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Abstract
Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a dip-
loid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued 
as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. 
Reference genomes are available for several Juglans species, our goal was to produce 
a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we re-
ported an improved assembly of J.  mandshurica with a contig N50 size of 6.49 Mb 
and a scaffold N50 size of 36.1  Mb. The total genome size was 548  Mb encoding 
29,032 protein coding genes which were annotated. The collinearity analysis showed 
that J. mandshurica and J.  regia originated from a common ancestor, with both spe-
cies undergoing two WGD events. A genomic comparison showed that J. mandshurica 
was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not 
found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues 
that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, 
and plant-pathogen interaction. Four gene families related to disease resistance nota-
ble contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared 
to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with 
J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for 
lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a 
useful resource for study of the evolution, breeding, and genetic variation in walnuts 
(Juglans).
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1  |  INTRODUC TION

Walnut (Juglans L.) is the most important and valuable genus in 
the woody plant family Juglandaceae. Walnuts are grown world-
wide for their edible nuts and high-quality wood (Feng et al., 
2018; Zhang et al., 2019). J.  mandshurica Maxim is an ecologi-
cally important, wind pollinated, endemic species that grows in 
northern and northeastern China, Korea, Japan, and the far east-
ern section of Russia (Bai et al., 2010, 2014; Hu et al., 2016; Lu, 
1982). It is a synonym of J. cathayensis Dode, diploid plant with 16 
chromosomes (2n = 2x = 32) that belongs to the group of species 
called Asian butternuts (section Cardiocaryon) that also includes 
Japanese walnut (J. ailantifolia; Bai et al., 2016; Zhao et al., 2014, 
2018).

The population genetics, morphology, and diversity of 
J. mandshurica have been described (Aradhya et al., 2007; Dang 
et al., 2015; Hu et al., 2017; Liu et al., 2020; Manning, 1978; Zhang 
et al., 2019), but in general, interest in J. mandshurica based on its 
potential as a tertiary germplasm pool for improvement of J. regia 
(Chen et al., 2015; Hu et al., 2016; Ji et al., 2020; Trouern-Trend 
et al., 2020; Zhou et al., 2017). Wild populations of J. mandshurica 
and cultivated orchards of Persian walnut (J. regia) grow sympatri-
cally (Dang et al., 2019) but hybridization between these two wal-
nut species is reportedly rare (Shu et al., 2016). J. mandshurica is 
less valuable as a commodity than its close relative J. regia (Dang 
et al., 2016; Feng et al., 2018; Han et al., 2016). However, J. mand-
shurica expresses horticultural traits such as cluster bearing 
habit (6–13 fruits per terminal) that make it attractive to J. regia 
breeders, and disease tolerance/resistance to lesion nematodes 
(Pratylenchus vulnus) that recommend it as a rootstock for J. regia 
(Chen et al., 2015; Hu et al., 2016; Ji et al., 2020; Trouern-Trend 
et al., 2020; Zhou et al., 2017). J. mandshurica is also a potential 
medicinal crop because of its flavonoids (Bi et al., 2016; Sun et al., 
2012; Yu et al., 2011).

A high-quality genome is an important genetic resource for 
the improvement of horticultural traits in perennial crops (Dong 
et al., 2019; Zhang, Chan, et al., 2020). The availability of high-
throughput sequencing has accelerated the publication of the 
genomes of walnut (Juglans) species and hybrids (J. regia × J. micro-
carpa; Bai et al., 2018; Martínez-García et al., 2016; Stevens et al., 
2018; Zhang, Zhang, et al., 2020). A combination of long reads 
(Nanopore sequencing platform), Illumina and Hi-C auxiliary as-
sembly can be used to produce a high-quality, chromosome-level 
genome (Choi et al., 2020; Suryamohan et al., 2020; Zhang et al., 
2019). Despite its importance for understanding walnut evolution 
and its utility for breeding, functional gene mining, and disease 
resistance, genomic resources for J. mandshurica are minimal. For 
these reasons, we undertook the assembly of a chromosome-
level, high-quality reference genome assembly for J. mandshurica 
as well as the complete annotation of its expressed proteins, 
structural RNAs, miRNA and repeat regions.

2  |  MATERIAL S AND METHODS

2.1  |  J. mandshurica sample collection and genomic 
DNA extraction

In 2019, we collected leaf samples from a single individual of J. man-
dshurica (wild individual “Tree8C22  N”) growing in the Qinling 
Mountains, Xi'an, Shaanxi, China (altitude: 1489  m, 33°46′58″E, 
108°34′06″N). Genomic DNA was obtained using a plant DNA ex-
traction Kit (Tiangen).

2.2  |  Illumina short-read sequencing

J.  mandshurica was sequenced on the Illumina HiSeq X Ten platform 
using 20 kb libraries. The Illumina sequencing raw reads were processed 
with SOAPnukev1.5.6 to removing adapters or low-quality bases with 
the parameters is “-n 0.01 -l 20 -q 0.1 -i -Q 2 -G -M 2 -A 0.5 -d”.

