the factors that best explained variation in B

horizon SOC stocks differed depending on site

(Fig. 6). The strongest model meeting our criteria at

each site (each had P\ 0.001) was a three-variable

model, with adjusted R2 values ranging from 0.62

(NIWO) to 0.83 (MLBS). At MLBS, oxalate-ex-

tractable Al explained the largest share of variation in

B horizon SOC (partial t = 8.186), with residual

variation explained by coarse fragment

(t = - 2.195) and clay (t = - 1.910) contents,

respectively. At NIWO, variation in SOC was most

strongly related to CEC (partial t = 3.903), followed

by clay and extractable Al contents (t = - 2.898 and

t = 2.700, respectively). At SOAP, B horizon SOC

stocks were positively related to their sand (t = 6.650),

extractable Fe (t = 4.686), and Ca (t = 3.192)

contents.

Discussion

The NEON design, spanning continental gradients

across sites, and landscape-level variation within

them, affords unique opportunities to test hypotheses

as a function of scale and study design, using two

complementary datasets differing in their degree of

within-site replication. Table 7 enumerates our

hypotheses, their scales of testing and degree of

support, the implications of these results for studies at

NEON sites and similar cross-scale networks, and

inferences into how soils function. Our overarching

result, across all of these hypotheses, is that SOC

Table 5 Sources of variation in SOC storage of B horizons

from the continental-scale distributed plot dataset falling into

three pedogenic groups

Factor t P VIF

Argillic/Kandic R2 = 0.31

CEC_NH4 8.118 \ 0.001 1.375

Al_ox 3.547 \ 0.001 1.213

%Coarse fg 3.413 \ 0.001 1.09

%Silt 2.119 0.035 1.432

Cambic R2 = 0.53

CEC_NH4 5.351 \ 0.001 1.2

MAP-Eref 3.841 \ 0.001 1.2

Spodic R2 = 0.61

Al_dith 4.847 \ 0.001 1.602

pH - 3.738 \ 0.001 2.166

%Clay 2.84 0.005 1.49

%Coarse fg 2.684 0.008 1.571

MAP 2.626 0.01 2.871

For each group, the predictor variables in the strongest best

subsets regression model are presented, along with their partial

t and P statistics, variance inflation factors (VIF), and the

adjusted R2 value of the model. See ‘‘Data analysis’’ section for

information about variables and model selection
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Table 6 Paired comparisons of B horizon SOC storage and physicochemical properties for three NEON sites possessing internal

contrasts of argillic (Bt/Bk) vs. cambic (Bw) horizons

Site Pedogenic B horizon

Group C stock % Clay % Crs. fg pH Al_ox Ca_NH4 CEC_NH4

MLBS Argillic 26 (15–42) 23 (19–30)a 14 (5–28) 4.6 (4.5–4.7) 0.17 (0.11–0.22) 0.0 (0.0–0.1) 7.8 (6.1–9.6)

Cambic 18 (11–30) 14 (10–18)b 14 (1–77) 4.6 (4.2–4.8) 0.16 (0.12–0.21) 0.0 (0.0–0.0) 6.2 (5.0–8.2)

NIWO Argillic 13 (9–16)a 13 (10–16) 62 (52–85) 5.3 (5.2–5.3)a 0.22 (0.18–0.25) 1.0 (0.4–1.3)a 8.9 (7.2–10.3)

Cambic 30 (17–50)b 9 (6–15) 63 (41–70) 5.6 (5.4–5.9)b 0.20 (0.10–0.42) 3.0 (2.1–3.2)b 8.9 (7.3–13.3)

SOAP Argillic 27 (18–35)a 23 (20–32)a 8 (5–16) 6.0 (5.9–6.4) 0.16 (0.11–0.32)a 4.6 (3.5–5.7) 10.0 (9.1–11.4)

Cambic 51 (40–73)b 7 (5–18)b 27 (8–43) 6.4 (5.9–6.5) 0.65 (0.30–0.68)b 2.9 (2.5–6.4) 10.4 (8.7–14.1)

All properties are reported as medians, 25th and 75th percentiles. Within each site, significant differences between groups (Mann–

Whitney test) are indicated with lowercase letters

Fig. 6 Relationships between B horizon physicochemical

properties and SOC stocks (ln-transformed) for three NEON

sites. Points represent individual B horizon samples. Plots in the
left column show relationships between the physicochemical

property explaining the largest share of variation in SOC; plots
in the center and right columns show relationships between the

physicochemical property and the residual variation after

accounting for the predictor variable(s) to the left. Best-fit lines

are added as a visual aid; slopes and partial P values correspond

to the coefficients returned by the strongest best subsets

regression model for each site
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patterns and predictors observed at one scale (or using

one design) do not necessarily transfer to others.

