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A B S T R A C T   

Surface roughness – a key control on land-atmosphere exchanges of heat and momentum – differs between 
dormant and growing seasons. However, how surface roughness shifts seasonally at fine time scales (e.g., days) in 
response to changing canopy conditions is not well understood. This study: (1) explores how aerodynamic 
resistance changes seasonally; (2) investigates what drives these seasonal shifts, including the role of vegetation 
phenology; and (3) quantifies the importance of including seasonal changes of aerodynamic resistance in “big 
leaf” models of sensible heat flux (H). We evaluated aerodynamic resistance and surface roughness lengths for 
momentum (z0m) and heat (z0h) using the kB− 1 parameter (ln(z0m/z0h)). We used AmeriFlux data to obtain 
surface-roughness estimates, and PhenoCam greenness data for phenology. This analysis included 23 sites and 
~190 site years from deciduous broadleaf, evergreen needleleaf, woody savanna, cropland, grassland, and 
shrubland plant-functional types (PFTs). Results indicated clear seasonal patterns in aerodynamic resistance to 
sensible heat transfer (Rah). This seasonality tracked PhenoCam-derived start-of-season green-up transitions in 
PFTs displaying the most significant seasonal changes in canopy structure, with Rah decreasing near green-up 
transitions. Conversely, in woody savanna sites and evergreen needleleaf forests, patterns in Rah were not 
linked to green-up. Our findings highlight that decreases in kB− 1 are an important control over Rah, explaining >
50% of seasonal variation in Rah across most sites. Decreases in kB− 1 during green-up are likely caused by 
increasing z0h in response to higher leaf area index. Accounting for seasonal variation in kB− 1 is key for pre
dicting H as well; assuming kB− 1 to be constant resulted in significant biases that also exhibited strong seasonal 
patterns. Overall, we found that aerodynamic resistance can be sensitive to phenology in ecosystems having 
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strong seasonality in leaf area, and this linkage is critical for understanding land-atmosphere interactions at 
seasonal time scales.   

1. Introduction 

The horizontal and vertical structure of vegetation creates an aero
dynamically rough surface, generating mechanical turbulence that ex
erts significant control over aerodynamic resistance to heat transfer 
from the surface to the atmosphere (Brutsaert, 1982; Garratt and Hicks, 
1973; Pitman, 2003; Verma, 1989). Surface roughness varies with land 
cover type (Lee et al., 2011), leaf area (Dolman, 1986; Raupach, 1994; 
Shaw and Pereira, 1982), and canopy height (Chu et al., 2018; Son
nentag et al., 2011), such that changes in vegetation structure lead to 
significant changes in aerodynamic resistance. Vegetation phenology 
triggers significant and rapid changes in the structure of the canopy 
(Richardson et al., 2013), altering surface roughness during green-up 
and senescence. Such phenology-driven impacts can influence the 
land-surface energy balance by changing aerodynamic resistance and 
hence sensible heat flux (H), in addition to other key biophysical pro
cesses such as evapotranspiration (Fitzjarrald et al., 2001; Moon et al., 
2020; Schwartz, 1992). Capturing dynamics between phenology and 
aerodynamic resistance is therefore critical for accurately parameter
izing the role of phenology in land-surface models (e.g., Richardson 
et al., 2012). More broadly, phenology driven changes in aerodynamic 
resistance can affect the atmospheric boundary-layer, including tem
perature profile development, boundary-layer height and cloud forma
tion, and near-surface micro-climate (Baldocchi and Ma, 2013; Betts, 
2004; Novick and Katul, 2020). 

The magnitude of H is controlled by the difference between surface 
and air temperatures and the aerodynamic resistance to sensible heat 
transfer. Modeling and predicting aerodynamic resistance requires in
formation on two key surface-roughness parameters: roughness lengths 
for momentum and heat (Verhoef et al., 1997). The roughness length for 
momentum (z0m) defines the height above the surface that wind speed 
extrapolates to zero, and the roughness length for heat (z0h) is the 
effective source height in the vertical temperature profile for sensible 
heat. In ecosystems with taller roughness obstacles (e.g., forests), an 
additional parameter is commonly needed: the zero-plane displacement 
height (d). Under such conditions, wind speed extrapolates to zero at 
height d + z0m. Differences between z0m and z0h result in an “excess 
resistance” to heat transfer relative to momentum transfer. Specifically, 
heat transfer from z0h → z0m is dominated by molecular diffusion, while 
heat transfer above z0m is controlled by more efficient processes asso
ciated with eddy diffusion (Bonan, 2016; Thom, 1972). In land-surface 
modeling, the parameter kB− 1 (ln(z0m/z0h)) is used to quantify this 
excess resistance between z0m and z0h (Brutsaert, 1982; Owen and 
Thomson, 1963; Thom, 1972). Further details on the derivation of 
excess resistance and kB− 1 are found in Section 2.1. 