2.3  |  Nanopore sequencing and assembly

We prepared DNA using Oxford Nanopore Technologies’ standard 
ligation sequencing kit SQK-LSK109DNA. Genomic DNA was size-
selected using high-pass mode (>20 kb) using a BluePippin BLF7510 
cassette (Sage Science). After completion of sequencing, the raw 
nanopore sequencing reads were corrected using the program Canu 
version 1.5 with the parameters “minReadLength 3000–min Overlap 
Length 500” and Smartdenovo with the parameters “-k 17 -c 1” 
(Koren et al., 2017). A preliminary de novo assembly was constructed 
using the Nanopore sequence, and we then aligned the Illumina reads 
to the draft genome assemblies using BWA-MEM (Li, 2013). Finally, a 
total of 62.87 Gb of reads from Nanopore sequencing were used to 
assemble after assessment and error correction (Table S1).

2.4  |  Hi-C assembly of the chromosome-
level genome

We constructed a Hi-C library using the Illumina NovaSeq platform. 
Bowtie2-2.2.5 (Langmead & Salzberg, 2012) was used to align the raw 
reads to the assembled contigs, and then we filtered low quality reads 
using a HiC-Pro pipeline (Servant et al., 2015) with the default param-
eters. The valid reads were used to anchor super-scaffolds with Juicer 
(Durand et al., 2016) and 3d-dna pipeline (Dudchenko et al., 2017).

2.5  |  RNA sequencing and expression analysis

RNA was extracted from 18 tissues (bark from stems, axillary buds, 
immature female flowers, leaves [not fully expanded], mature leaves, 
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immature male inflorescence, mature male inflorescence, new shoots, 
leaf buds, mature female flowers, receptive female flowers, immature 
fruit, mature fruit, fruit epidermis, kernel, seed coat [testa], root, root 
bark) collected from individual “Tree8C22N”, the same tree described 
above for DNA sequencing (Figure 1a; Table S2). An RNA-Seq library 
was produced for each tissue using an NEBNext Ultra RNA Library 
Prep Kit (NEB). Paired end sequencing was performed on Illumina 
HiSeq X Ten platform (Illumina). After RNA quantification, we also 
pooled equivalent amounts of RNA from each of the 18 tissues for 
full-length transcriptome sequencing. Using the purified mRNA as 
the starting material, a full-length cDNA library (10–15 kb) was con-
structed for the PacBio Sequel platform (NEB, USA). Bioanalyzer 2100 
software (Panaro et al., 2000) was used to test the library quality.

To estimate the expression levels of J.  mandshurica genes in 
different tissues and during various developmental stages, clean 

transcriptome sequencing reads were aligned to the J. mandshurica 
genome using Bowtie2 (Langmead & Salzberg, 2012). The read 
number of each transcript was calculated using RSEM (Li & Dewey, 
2011). The number of fragments per kb of transcript sequence per 
million bp sequenced value (FPKM) was estimated to measure the 
expression of each gene (Trapnell et al., 2010). A total of 15 tran-
scriptome data were used to estimate the expression levels of J. regia 
genes (Martínez-García et al., 2016; Table S2).

2.6  |  Evaluation of assembly quality

The quality of the assembly was evaluated using the mapping rate of 
the paired-end and long reads to the assembly (Figure S1). We also 
evaluated the completeness and accuracy of the genome assembly 

F I G U R E  1  The characteristics 
of morphology and genome of 
J. mandshurica. (a) Morphology of 
Manchurian walnut: female flowers (left) 
and fruits (right). (b) Hi-C interaction heat 
map between 16 chromosomes of the 
J. mandshurica genome. (c) Circos plot of 
the assembled J. mandshurica. Elements 
are shown in the following scheme (from 
outer to inner). (a) chromosome number; 
(b) guanine-cytosine (GC) content; (c) 
gene density; (d) transcript heat map; (e) 
syntenic relationships among different 
chromosomes of J. mandshurica
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using bench marking universal single-copy orthologues (BUSCO) 
version 3.0.2 (Simão et al., 2015). Genome completeness was further 
evaluated by mapping of transcripts from 18 (Table S2) tissues and 
organs using GMAP (Wu & Watanabe, 2005).

2.7  |  Genome annotation

We annotated repeat sequences, gene structure, and non-coding 
RNA in the J. mandshurica genome (workflow, Figure S2). We used 
both homology-based prediction and de novo prediction to identify 
transposable elements (TEs). For de novo prediction, we constructed 
a repeat sequence database using repeatmodeler (http://www.repea​
tmask​er.org) and predicted the presence of repeat sequences using 
repeatmasker software (Maja & Chen, 2009), ltr-finder (Zhao & Hao, 
2007) and piler (Edgar & Myers, 2005) with default parameters. For 
homology-based prediction, we identified transposable elements 
in the DNA based on predicted proteins by comparing genomic se-
quence with the repbase version 21.12 database (Jurka, 2000) using 
repeatmasker (Maja & Chen, 2009) and repeatproteinmask version 
4.0.7 (Maja & Chen, 2009). Finally, all transposable elements identi-
fied by either method were merged into the final transposon annota-
tions. Transposable elements (TEs) in the assembled J. mandshurica 
genome were also annotated using tandem repeats finder (TRF) ver-
sion 4.09 (Benson, 1999).