Our first two hypothesis tests exemplify the disso-

nance that can occur when soils arrayed across a

sequence on a landscape are expected to follow the

trend observed across the same gradient at a larger

scale. Profile total SOC stocks for soils differing in

drainage at TREE, OSBS, and TALL (H2, Fig. 5)

highlight that even landscapes with many similarities

(i.e., humid climates, low relief, hydraulically con-

ductive unconsolidated parent materials) can diverge

from a strong pattern with a straightforward explana-

tion (H1, Fig. 3). Importantly, few sites (whether

NEON or otherwise) span the full range of drainage

classes, and while each of the three we assessed shows

a grossly similar qualitative trend, not one shows the

clearly significant pattern that we observed at the

continental scale, or others have reported at regional

and continental scales (Dalsgaard et al. 2016; David-

son 1995; Davidson and Lefebvre 1993; Wills et al.

2013). Thus, expecting drainage sequences to align

neatly with SOC stocks on any landscape is unwar-

ranted, despite the convincing pattern from the large-

scale dataset, which has been documented in individ-

ual site-level studies elsewhere (Raymond et al. 2011;

Richardson and Stolt 2013; Webster et al. 2008). In

terms of implications for SOC studies across scales,

testing our first two hypotheses revealed that within-

site replication is not needed to discern drainage,

climatic, and soil taxonomic patterns in SOC at wide

scales and for whole soil profiles. The common

inference among these patterns is thus the ability of

meaningful categories to encompass continuous vari-

ation in soil forming factors and processes, and in turn

differentiate their SOC stocks. Ultimately, the factors

and processes that govern the formation of soils as

Table 7 Summary of hypothesis test

Hypothesis Scale Test Implication Inference

1. Patterns and sources of variation

in whole-profile SOC stocks are

the same in replicated and non-

replicated datasets

C ? At wide scales and for whole soil

profiles, within-site replication is not

needed to discern soil taxonomic,

climatic, and drainage patterns in

SOC

Soil taxonomy categorizes continuous

variation in soil forming factors into

groups that also differ in SOC, which

is thus an emergent pedogenic

property

2. Drainage and profile SOC show

the same positive relationship at

landscape as continental scales

C/L o Continental drainage gradients are

rarely found at landscape levels; at

more localized scales SOC

differences are restricted to the

extremes

At broad (but not local) scales, wetness

may covary with factors that

strengthen its positive influence on

SOC

3. SOC in A horizons is predicted

by land cover/ use more than

parent material; in B horizons

these influences reverse

C - Land cover/use may predict more

variation than parent material in A

horizons, but neither factor

predominates in B horizons

Both top-down and bottom-up factors

are important throughout the soil

profile, though topsoils are somewhat

more influenced by top-down

controls

4. Within-site replication reveals

more continuous variables

influencing SOC stocks in A & B

horizons

C/L ? Broad designs suggest broad climatic

trends; within-site replication reveals

these plus physicochemical

influences that occur more locally

Climatic influences on SOC are

modulated by soil physicochemical

variation

5. B horizon SOC stocks vary

according to different drivers in

distinct pedogenic groups

C ? Categorical groups capture broad

patterns; variation within each group

is explained by continuous variation

in group-specific properties

Variation in SOC within and between

soil taxa is influenced by factors and

processes of formation expected

from, and unique to those taxa

6. B horizon SOC and its predictors

follow the same pedogenic

patterns as at the continental scale

C/L - Pedogenic differences in soil

properties and SOC stocks are fewer

and smaller at landscape than

continental scales

Predictors of and covariance between

SOC stocks and other soil properties

are ultimately site-specific

Hypotheses were addressed at continental (C) and landscape (L) scales and are qualified here as having strong (?), mixed (o), or no (–

) support. Implications are statistical results in context; inferences refer to soil functioning
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natural bodies interact and covary in fundamental

ways that cannot be statistically disentagled. This

reality makes categorization (e.g., as with soil taxon-

omy) a useful way to manage complexity, while

acknowledging that categories include factors that

may work synergistically (e.g., coldness and wetness)

to produce strong patterns in observational datasets

such as we have assembled across NEON sites.