The kB− 1 parameter varies significantly with land-cover type, leaf 
area, and other environmental variables (Brutsaert, 1982; Rigden et al., 
2018). For example, a deciduous broadleaf forest acts as a 
permeable-rough surface, defined as having densely packed, porous el
ements and exhibiting relatively low kB− 1 values (kB− 1 generally ranges 
from 0–4). Conversely, in arid ecosystems, the canopy is characterized 
by uneven and sparse roughness elements (i.e., a bluff-rough surface), 
and kB− 1 generally exhibits higher values (kB− 1 ranges from 2–10) 
(Rigden et al., 2018). For bare soil, kB− 1 has low values (ranging from 
0-1), and negative kB− 1 values have also been estimated (Yang et al., 
2008). This variability in kB− 1 among differing land cover implies dif
ferences in the physical arrangement and structure of surface-roughness 
elements strongly governs behavior of kB− 1. While this variability is well 
documented among varying land-cover, little work exists exploring 
seasonal changes in kB− 1, which may in part be driven by changes in 
canopy structure, including the amount and distribution of leaf area. 

kB− 1 displays strong temporal variability in response to multiple 
different environmental factors. At a diurnal scale for sparse canopies, 
solar radiation penetrates below the canopy, warming the soil, and 
causing z0h to be effectively the height of the soil surface, thereby 
increasing kB− 1. Meanwhile, z0m is constant at daily time scales (Brut
saert and Sugita, 1996; Kustas et al., 1989; Verhoef et al., 1997). At a 
seasonal time scale, some evidence suggests that changing leaf area over 
time causes a distinct negative relationship between leaf area index and 
kB− 1 (Qualls and Brutsaert, 1996). These patterns can also be general
ized for different time scales. Conceptually (Fig. 1), daily kB− 1 peaks at 
midday as the diurnal cycle in solar radiation causes the magnitude of 
the temperature gradient at the top of the canopy to increase, ultimately 
altering z0h. Similarly, the impact of vegetation green-up can also cause 
kB− 1 to vary at seasonal time scales. For example, changes in z0h may 
effectively track changes in z0m, leading to a constant kB− 1 for the entire 
season. Conversely, z0h may increase faster relative to z0m, leading to 
decreases in kB− 1 during green-up transitions (Fig. 1). 

Determining whether changes in z0m or z0h are the primary driver of 
seasonal variation in kB− 1 is critical for identifying the biophysical 
drivers of aerodynamic resistance. A simple – and common – approach is 
to estimate z0m based on mean canopy height (hc) (e.g., z0m = 0.1h; 
Bonan, 2016). d is similarly estimated as d = 0.7hc. However, while this 
is a common method for estimating these roughness parameters, this 
approach has several important limitations. First, this approach cannot 
produce time series of changes in z0m unless continuous measurements 
of hc are recorded. Second, seasonal signals of estimated z0m are complex 
and may not effectively track canopy height. For example, as the canopy 
fills in after leaf emergence, z0m may display non-monotonic variation 
with leaf area, increasing in length before decreasing (Shaw and Per
eira, 1982). Additionally, as leaf area increases, the coefficients mapping 
hc to z0m and d (e.g., z0m/hc = 0.1 and d/hc = 0.7) are not constant and 
can decrease and increase, respectively (Sakai, 2000). Measurements of 
wind speed and turbulence from flux towers offer an alternative method 
for estimating z0m. For example, if wind speed is available at multiple 
heights above the canopy, a vertical wind-speed profile can be used to 
estimate both d and z0m (Monteith and Unsworth, 2008), and a similar 
approach may be used for z0h using air temperature profiles. At towers 
where measurements are available at only one height, an effective or 
“aerodynamic” canopy height can be estimated using Monin–Obukhov 
similarity theory, and thereby allow for inference into changes in of 
d and z0m (Chu et al., 2018; Pennypacker and Baldocchi, 2016). How
ever, this approach requires explicit assumptions regarding d/hc and 
z0m/hc. More details regarding Monin–Obukhov similarity theory and 
estimating z0m and d can be found in sections 2.1 and 2.6. 