To ensure accurate gene structure annotations, we combined ho-
mology prediction and de novo prediction methods. RNA sequences 
from 18 tissues (Table S2) were used to train the software AUGUSTUS 
with default parameters (Stanke et al., 2006). We predicated gene 
structure de novo based on the statistical characteristics of genomic 
sequence data (such as frequency of codon, distribution of exon and 
intron) using SNAP (Johnson et al., 2008). We further predicated 
gene structure in the protein-coding genes by homology with genes 
identified in Arabidopsis thaliana (GCA_000001735.2), Citrus sinensis 
(GCA_000317415.1), J. regia (GCA_000001735.2), Malus domestica 
(GCA_002114115.1), Olea europaea (GCA_902713445.1), Oryza sa-
tiva (GCA_014636035.1), Populus euphratica (GCA_000495115.1), 
Quercus robur (GCA_000001735.2), and J. mandshurica using exon-
erate version 2.2.0 (Slater & Birney, 2005). The final structural anno-
tation of protein-coding genes was performed using a maker (Holt & 
Yandell, 2011) pipeline that integrates augustus (Stanke et al., 2006) 
and results from homologous protein mapping, RNA-seq mapping, 
and Nanopore mapping.

2.8  |  Functional annotation of protein-
coding genes

Predicted genes were subjected to functional annotation by per-
forming a blast version 2.2.3 homologue search against the final 
gene set (Altschul et al., 1990). blasp (Altschul et al., 1990) was used 
to predict gene function through searches against follow databases 
(E-value = 1e−5), including swissprot (Boeckmann et al., 2003), trembl 

(Boeckmann et al., 2003), KEGG (Kanehisa & Goto, 2000), interpro 
(Zdobnov & Apweiler, 2001), swissprot (Bairoch & Apweiler, 2000), 
kog (Koonin et al., 2004), go (Ashburner et al., 2000), and kegg en-
richment analysis (Yu et al., 2012).

2.9  |  Prediction of non-coding RNA

We annotated tRNA, rRNA, snRNA, and miRNAs across the assem-
bled genome sequence. Non-coding RNA sequence was predicted 
using trnascan-se 1.3.1 (Lowe & Eddy, 1997) based on the RNA struc-
ture. The rRNA sequences in the J. mandshurica genome were pre-
dicted using BLASTN to search for conserved characteristics with 
related species such as J. regia. The miRNA and snRNA in the assem-
bled J. mandshurica genome were identified using infernal software 
(Nawrocki & Eddy, 2013) against the rfam 13.0 database (Griffiths-
Jones et al., 2005).

2.10  |  The detection of insertions and deletions in 
J. mandshurica versus J. regia

Deletions and insertions between the J. mandshurica and the J. regia 
assemblies were detected using the Assemblytics suites (Nattestad 
& Schatz, 2016). Initially, the J. regia genome was used as the refer-
ence to align the J. mandshurica assemblies using the program num-
mer4 (Marais et al., 2018). The delta files were then uploaded onto 
the online Assemblytics analysis pipeline (Nattestad & Schatz, 2016).

2.11  |  Genome duplication and synteny analyses

To estimate the timing of whole-genome duplication events (WGD) 
in the J. mandshurica genome, reciprocal best hit (RBH) gene pairs 
were identified (E-value is 1e−5) based on all-versus-all paralogues 
detected in BLASTP (Altschul et al., 1990). We identified synteny 
blocks and collinear blocks of gene pairs in the J. mandshurica ge-
nome using MCScanX with default parameters (Wang et al., 2012). 
The synonymous substitution rate (Ks) was calculated using the YN 
model in kaks _ calculator version 2.0 (Wang et al., 2010). The Ks dis-
tributions of orthologues within J. mandshurica and J. regia, and be-
tween J. mandshurica and J. regia were used to compare the relative 
substitution rates in different species by plotting with the ggplot2 
package (Kaori & Murphy, 2013).

2.12  |  Gene family cluster identification

Nine species (A.  thaliana, C.  sinensis, J.  regia, M. domestica, O. eu-
ropaea, O. sativa, P. euphratica, Q. robur, and J.  mandshurica) were 
selected for comparative genome analysis. All-versus-all BLASTP 
(Altschul et al., 1990) search results (E-value = 1e−5) were used for 
gene family construction using orthomcl (Fischer et al., 2011). A 

http://www.repeatmasker.org
http://www.repeatmasker.org
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maximum likelihood (ML) phylogenetic tree was constructed using 
raxml version 8.2.12 (Stamatakis, 2014) by conducting 1000 boot-
strap replicates using single-copy orthologues. Species divergence 
times were estimated using mcmctree (Yang, 2007) with the follow-
ing parameters: 10,000 burnins, sample-frequency = 2, and sample-
number = 100,000. We applied fossil calibration points to inform the 
species divergence time using timetree (http://www.timet​ree.org/). 
Computational analysis of gene family evolution (CAFE) version 2.2 
(Bie et al., 2006) was used to assess the expansions and contractions 
of orthologous gene families among all nine plant genomes based on 
the consensus phylogeny.