Our latter three hypothesis tests demonstrate the

implications that study designs have for the inferences

that they can support, in terms of patterns and their

transferability across scales. The first of these (H4,

Table 3) demonstrated how broad-scale designs that

do not replicate within sites can capture variation in

SOC stocks as related to factors varying at such broad

scales (e.g., climate), while failing to detect the

influence of factors varying at broad and local scales

(e.g., soil physicochemical properties). In this case,

comparing results from the initial characterization

dataset to those of the SOM-MOS dataset effectively

controls for the broad climatic variation detected by

the latter, in that climate variables do not vary

meaningfully at the scale of a NEON site while soil

physicochemical properties do. In terms of inference,

this suggests that the apparent overarching influence

of climate may in fact be less important than

continuously varying soil physicochemical properties,

to the extent that these factors are independent of each

other. Our Hypothesis 5, focused on B horizons in

particular, placed that continuous variation in physic-

ochemical properties within three pedogenically

defined groups at the continental scale (Tables 4, 5).

The consistent differences in properties, and the

relationships of unique physicochemical properties

to SOC in each of those groups may superficially seem

to provide a pedogenic basis for SOC variation at more

localized scales, much like the hypothesized wetness –

profile SOC relationship (H2). However, in similar

fashion, testing this hypothesis (H6) at the landscape

level at MLBS, NIWO, and SOAP revealed that

pedogenic differences in B horizon properties and

SOC stocks were far fewer at landscape than conti-

nental levels (Table 6, Fig. 6). Soils from the Bt/Bk vs.

Bw pedogenic groups at each of these sites not only

failed to exhibit most of the physicochemical differ-

ences observed at the continental scale, but the specific

physicochemical factors that predicted SOC stocks

differed across the three sites.

The SOM literature emphasizes the importance of

organo-metal interactions to the formation of rela-

tively stable SOM, or having positive relationships

with SOC concentrations (Kleber et al. 2007; Kogel-

Knabner et al. 2008; Rasmussen et al. 2018). Obser-

vational relationships between extractable forms of Al

and SOC storage in A and B horizons at the continental

scale (H4, Table 3) support this, to the degree that

operational dissolutions target meaningfully discrete

reactive forms of soil metals (Heckman et al. 2018a, b;

Wagai et al. 2013). However, SOC relationships with

Al and other physicochemical properties (e.g., pH,

CEC) that we report are to some degree a product of

covariance, and thus do not indicate a controlling

influence of any one or three soil properties over SOC

storage. That said, this covariance could reasonably be

expected to be stronger in some soils (or portions of

the profile) than others, and best subsets regressions

(results not shown) demonstrated this was the case.

For example, across all initial characterization A

horizons, % organic C explained 46% of the variation

in CEC, with the addition of % clay bringing the

explanatory power of the model to 80%. In the lower

organic matter B horizons, this order was reversed,

with % clay explaining 36% of variation in CEC, and

the addition of % organic C resulting in a model with

adjusted R2 of 0.60.

The inability of observational statistics to disen-

tangle integrative soil properties is not a new problem,

nor is it particularly important when considering that

physicochemical properties such as pH, base cation,

and metal concentrations are temporally dynamic

(McLaughlin 2014; SanClements et al. 2009; Thomp-

son et al. 2006). A soil extraction from one point in

time may therefore misrepresent the conditions under

which that soil has formed, and fail to reveal climate,

biogeochemical, and other factors that influence SOC

stocks that have accumulated over longer timescales

(Delgado-Baquerizo et al. 2017; Slessarev et al. 2016).

Radiocarbon measurements indicate that most soils

hold C that has been cycling over centuries to

millennia, especially in B horizons (Heckman, this

issue; He et al. 2016; Schrumpf et al. 2013; von

Lutzow et al. 2006), implying that relationships

between SOC and state factors as they are observed

today may be at best coincidental, and at worst

misleading. Paleo-disciplines (e.g., ecology, climatol-

ogy, pedology) all indicate that over time scales

relevant to soil C turnover, many soils have
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experienced wide variation (or directional changes) in

factors such as climate and vegetation (Commerford

et al. 2016; Shuman andMarsicek 2016). For example,

in climates that are today semi-arid or drier, clay-

enriched horizons (e.g., Bt, Bk) have been interpreted

as relicts of past wetter climates needed to explain

physical mechanisms of clay translocation and accu-

mulation (Bockheim and Hartemink 2013; Elliott and

Drohan 2009; Lavkulich and Arocena 2011). Soils in

forest-grassland ecotones, often comprised of Alfisol-

Mollisol complexes (Eckmeier et al. 2007; Kru-

penikov et al. 2011) provide another set of examples,

in which mechanisms of SOM stabilization associated

with these dramatically different vegetation types and

disturbance regimes can both be detected (Masiello

et al. 2004). Notably, soil properties developed over

long-term pedogenesis can influence SOC concur-

rently over the course of that long-term development;

they can also pre-dispose soils to stabilize contempo-

rary C inputs according to distinct mechanisms

(Sanderman 2018). These are not mutually exclusive,

and because our analysis addresses patterns in stocks

rather than mechanisms of stabilization, we stress the

operational disconnect between snapshot soil extrac-

tions and century to millennial soil formation and 14C

ages. Our intent is to highlight that the study of soils

and SOC stocks depends largely upon observational

approaches, and within that context, the challenge of

disentangling the factors and properties of natural

systems (soils) that are by definition multi-factor.