Common approaches to parameterizing kB− 1 in predictions of H 
include simple assumptions. One such assumption is z0m = z0h (i.e., kB− 1 

= 0) (Campbell and Norman, 1998). While assuming kB− 1 = 0 simplifies 
calculations of H, it can cause significant bias (Yang et al., 2008), and is 
therefore not commonly used. Another approach is to assume kB− 1 is a 
non-zero constant. For example, kB− 1 ≈ 2 is a common assumption, and 
shows good performance during the growing season for agricultural and 
forested land-cover types (Garratt and Francey, 1978; Zhao et al., 2016). 

Despite extensive literature focused on kB− 1, few studies have 
explored how aerodynamic resistance changes seasonally, what drives 
these changes, and what the consequences are of such variation in 
aerodynamic resistance for predicting seasonal patterns in H (e.g., 
Moon et al., 2020; Sugita and Kubota, 1994). Furthermore, estimates of 
H from vegetated surfaces in land-surface models directly rely on model 
assumptions linking surface roughness to changes in leaf area and can
opy height, further motivating the need for clearer understanding of 
how phenology may influence surface roughness (Lawrence et al., 2019; 
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Zeng and Wang, 2007). Here, we address the following questions: (1) 
how does aerodynamic resistance change at seasonal time scales across a 
range of plant functional types and climate regimes, (2) what are the 
mechanisms that lead to changes in aerodynamic resistance, including 
the role of plant phenology, and (3) how does assuming kB− 1 to be 
constant influence estimates of H at seasonal time scales? To address 
these questions, we analyzed data from 23 sites that are part of both the 
AmeriFlux and PhenoCam networks, covering deciduous broadleaf, 
evergreen needleleaf, cropland, grassland, woody savanna, and shrub
land land-cover types, and spanning a broad climatological gradient 
across North America. 

2. Materials and methods 

2.1. Basic theory 

Whole ecosystem H is commonly modeled using a “big leaf” 
approach, which considers that ecosystems behave as a single layer, and 
therefore does not account for vertical differences from the soil through 
the canopy (Knauer et al., 2018; Raupach and Finnigan, 1988). Under 
this “big leaf” approach, H is a function of the difference between the 
aerodynamic surface temperature (Taero) and air temperature at tower 
height (Ta), as well as aerodynamic resistance to heat transfer (Rah): 

H =
ρcp(Taero − Ta)

Rah
(1)  

where ρ is air density (kg m− 3) and cp is a constant for the specific heat of 
dry air (1004.834 J K-1 kg-1). The total aerodynamic resistance to heat 
transfer (Rah; s m− 1) is the sum of the resistance to momentum transfer 
(Ram) and an excess resistance term (Rbh) representing differences be
tween roughness lengths for momentum (z0m) and heat (z0h), 

Rah = Ram + Rbh (2) 

To calculate Rah, Ram, and Rbh, we used the methods described by 
Verma (1989) and published in the ‘bigleaf’ R package (Knauer et al., 
2018). Specifically, we estimated Ram using the definition: 

Ram = u
/

u2
∗ (3)  

where u and u∗ are tower-measured horizontal wind speed (m s− 1) and 
friction velocity (m s− 1), respectively. The excess resistance, Rbh, is 
defined as: 

Rbh =
1

ku∗

[

ln
(

z0m

z0h

)

− ψh +ψm

]

(4) 

Here, k is the unitless von Kármán constant (0.41), and ψm and ψh are 
stability functions for momentum and heat exchange using formulations 
from Dyer (1970) and Businger et al. (1971). Following Rigden et al. 
(2018) and Verma (1989), we used the common, simplified definition of 
Rbh ignoring stability effects over the short distance z0m → z0h: 

Fig. 1. Hypothesized behavior of kB− 1 at multiple time scales. 
The left column of panels displays idealized diurnal behavior for 
short-statured vegetation at DOY 180 and how solar radiation may 
cause shifts in z0h and kB− 1. Panels on the right-hand side depict 
behavior of kB− 1 at a seasonal time scale. At seasonal time scales, 
the behavior of z0m and z0h relative to each other will determine 
kB− 1. Two different potential behaviors are depicted above. The 
dashed curve (z0h,1) represents a potential scenario where z0h 
proportionally tracks z0m resulting in a constant kB− 1 for the entire 
year. Alternatively, the dotted curve (z0h,2) represents a scenario 
where z0h increases faster relative to z0m in response to green-up, 
resulting in a decrease in kB− 1. The faded green line represents 
canopy greenness while the vertical line indicates a theoretical 
green-up date. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this 
article.)   