2.13  |  Genome-wide analysis of evolution and 
expression profiles of gene family

Based on the results of CAFE and the species’ resistance traits, we 
selected four rapidly evolving gene families, including late embryo-
genesis abundant protein (LEA), wall-associated receptor kinase 
(WAK), PPR repeat (PPR), and pathogenesis-related protein (PR), and 
identified their gene family members in nine species (A.  thaliana, 
C. sinensis, J. regia, M. domestica, O. europaea, O. sativa, P. euphratica, 
Q. robur, and J. mandshurica). The sequence of LEA (CCO06495.1), 
WAK (QCE08590.1), PPR (ABW04887.1), and PR (ABA41593.1) were 
used as queries in a BLASTP search against nine protein databases 
to identify candidate orthologues. The BLASTP parameters were 
E-value <1e−5, identity ≥50%, and coverage ≥50% (Altschul et al., 
1990). Protein domains in the candidate sequences were determined 
using pfam (Finn et al., 2008), only proteins with LEA, WAK, PPR, and 
PR domains were retained.

To detect the PR10 members in J. mandshurica and J.  regia, we 
download a total of 17 PR10 members from ncbi (details see Table 
S3), and combined with the all PR genes in J. mandshurica, J. regia, and 
A. thaliana to construct a phylogenetic tree with MEGA (Kumar et al., 
2008). To search for the presence of potential domains of PR genes 
using the pfam webserver (El-Gebali et al., 2018). A conserved do-
main database search was conducted in ncbi (Marchler-Bauer et al., 
2016). The exon and intron structures were displayed using the on-
line gene structure display server (Hu et al., 2015). The heatmap was 
visualized with the TBtools (Chen et al., 2020).

3  |  RESULTS

3.1  |  Improvement of J. mandshurica genome 
assembly and annotation

To obtain a high-quality genome assembly, we first sequenced a total 
of ~47.3 Gb clean reads (equivalent to ~82× genome coverage) to 
assemble the J. mandshurica genome based on Illumina HiSeq X-Ten 
sequencing (Table S4). We then called a total of 62.87 Gb long reads 
(~118  ×  genome coverage) from the J.  mandshurica genome using 
Oxford Nanopore Technology sequencing platform (Table S1). A 

total of 101 Gb raw data of a chromosome conformation capture (Hi-
C) was produced by the Nanopore sequencing platform (~176 × ge-
nome coverage; Table S5).

After filtering raw reads, the remaining clean reads were assem-
bled into contigs and scaffolds using Illumina data and Nanopore 
data. A total of 213 scaffolds were generated with N50 size of 
7.15 Mb (Table S6). We identified 1375 complete BUSCOs, includ-
ing 104 duplicated BUSCOs, 71 fragmented BUSCOs, and 1160 
single-copy orthologues in the assembled J.  mandshurica genome 
(Table S7). There were 40 genes recognized as missing BUSCOs in 
the assembled genome (Table S7). Overall, we obtained ~548 Mb of 
J. mandshurica genome based on long reads, which is about 94.8% of 
the survey genome (578.1 Mb; Table 1).

A total of 0.54 Gb assembled scaffold sequence was divided into 
16 groups corresponding to the 16  J.  mandshurica chromosomes 
(Figures 1b and S1). A total of 397 contigs and 189 scaffolds were 
generated by Hi-C sequencing data; the N50 size of contigs was 
6.49 Mb and the N50 size of scaffolds was 36.1 Mb (Table 1). Hi-C se-
quence (543 Mb) was mapped and anchored (99%; 543 Mb/548 Mb) 
to the assembled 16 chromosomes of the J.  mandshurica genome 
(Table 1). Chromosome numbering for J. mandshurica was based on 
homology to the numbering of J. regia chromosomes (Zhang, Zhang, 
et al., 2020; Table S8). The lengths of the 16 assembled chromo-
somes of J. mandshurica ranged from 19,675,958 to 55,052,647 bp 
with a mean length of 33,963,507 bp, while chromosomes of J. regia 
ranged from 20,184,194 to 518,39,233  bp with a mean length of 
33,799,624 bp (Table S8).

We identified 340.4  Mb of repeats (62.1% of the genome) in 
the J.  mandshurica genome, of which ~62.42% were transposable 
elements (TEs; Tables 1 and 2). The most abundant repetitive se-
quences were long terminal repeat retrotransposons (LTR-RTs), 
which accounted for 41.2% of the assembled genome (Table 2), fol-
lowed by LINE (long interspersed nuclear element, 12.22%), DNA 
(Class II TEs, 8.96%), and SINE (short interspersed nuclear element, 
0.01%; Table 2).