The influence of top-down (e.g., land cover/use) vs.

bottom-up (e.g., parent material) factors on SOC

storage in A and B horizons are examples of factors

that may influence SOC over short- vs. long-term

timescales. Regarding our third hypothesis, SOM-

MOS and initial characterization datasets concurred

that parent material influences SOC stocks in A

horizons (Table 2). This was despite an apparently

greater sensitivity to changes in surface processes,

inputs, and disturbance regimes, as inferred through

our observational statistical results for land cover/use

and as supported by literature (Angst et al. 2018; Barre

et al. 2017; Mao et al. 2020). In B horizons, variation

in SOC stocks at NEON sites was generally less

predictable, with both categorical predictors providing

significant explanatory power but neither obviously

explaining a larger share of the (still largely unex-

plained) variation.

Coarse fragment content is a continuously varying

soil property inherited from parent material with a

significant influence on fine soil SOC storage in B

horizons at continental and landscape scales (Tables 3,

5, Fig. 6). This finding raises two important points for

consideration. First, though rocks are more often

considered a sampling problem, a particle size class to

be excluded during sample processing, or a mathe-

matical term in an element stock computation, they

may be a widespread underlying driver of SOC

storage. Rocks may thus warrant more attention in

SOC inventories, which often do not address them

explicitly. Second, relationships between rocks and

SOC stocks exemplify the inability to generate

mechanistic explanations from the observational

studies that are the norm in the SOM literature. In

this case, plausible explanations can be proposed for

several mechanisms by which rocks could increase

fine soil SOC stocks. By decreasing the available

volume of fine soil, rocks may concentrate rooting,

OM inputs, and biogeochemical and pedogenic pro-

cesses in the fine soil (Harrison et al. 2003; Pierret

et al. 2016). Rocks are also a source of primary

minerals and limiting nutrients, and careful excavation

often reveals preferential root and rhizosphere activity

in rocky soil volumes or in the coarse fragments

themselves (Arredondo et al. 2019; Hoffland et al.

2002; Fahey et al. 2017). Coarse fragments also create

physical surfaces for accumulation of clay films and

organo-metal complexes; as these coatings thicken

into the surrounding fine soil matrix, they may

increase overall SOC contents (Bockheim 2011;

Frazier and Graham 2000; Schaetzl 1996; Sommer

et al. 2001; Stolt et al 1993). These three potential

explanations for coarse fragment—SOC relationships

are not mutually exclusive; each is supported by

literature, yet none can be offered as a stand-alone

explanation for the observed pattern. Accepting, then,

that each soil is the integration of myriad processes

and factors acting across scales and changing through

time, these explanations for just one of our results only

beg more questions. Why should any one, or even five

factors be denoted as ‘‘controlling’’ SOC storage?

How (if at all) do mechanisms of SOM stabilization

relate to the amount of SOC stored in soils? Our results

overall (and for coarse fragments specifically) indicate

that the factors most closely related to SOC stocks

depend very much on time and place. Ultimately, soils

are unique down to scales finer than their variation can
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be feasibly sampled, and the challenge to applying the

findings of any inventory lies in deciding the scale at

which the dissonance between broad pattern and site

specificity is unacceptable.

Conclusions

By analyzing two complementary soil datasets from

40 NEON sites at continental and landscape scales, we

have shown that patterns and predictors of SOC stocks

depend upon design and scale, and that inferences

gained from one design (or at one scale) do not

necessarily transfer to the other. Climate patterns are

robust at the continental scale, regardless within-site

replication, but within-site replication reveals the

influence of landscape-level variation in soil physic-

ochemical properties on SOC stocks. Strong conti-

nental patterns such as larger profile SOC stocks for

poorer drainage classes, or increasing B horizon SOC

as related to extractable metals are only marginally

transferrable to individual landscapes with narrower

gradients. At localized levels, the predictive utility of

categorical schemes is exceeded by continuous vari-

ation in physicochemical factors, even when the latter

are differentiated into meaningful groups by the

former.
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