A.M. Young et al.                                                                                                                                                                                                                               



Agricultural and Forest Meteorology 310 (2021) 108613

4

Rbh =
1

ku∗

ln
(

z0m

z0h

)

(5) 

We tested the impact of not including stability effects when esti
mating Rbh using Eq. (5) and found that this only had minor impacts on 
our results (Fig. S1). The kB− 1 parameter characterizes differences be
tween z0m and z0h, and is defined as: 

kB− 1 = ln
(

z0m

z0h

)

(6) 

Substituting Eqs. (5) and (6) yields: 

Rbh =
1

ku∗

kB− 1 (7) 

kB− 1 has been well studied across a broad range of ecosystems but 
cannot be measured directly. Multiple methods have been proposed to 
model and estimate kB− 1. These methods range from simple functions of 
u∗ or the roughness Reynolds number (Re∗) (Brutsaert, 1982; Rigden 
et al., 2018; Thom, 1972; Verhoef et al., 1997), to more complex models 
that account for variation in the vertical and horizontal distribution of 
vegetation (Massman, 1999; Yang and Friedl, 2003). Here, our goal was 
to better understand the seasonality of kB− 1, and therefore we did not 
develop new prognostic models for kB− 1. Instead, we focused on esti
mating kB− 1 by optimizing the value that best predicted tower-measured 
H at relatively fine time scales (i.e., 3-days). Further details can be found 
in Section 2.4. 

2.2. Tower data 

We used eddy covariance measurements from 23 AmeriFlux sites 
(Novick et al., 2018; https://ameriflux.lbl.gov/) that also had Pheno
Cams. These sites were selected because they spanned a broad gradient 
in climate and vegetation structure across North America, while also 
having a minimum of two years of overlap between AmeriFlux and 
PhenoCam data records. Mean annual temperatures ranged from 1.5 to 
17.6 ◦C and mean annual precipitation ranged from 275 to 2452 mm. 
Growing season canopy heights ranged from 0.3 m in the US southwest 
to 60 m in the US northwest and leaf area index (LAI, m2 m− 2) ranged 
from 0.3 to 8.7 (Table 1). While we required a two-year minimum 
overlap between AmeriFlux and PhenoCam, we used a longer time series 
of tower measurements based on data availability and continuity. For 
each site, we used measurements of precipitation, net radiation (Rn), Ta, 
H, and u∗. We used radiometric surface temperature (Ts) as a proxy for 
Taero (Eq. (1)). Ts was computed using separate measurements of up
welling (Rlu) and downwelling (Rld) longwave radiation, 

Ts =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rlu − (1 − ε)Rld

εσ
4

√

(8) 

Here, ε is emissivity and σ is the Stefan-Boltzmann constant (5.67 ×
10− 8 W m− 2 K− 4). Emissivity values for each vegetation type were ob
tained from Tao et al. (2013). Hour or half-hour tower data were filtered 
for mid-day only (10:00-14:00 local time) with Rn > 50 W m− 2, H > 50 
W m− 2, and u∗ > 0.2 m s− 1. Days with lower Rn were excluded to remove 
measurements with proportionally higher uncertainty (i.e., Rn < 50 W 
m− 2) (Hollinger and Richardson, 2005). We included a filter for H (i.e., 
H < 50 W m− 2) to remove anomalously high values of kB− 1 obtained 
through our optimization approach when H is near zero. We excluded 
low u∗ values to remove observations having insufficient turbulence 
(Papale et al., 2006). Finally, we excluded days where any precipitation 
was recorded between 20:00 hr the previous day to 14:00 hr of the 
current day. All tower data were downloaded from the AmeriFlux server 
(https://ameriflux.lbl.gov), and dataset version numbers and download 
dates are provided in Table S1. 
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2.3. PhenoCam data 

To capture vegetation phenology, we used the V2.0 PhenoCam 
public data release (Milliman et al., 2019; Seyednasrollah et al., 2019a; 
Seyednasrollah et al., 2019b). Here, we only provide a brief overview of 
PhenoCam data; a full description is presented in Richardson et al. 
(2018) and Seyednasrollah et al. (2019b). The PhenoCam network uses 
high-frequency imagery from digital cameras to track vegetation 
phenology. Following a standard protocol, cameras are mounted over
looking the vegetation of interest, and three-channel RGB images were 
recorded multiple times per day (typically every 30 min). For each site, a 
region-of-interest (ROI) in the image field-of-view is delineated to focus 
on the canopy. Using all pixels in this ROI, statistics summarizing RGB 
digital numbers (DN) are generated to quantify relative changes in 
canopy color over time. This canopy color information can be used to 
accurately identify phenological time series and transition dates (e.g., 
spring leaf emergence and fall senescence; Keenan et al., 2014). How
ever, canopy color from PhenoCam does not explicitly measure the 
physical structure of the canopy (e.g., LAI or roughness). In our analysis, 
we used time series of the green-chromatic coordinate (GCC) to measure 
canopy greenness and extract transition dates, 