A combination of ab initio prediction, homology search, and tran-
script mapping were used to predict the protein-coding genes in the 
J.  mandshurica genome. RNA from 18 tissues was used to predict 
gene models (Table S2). Predicted protein-coding genes (27,901) had 
an average gene length of 5735 bp, an average coding sequence (CDS) 
length of 1226 bp, and an average of six exons per gene (Table 1). 
When we compared J. mandshurica to A. thaliana based on genome 
structural features, we found the distribution of CDS lengths (exon 
lengths) of J.  mandshurica was similar to A.  thaliana; however, the 
distribution of mRNA lengths and intron lengths of J. mandshurica 
was unlike A. thaliana (Table 1; Figure S3). Among 27,901 predicted 
genes, 96.1% could be functionally annotated in at least one of 
seven databases (Table S9). There were 2014 genes annotated in 
NR database only, 23 genes annotated in InterPro only, six genes 
annotated in KEGG only, and no gene was annotated in swissProt or 
COG only (Figure S4). The average guanine-cytosine (GC) content 
was 51.21% (Figure 1c). Gene density throughout the genome was 
about 11 genes per 100 kb, with 56,553 genes (94.96%) present on 

http://www.timetree.org/
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chromosomally anchored contigs (Figure 1c); this was equivalent to 
307 transcripts per 1 Mb of chromosome (Figure 1c). There are 82 
syntenic blocks in the J. mandshurica genome (Figure 1c). The por-
tion of the J.  mandshurica genome comprised of non-coding RNA 
was small; it included miRNA, tRNA, rRNA, and snRNA (Table S10). 

A total of 581 tRNA (Table S10), 792 small nuclear RNA (snRNA) and 
132 microRNA (miRNA) were identified (Table S10).

3.2  |  Genome comparison between 
J. mandshurica and J. regia

The genomes of J. mandshurica and J. regia were compared based on 
whole-genome duplication events (WGD), collinearity, the chromo-
somal distribution of repeats, repeat expansion, gene density, and 
CDS density (Figure 2). CDS density of J. mandshurica genome was 
480 genes per 100 kb which higher than 438 genes in J. regia. Gene 
density throughout the J. mandshurica genome was about 19 genes 
per 100 kb versus 30 genes per 100 kb in J. regia. The repeat con-
traction per 100 kb in J. mandshurica was 4.3 versus 3.9 in J. regia, 
the repeat expansion per 100 kb in J. mandshurica was 3.8 versus 4.3 
in J. regia. These variables summarize some of the structural differ-
ences between the two genomes (Figure 2a–b).

We identified a total of 86 synteny blocks and 5614 genes in 
all blocks that covered 20.1% of J. mandshurica genome (Figure S5). 
The peak of Ks at ~0 for orthologous gene pairs between J. mand-
shurica and J. regia genomes reflects recent species differentiation 
(Figure 2c). The J. mandshurica and J. regia genomes showed a high 
degree of synteny on each chromosome, a further sign of the quality 
of our J.  mandshurica genome assembly (Figure S5). The compari-
son of J. mandshurica with J. regia revealed large-scale inversions on 
chromosome 7, 13, and 16 (Figure 2d). Gene function annotation re-
sults showed that many of the genes in the inversions were related 
to disease resistance, including members of GDSL-like lipase (GDSL), 
glutathione s-transferase (GST), ABC transporter transmembrane 
(ABC), myb DNA-binding domain (MYB), leucine rich repeat (NBS-
LRR), and PPR repeat (PPR) gene families (Figure 2d; Table S11).

We characterized the insertions and deletions (InDels) in the ge-
nome of J. mandshurica compared to J. regia (Figure 3), which totalled 
28.1 Mb (4.8%) in J. mandshurica (Figure 3a; Table S12). Chromosome 
1 of J. mandshurica contained the most deletions, and chromosome 
15 was the lowest density of deletion events, chromosome 9 was 
unusually enriched for insertions (Figure 3a–b). The most common 

TA B L E  1  Statistics for the Juglans mandshurica genome assembly 
and annotation

Characteristics Statistics

Length of genome (bp) 548,463,652

Contig N50 length (bp) 6,490,758

Scaffold N50 length (bp) 36,084,664

Contig N90 length (bp) 1,434,691

Scaffold N90 length (bp) 23,789,296

Anchored rate (%) 0.99

GC content (%) 38.51

Raw base (bp) 101,117,316,600

Protein-coding gene number 29,032

Average of mRNA length (bp) 5,734.98

Average of CDS length (bp) 1,226.35

Average of exon number 6.06

Average of exon length (bp) 244.07

Average of intron length (bp) 840.57

Exon number 175,961

Intron number 146,984

Intron length (bp) 123,551,119

Tandem repeats finder 18,999,643 
(3.46%)

Repeat masker 84,059,561 
(15.33%)

Protein mask 101,620,383 
(18.53%)

De novo 332,557,997 
(60.65%)

Total 340,401,005 
(62.08%)

TA B L E  2  Genomic footprint of transposable elements in the genome of Juglans mandshurica

Type

RepBase TEs TE proteins De novo Combined TEs

Length (bp)
% of 
genome Length (bp)