GCC =
GDN

GDN + RDN + BDN
(9) 

Daily values of GCC were calculated from all daytime images under a 
1- or 3-day moving-window (Sonnentag et al., 2012). The V2.0 data 
release provides four GCC statistics for each moving window: mean, 
median, 75th percentile, and 90th percentile. In this analysis, we used the 
statistic that minimizes the root mean squared error (RMSE) between 
daily GCC values and a locally weighted regression smoother (loess) at 
each site. The smoothing span for the loess curve was determined by 
minimizing a Bayesian Information Criterion (BIC) (Richardson et al., 
2018), and the smoothed loess-derived values were further used to 
identify phenological transition dates. In our analysis, we used the 3-day 
moving window to visualize seasonal patterns in greenness and the 
1-day product to estimate transition dates. This was necessary as tran
sition dates could not be identified in some of the dryland sites using the 
3-day product. For this study, we used the start-of-season green-up date 
(i.e., “green-up”) as our primary measure of spring phenology, as it 
characterizes the date of leaf emergence and acts as a clear separator 
between dormant and growing seasons. Specifically, this green-up date 
was equated to the day when 10% of the total seasonal amplitude in GCC 
was reached. For evergreen needleleaf sites, changes in GCC are caused 
by changes in foliage pigments on seasonal time scales, and are not 
related to changes in leaf area (Bowling et al., 2018; Seyednasrollah 
et al., 2021). The V2.0 release has been screened to remove low-quality 
imagery and image masks have been adjusted to account for camera 
field-of-view shifts. Only cameras set to fixed white balance were 
included, to remove negative impacts from auto-white balancing under 
default camera settings (Seyednasrollah et al., 2019b). Finally, we also 
conducted a brief supplementary comparison between GCC time series 
and flux-tower derived estimates of broadband NDVI (e.g., Jenkins et al., 
2007). We found strong similarities between these time series, indi
cating that PhenoCam GCC can capture seasonal changes in vegetation 
that are also captured by radiometric measurements. Details on these 
comparisons are provided in Appendix S1 and Fig. S2. Additional met
adata information for each PhenoCam site, as well as example imagery 
and maps of vegetation cover, can be found in Table S1 and Fig. S3. 

2.4. Estimating seasonal variation in aerodynamic resistance 

We quantified Rah, as well as the underlying components Ram, Rbh, 
and kB− 1, at a 3-day timestep to effectively visualize and identify po
tential seasonal patterns in these aerodynamic resistance terms among 
different ecosystems. First, we calculated Ram at a half-hour timescale 
using Eq. (3). Second, we used Eqs. (1) and (2) and our predictions of 

Ram to estimate a single value of kB− 1 that minimized prediction error of 
H across all half-hour values every three days. This value of kB− 1 at a 3- 
day timestep allowed Rbh to be calculated using Eq. (7). Finally, we 
smoothed the time series for each variable using a loess curve. The span 
for the loess curve for each variable and site was optimized by mini
mizing the BIC, and this was the same method used for smoothing 
PhenoCam greenness data (see Section 2.3). By smoothing over a time 
series of non-overlapping 3-day estimates, our approach captures shifts 
occurring during phenological transitions, even under a short time 
duration. We chose a 3-day time scale for this averaging and subsequent 
smoothing because it was consistent with the time scale used with 
PhenoCam. We note that our method of estimating Rbh as a residual of 
Rah and Ram will result in any errors in H being propagated into our 
estimates of Rbh and kB− 1. Errors in H could be derived from multiple 
sources, but are not likely a major concern. For example, it is possible 
that lack of energy balance closure could influence our results, especially 
if there is strong seasonality in the amount of closure occurring in 
concert with seasonal changes in the Bowen ratio. However, at the 
handful of sites where we examined this in detail, we found no evidence 
of strong seasonality in mid-day energy balance closure, and no 
emerging patterns that would allow us to link poor energy balance 
closure to strong seasonal variation in Rbh. Furthermore, while random 
or systematic measurement errors in H data could influence estimates of 
Rbh, our filtering approach was designed to minimize the impact of 
systematic errors (see Section 2.2) and by averaging mid-day fluxes over 
three days, the magnitude of random errors is also greatly reduced (e.g., 
Hagen et al., 2006; Hollinger and Richardson, 2005). 