% of 
genome Length (bp)

% of 
genome Length (bp)

% of 
genome

DNA 15,960,075 2.91 12,157,908 2.22 39,526,595 7.20 49,110,954 8.96

LINE 16,770,965 3.06 33,789,174 6.16 58,406,142 10.65 67,022,583 12.22

SINE 54,001 0.01 0 0.00 6,518 0.00 58,768 0.01

LTR 52,516,757 9.58 55,824,326 10.18 223,008,440 40.70 226,061,071 41.23

Total 85,301,798 15.33 101,771,408 19.00 320,947,695 59.00 342,253,376 62.42

Abbreviations: DNA, Class II TEs; LINE, long interspersed nuclear element; LTR, long terminal repeats; RepBase TEs, TE proteins, and de novo 
indicated three methods for detecting genomic footprint of transposable elements (details see Materials and Methods). Combined TEs indicates 
results based on combined methods of RepBase TEs, TE proteins, and de novo; SINE, short interspersed nuclear element; TEs, transposable 
elements.
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InDels sizes ranged from 100 to 500 bp. InDels >5 kb were about 
4.7% of the total (2766/58,585), but InDels >10 kb in size were rare 
across the J. mandshurica genomes (Figure 3c; Table S12). The result 
revealed that more than 28% InDels was 100–500 bp-sized InDels in 
genomes (Figure 3c; Table S12). Rare, large InDels in J. mandshurica 
were associated with gain or loss of genes (Table S13–S14). A total 
of 1657 gene deletions and 2827 gene insertions were identified 
in J.  mandshurica compared to J.  regia (Figure 3; Tables S13–S14). 
The deleted genes were functionally enriched for biosynthesis of 
amino acids (Figure S6A), whereas the inserted genes were related 

to phenylpropanoid biosynthesis (Figure S6B). It is possible that en-
richment in phenylpropanoid biosynthesis contributes to pest and 
disease resistance traits of J. mandshurica (Figures 3 and S6).

3.3  |  Unique paralogues function and gene family 
evolution of J. mandshurica

We searched for single-copy orthologues in the genome of J. man-
dshurica as compared to eight other genomes (i.e., A.  thaliana, 

F I G U R E  2  The comparative analysis of genome characteristics between J. mandshurica and J. regia. (a) The Circos plot of variation of 
J. regia and J. mandshurica. (b) Comparative of genome per 100,000 bp window for each characterization, including CDS (coding sequence) 
density, gene density, and repeat construction, repeat expansion within whole genome. The pink box indicates that CDS, the blue box 
indicates that gene, the green box indicates that RC (repeat construction), the orange box indicates that RE (repeat expansion). The RC and 
RE result from assemblytics pipline between J. mandshurica and J. regia. (c) The whole-genome duplication (WGD) events of J. mandshurica 
and J. regia. Distribution of synonymous substitution rate (KS) for syntenic genes from J. mandshurica and J. regia. Two WGD events were 
indicated by the peaks. (d) The inversion events between J. mandshurica and J. regia. The red lines represent inversion events [Colour figure 
can be viewed at wileyonlinelibrary.com]
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C. sinensis, J. regia, M. domestica, O. europaea, O. sativa, P. euphratica, 
Q. robur). This comparison was intended to identify orthologues that 
may contribute to the distinctiveness of J. mandshurica as a species. 
Within the group of nine species, we identified 125,530 ortholo-
gous gene families that consisted of 310,273 genes (Figures 4a and 
S7; Table S15). The percentage of the J. mandshurica genome occu-
pied by single-copy orthologues was higher than all other species 
in the comparison except Q. robur and C.  sinensis (Figure S7). We 
found 17.4% (10,321/59,377) of all gene orthologues were common 
to J. mandshurica, J. regia, M. domestica, and O. europaea (Figure S7), 
and 1704 (5%) orthogroups were specific to the two Juglans species 
(J. mandshurica and J. regia; Figure S7). KEGG functional analysis of 
1440 unique paralogues of J. mandshurica were four pathways, fla-
vonoid biosynthesis, phenylpropanoid biosynthesis, plant–pathogen 
interaction, and fatty acid degradation, which could have a role in 
pest or disease resistance in J.  mandshurica (Figure 4a–b; Tables 
S16–S17). Unique paralogues for J. regia (selected by humans for nut 
production) were functionally involved in cutin, suberin, and wax bi-
osynthesis and fatty acid metabolism (Figure 4a–b; Tables S16–S17). 
Unique paralogues for fatty acid metabolism were enriched in M. 
domestica and fatty acid biosynthesis in O. europaea, but others for 

fatty acid degradation were found in J. mandshurica (Figures 4a–b 
and S8; Tables S16–S17).

The expansion or contraction of gene families has a profound role 
in adaptive evolution in plants. Compared with nine representative 
species, 399 gene families were expanded, 1528 were contracted, and 
58 were rapidly evolving gene families (+9/−49) in the J. mandshurica 
genome (Figure 4c; Table S18). The genome of J.  regia contained ex-
panded in 2025 gene families, contracted in 243, and 57 were rapidly 
evolving gene families (+50/−7; Figure 4c; Table S18). In a comparison 
of the two walnut genomes, we found that gene families associated 
with pathogen resistance, including wall-associated receptor kinase 
(WAK; Trouern-Trend et al., 2020), late embryogenesis abundant pro-
tein (LEA; Gao et al., 2020), pathogenesis-related protein (PR; Ozyigit 
et al., 2017; Soh et al., 2012; Zhao et al., 2015), and PPR repeat (PPR; Liu 
et al., 2016) were significantly contracted (rapidly evolving; family-wide 
p-value ≤ .01) in J. mandshurica (Figure 4d; Table S18). The nine plant 
species genomes we studied in detail were highly divergent in terms 
of the amount of expansion or contraction in these four gene fami-
lies; even the closely related species J.  regia and J. mandshurica were 
markedly different in terms of levels of expansion. For example, WAK 
gene family members expanded in J. regia whereas they contracted in 

F I G U R E  3  Deletion and insertion events across the J. mandshurica genome and J. regia assemblies. (a) Chromosome-wide distribution 
of deletion and insertion variation for each J. mandshurica genome, relative to the J. regia coordinates. (b) The insertion density of each 
chromosome. (c) Distribution of the deletion and insertion sizes compared to J. regia
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J. mandshurica (36/23; Figure 4d; Table S19). As reported, the WAK gene 
family was also contracted in J. hindsii (Trouern-Trend et al., 2020) but 
expanded in Q. robur (Figure 4d; Table S19). LEA expanded in J. regia but 
contracted in J. mandshurica (40/19), for PPR the difference was 1.2-fold 
(27/21), and for PR genes it was 2.5-fold (28/11; Figure 4d; Table S19).

3.4  |  JmaPR10 may involve in J. mandshurica lesion 
nematodes resistance

To detect the genome basis of lesion nematodes resistance in 
J. mandshurica we focused on PR gene subfamily 10 members; this 

subfamily was reported to be involved in response to lesion nema-
todes (Ozyigit et al., 2017; Soh et al., 2012; Zhao et al., 2015). We 
identified 11 PR genes in J.  mandshurica, 28 in J.  regia, and 15 in 
A.  thaliana (Table S19). The phylogenetic tree showed that all PR 
genes were divided into two groups (Figure 5a). The syntenic analy-
sis showed that a total of 20 orthologous gene pairs between J. regia 
and J. mandshurica (Figure 5b). Of these, both JmaPR10 and JmaPR8 
contained three orthologous gene pairs, and JmaPR2 contained two 
orthologous gene pairs compared with J. regia PR genes (Figure 5b). 
The 20 PR homologues found in J.  regia and J.  mandshurica were 
derived from the WGD event, and 19 were amplified via tandem 
duplication (Figure 5b; Table S20). The PR proteins exhibited high 

F I G U R E  4  The J. mandshurica genome evolution. (a) The proportion of various gene classes among nine species, including single-copy 
orthologues, multicopy genes, unique paralogues, other paralogues, and unclustered genes. (b) The KEGG enrichment analysis of unique 
paralogues of J. mandshurica and J. regia. (c) Expansion, contraction, and rapidly evolving within gene families in nine species, a phylogenetic 
tree was constructed based on 523 single-copy orthologous genes using O. sativa as the outgroup. Pie diagrams on each branch of the 
tree represent the proportion of genes undergoing gain (green), loss (red), and rapidly evolving (blue) events, the numbers near the nodes 
represent number of gene families expanded or contracted. The scale on the x axis shows the estimated divergence time for nodes. “+” 
indicates that gene families expanded, “−” indicates that gene families contracted. (d) The number of WAK, LEA, PR, and PPR of rapid 
evolution gene family in J. mandshurica genome. The inner number represents the gene family members in this related species [Colour figure 
can be viewed at wileyonlinelibrary.com]
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conservation based on multiple sequence alignments (Figure S9). 
The domain structural analyses of PR genes showed that most PR 
genes possess one PR domain (bet_v_1); however, JmaPR10 and 
JmaPR8 possesses three PR domains and JmaPR2 possesses two PR 
domains, possibly derived from domain duplication (Figures 5c–e 
and S10A–C; Sun et al., 2019). The gene structure analyses showed 
that whereas most PR genes contain two exons, JmaPR10 contains 
nine exons, JmaPR8 contains six exons, and JmaPR2 contains four 
exons (Figures 5c–e and S10A-C). There were highly similar protein 
sequences between exon pairs in JmaPR10 versus JrePR10; and the 
similarity extended to exon 1 and exon 2 of SmPR10. Exon 1 and exon 
2 of PR10, which J. mandshurica shares with J. regia, appear to be trip-
licated in J. mandshurica (JmaPR10 [exon 1 and exon 2 gave rise to 
exon 3 and exon 4, and exon 5 and exon 6]; Figure S10D). Analysis of 
the transcriptomes showed that JmaPR10, JrePR10, JmaPR8, JrePR9, 

JrePR14, JrePR15, and JrePR2 were more expressed in roots com-
pared with other tissues and organs, and JmaPR10 and JmaPR8 also 
showed higher expression in root bark compared the other PR genes 
in J. mandshurica (Figure 5f–g; Table S20). Taken together, these re-
sults show that JmaPR10 will be a good candidate gene for analysis 
of lesion nematode resistance in J. mandshurica (Figures 5 and S9–
S10; Table S20; Chen et al., 2015; Ji et al., 2020; Ozyigit et al., 2017; 
Trouern-Trend et al., 2020).