Any variable exhibiting strong seasonal variability will inherently 
have cyclical peaks and valleys. Here, we identified the timing of peaks 
and valleys for both Rah and kB− 1 (hereafter referred to as periods 
characterized by either “maximum” or “minimum” values, respectively). 
These maximum and minimum periods were then related to green-up. 
To do this, we first computed the 25th or 75th percentiles of the whole 
time series for each variable at each site. We then identified the days-of- 
year where each variable occurred above or below these 75th and 25th 

percentiles, equating these days to the timing of seasonal maximum and 
minimum values, respectively. The start-, middle-, and end-point for 
each maximum and minimum time period was identified by the 10th, 
50th, and 90th percentiles across these day-of-year values. To calculate 
these relative day-of-year statistics, we used directional statistics using 
the ‘circular’ package in R (Agostinelli and Lund, 2017). To visualize and 
compare the timing of seasonal transitions in Rah and kB− 1, we plotted 
the transition dates for each of these variables against each other, as well 
as green-up date. The transition dates for Rah and kB− 1 used for this 
visualization were the “end” points (i.e., 90th percentile) of the distri
bution for timing maximum Rah and kB− 1 values, indicative of when 
kB− 1 begins to decrease (e.g., see Figs. 3 and 5). Seasonal signals in kB− 1 

were much noisier compared to canopy greenness from PhenoCam, 
making it harder to precisely identify transition dates. Thus, our method 
here is undoubtedly accompanied by comparably higher uncertainty, 
and therefore transition dates for Rah and kB− 1 may not align with 
PhenoCam dates. Nevertheless, these values as transition dates are 
currently our best estimate of the timing of when Rah or kB-1 begins to 
decrease, and are still valuable for exploring linkages between 
phenology and changes in aerodynamic resistance. 

kB− 1 is also frequently modeled as a response to the Reynolds 
roughness number (Re∗) (Rigden et al., 2018), where Re∗ is defined as: 

Re∗ =
z0mu∗

ν (10) 

Here, ν is the kinematic viscosity (Massman, 1999). Thus, we plotted 
kB− 1 against Re∗ for each season (dormant and growing) to visualize and 
compare our results more easily to past studies. For this simple visual
ization, we identified the growing season as those dates between the 
50% green-up threshold and 50% green-down threshold (Richardson 
et al., 2018). The dormant season was identified as the period prior to 

A.M. Young et al.                                                                                                                                                                                                                               



Agricultural and Forest Meteorology 310 (2021) 108613

6

green-up. 

2.5. Attribution analysis 

We can attribute variability in Rah to either Ram or Rbh (i.e., Rah =

Ram + Rbh; Eq. (2)), and understanding which of these factors has a 
stronger correspondence would provide key information to infer the 
primary drivers of Rah. To conduct an attribution analysis, we used 
statistical properties defining the variance of the sum of two random 
variables (Rice, 2007), 

Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y) (11) 

Here, Var and Cov are the variance and covariance functions, 
respectively. We used Eq. (11) in combination with the relationship in 
Eq. (2) to attribute the relative contribution of total variance of Rah or 
the covarying relationship between Ram and Rbh, 

Var(Rah) = Var(Ram + Rbh)

Var(Rah) = Var(Ram) + Var(Rbh) + 2Cov(Ram,Rbh) (12) 

Calculations assumed N-1 degrees of freedom, with N being the 
number of independent 3-day periods. This analysis was done separately 
for each site using the unsmoothed time series. 

2.6. Quantifying seasonal changes in surface roughness parameters 

Seasonal shifts in kB− 1 must be in response to either z0m or z0h. To 
help diagnose whether changes in kB− 1 are associated with changes in 
z0m or z0h, we first quantified z0m by estimating aerodynamic canopy 
height (ha) at a 3-day timestep. We then use these patterns of z0m in 
conjunction with kB− 1 to infer how z0h changes, ultimately allowing for 
inference into the drivers of kB− 1. For example, if kB− 1 decreases while 
z0m increases, we may infer those changes in z0h are likely having a 
stronger influence on kB− 1, as increases in z0m by itself should lead to 
increases in kB− 1 (e.g., Fig. 1). z0m is most commonly prescribed as 
simple functions of mean canopy height (hc) (e.g., z0m = 0.1hc), with 
measured canopy heights reported by site PIs. However, z0m has been 
shown to vary significantly with leaf area (Yang and Friedl, 2003), 
indicating physical hc measurements may be limited at capturing sea
sonal changes in z0m. Aerodynamic canopy height (ha) offers an alter
native to using observed hc. Specifically, aerodynamic canopy height can 
be estimated using the Monin–Obukhov similarity theory definition of 
the log-wind profile, 

u(z) =
u∗

k

[

ln
(

z − d
z0m

)

− ψm

]

(13) 

Here, u(z) is wind speed at height z, d is the zero-plane displacement 
height, and ψm is a stability function for momentum (Dyer and Hicks, 
1970). Under near-neutral atmospheric stability (i.e., ψm ≈ 0), Eq. (13) 
can be re-arranged to determine a single value of ha that best predicts 
flux-tower measurements of ku(z)

u∗
using the assumptions that d = 0.7ha 

and z0m = 0.1ha, 

ku(z)
u∗

= ln
(

z − 0.7ha

0.1ha

)

(14) 

While d/z0m = 7 is a common assumption (Bonan, 2016), this ratio 
has been demonstrated to change with land-cover type, LAI, and stand 
density (Nakai et al., 2008). However, we maintained this assumption 
for our analysis, as we were primarily interested in simply understand
ing how ha (and hence z0m) changes seasonally; thus, the absolute ac
curacy of our ha estimates was not critical. 

To quantify seasonal variability in ha, we first split up the time series 
at each site into non-overlapping 3-day windows. Within each window, 
a single value of ha was optimized to minimize the mean absolute error 
between all observed and predicted half-hour values of ku(zr)

u∗
. This gave 

us one estimate of ha every three days. For this optimization, we used a 
different data filtering approach than in Section 2.2. Here, we closely 
followed Pennypacker and Baldocchi (2016) and Chu et al. (2018). 
Additionally, we filtered for atmospheric neutrality, and this was the 
only part of our analysis to include this filter. In estimating ha, we 
applied a roughness sublayer correction at forest sites (Chu et al., 2018). 
If the reference height (zr) was less than 1.5hc (hc equal to PI reported 
canopy height), we included a roughness-sublayer correction factor (λrs), 
optimizing using the following instead of Eq. (14): 

ku(z)
u∗

= ln
(

z − 0.7ha

0.1ha

)

+ ln(λrs) (15) 

From Chu et al. (2018), λrs = 1.25. We did not include a roughness 
sublayer correction in any other part of our analysis, and we believe this 
would not meaningfully impact our results as Hu et al. (2020) found that 
including a roughness-sublayer correction did not improve predictions 
of turbulent fluxes. Seasonal summaries for ha for each site are provided 
in Fig. S4. 

In addition to calculating ha, we also used wind-profile data from 
sites recording wind speed at multiple heights to individually estimate 
d and z0m, independent of assumptions related to canopy height, such as 
z0m = 0.1hc (sites with profile data availability are listed in Table 1). 
Specifically, we chose three sites for this analysis: US-MMS, US-Syv, and 
US-Ne1. We chose sites for this analysis based on whether d was likely to 
have significant influence in the wind profile, and on the availability of 
relatively complete and suitable time series of wind speed at two 
heights. To conduct this analysis, we used the difference between wind 
speeds at two different heights under near-neutral stability to find a 
single value of d that best predicts the left-hand side of Eqn (16) 
(Monteith and Unsworth, 2008): 

k(u1 − u2)

u∗

= log
(

z1 − d
z2 − d

)

(16) 

Here, subscripts refer to two different measurement heights, with z1 
> z2. Using this estimate of d, we were able to invert Eq. (13) to obtain an 
estimate of z0m: 

z0m =
z − d

exp
{

ku(z)
u∗

} (17)  

2.7. Seasonal sensitivity to estimating H 

While initial results indicated there was significant seasonality in 
both Rah and kB− 1 (Figs. 2, 3, 6), it is also common to assume kB− 1 = 0 or 
kB− 1 is equal to a constant value (i.e., kB− 1 = c) when predicting H. To 
understand the implications of using either of these assumption for 
predicting seasonal patterns in H, we calculated the relative difference 
between estimated (Ĥ) and measured values of H (i.e., Ĥ/H). The con
stant value c for each PFT was obtained from Rigden et al. (2018), and is 
representative of mean growing season kB− 1. The impacts of each 
assumption were evaluated by visualizing time series of the relative 
difference between measured and estimated H at a 3-day timestep. 