4  |  DISCUSSION

We report the first assembly of a high-quality, chromosome-level 
genome for J.  mandshurica using a combination of Illumina HiSeq 
X Ten, Nonopore, and Hi-C sequencing platforms. Compared to 

F I G U R E  5  Characterization and evolution of PR gene family. (a) The phylogenetic tree of PR10 subfamily gene from NCBI, and PR 
gene family of J. mandshurica, J. regia, and A. thaliana. (b) Synteny analysis of PR genes between J. regia and J. cathayensis. Grey lines in the 
background indicate the collinear blocks within J. regia and J. mandshurica genomes, while the red lines highlight the six genes (JrePR10, 
JrePR9, JrePR27, JmaPR10, JmaPR8, and JmaPR7). (c–e) The domains, gene structure and protein sequences of PR genes. Grey lines indicate 
nonconserved domains and orange box represent bet_v_1 conserved domain is displayed proportionally in each protein. Green boxes 
indicate exon, and the broken line represents the intron. Grey box represents UTR. (f–g) Expression profiles of the J. mandshurica and 
J. regia PR gene family among different tissues, including 18 tissues in J. mandshurica and 16 tissues in J. regia (abbreviations for tissues 
are described in Table S2; Martínez-García et al., 2016). The species names with the prefixes “Jma”, “Jre,” and “Sm” indicate J. mandshurica, 
J. regia, and Salvia miltiorrhiza, respectively
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previously available genome assemblies for this species, the scaffold 
N50 value was improved 248-fold (scaffold N50 size of J. mandshu-
rica of this study was 36,084,664 bp vs. 145,095 bp scaffold N50 
size for J.  mandshurica (Stevens et al., 2018)), and the final calcu-
lated genome size (548 Mb) is smaller (580 Mb; Stevens et al., 2018; 
Figures 1–2; Table S21). Through Hi-C, a chromosome-level genome 
was obtained with a scaffold size of 36 Mb (Table S21) and scaffolds 
resolved into 16 chromosomes, unlike the previously available ge-
nome (J. mandshurica; Stevens et al., 2018; Tables S5 and S21; Chen 
et al., 2020; Choi et al., 2020; DeMaere & Darling, 2019; Zhang, Ren, 
et al., 2020). We predicted 29,032 protein-coding genes from the 
generated assembly (Figure 1; Table S6).

This study improves our ability to compare the genome of 
J.  mandshurica with that of J.  regia (Stevens et al., 2018; Zhang, 
Zhang, et al., 2020) by improving the accuracy of descriptions of ge-
nome characteristics, genome synteny, WGD, and deletion and in-
sertion events (Figures 2–3; Table S11–S14). Our assembled genome 
permitted identification of the locations of deletions and insertions 
(Figure 3). These Indels were enriched in genes associated with the 
biosynthesis of amino acids, and phenylpropanoid biosynthesis; they 
may affect the regulation of these important metabolic pathways in 
J. mandshurica and J. regia (Figures 3 and S6).

J. mandshurica is recommend as a rootstock for J. regia to confer 
disease tolerance/resistance (Chen et al., 2015; Hu et al., 2016; Ji 
et al., 2020; Trouern-Trend et al., 2020; Zhou et al., 2017). The high-
quality genome sequence we report here will improve our ability to 
identify signatures of genome evolution and the genetic basis of im-
portant traits. The J. mandshurica unique paralogues were enriched 
in three-disease tolerance/resistance pathways, including flavonoid 
biosynthesis, phenylpropanoid biosynthesis, plant–pathogen inter-
action (Figure 4). We also observed notable contraction in the size 
of gene families of resistance genes, including WAK (Trouern-Trend 
et al., 2020), LEA (Gao et al., 2020), PR (Ozyigit et al., 2017; Soh 
et al., 2012; Zhao et al., 2015), and PPR (Liu et al., 2016). These three 
pathways and four notable contractions may provide insight into 
the resistance phenotypes of J. mandshurica that make it a valuable 
rootstock (Figure 4). Furthermore, in the current study, we described 
the structure of JmaPR10, a member of the PR gene family which 
may be important for the reported resistance of J. mandshurica resis-
tance to lesion nematodes, it is consistent with the previous studies 
(Chen et al., 2015; Ji et al., 2020; Ozyigit et al., 2017; Trouern-Trend 
et al., 2020). Therefore, our results constitute an important basis for 
improving the understanding of the genome basis of the resistance 
traits in J. mandshurica (Figure 5).
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