3. Results 

3.1. Seasonal variability in aerodynamic resistance 

There were significant seasonal patterns in Rah at most of our study 
sites, which spanned a continental-scale precipitation gradient (Fig. 2). 
In general, PFTs that exhibited the largest seasonal changes in leaf area 
(i.e., deciduous broadleaf, grassland, croplands) consistently produced 
strong seasonal signals in Rah (Fig. 2). For example, at the wettest 
grassland site, a restored prairie landscape in the upper Midwest (US- 
Ro4, MAP = 879 mm; Markland, 2019), Rah ranged from 44 s m− 1 in the 
dormant season to 21 s m− 1 in the growing season (Fig. 2). Likewise, at 
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our driest grassland site, Kendall grassland in the Walnut Gulch Exper
imental Watershed of southern Arizona (US-Wkg, MAP = 340 mm; Scott 
et al., 2010), Rah ranged from 75 s m− 1 to 48 s m− 1 (Fig. 2). 

We further evaluated seasonal patterns by identifying the periods of 
the year when Rah values were characteristically lower (i.e., at a “min
imum”) or higher (i.e., at a “maximum”). We found that in many cases 
maximum and minimum Rah values occurred in distinct and non- 
overlapping periods, indicating strong seasonality (Fig. 3). Specif
ically, we found that maximum Rah occurred prior to or during green-up, 
while minimum Rah occurred after green-up at most deciduous broadleaf 
forests, grasslands, shrublands, and agricultural sites (Figs. 2, 3, and S6). 
For example, at a set of three agricultural sites at the University of 
Nebraska Agricultural Research and Development Center (US-Ne1, US- 
Ne2, and US-Ne3; Suyker and Verma, 2010; Suyker and Verma, 2012), 

we found that maximum Rah occurred from 120 days prior to green-up 
through 20 days after green-up for corn (Zea mays L.), while minimum 
Rah ranged from 66 to 143 days after green-up. Similarly, for soybean 
(Glycine max [L.] Merr.), maximum Rah ranged from 197 days prior to 
green-up through 8 days after green-up (Fig. S6). 

We also observed seasonality in Rah among some, but not all, 
evergreen-needleleaf and woody savanna sites. Wetter evergreen and 
savanna sites, as measured by mean annual precipitation (Table 1), 
displayed little seasonal variability in Rah, while drier evergreen and 
savanna sites with lower stand density had some of the strongest sea
sonal patterns in Rah. For example, US-Ho1 (MAP = 1070 mm), a sub- 
boreal, closed canopy site in Maine with ≈15–20% annual needle 
turnover (Hollinger et al., 1999), exhibited little seasonal variation in 
Rah, Ram, or Rbh (Fig. 2), and Rah had a seasonal amplitude of only 4 s 

Fig. 2. Seasonal changes in Rah, Ram, and Rbh from example sites for each PFT. For each site, the median is calculated for each DOY across all years, and these 
statistics are then smoothed using a loess smoother. Confidence bounds represent the interquartile range across all years as well (25th–75th percentiles). Mean annual 
precipitation is in parentheses. The plotted points are the unsmoothed data for Rah. Plots for additional sites can be found in Fig. S5. 
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m− 1. In comparison, at the lower stand density Metolius young burn site 
in central Oregon (US-Me6, MAP = 494 mm; Ruehr et al., 2014) or the 
Pinyon-Juniper woody savanna site in central New Mexico (US-Mpj, 
MAP = 385 mm; Anderson-Teixeira et al., 2011), we observed some of 
the largest seasonal changes in Rah among all study sites, with seasonal 
amplitudes of 33 and 16 s m− 1, respectively (Fig. 2). Furthermore, the 
timing of minimum and maximum Rah values at these drier evergreen 
needleleaf and savanna sites was opposite to the patterns found at de
ciduous broadleaf forests, with maximum Rah occurring during the 
growing season and minimum values more prevalent during the 
dormant season prior to green-up (Figs. 2, 3, and S6). 

3.2. Inferred drivers of Rah seasonality and linkages to spring phenology 

Our findings suggested that seasonal variability in Rah was primarily 
attributable to changes in Rbh, not Ram, at most of our study sites. In 
general, there was strong correlation in the seasonal patterns of Rah and 
Rbh, but much lower correspondence between Rah and Ram (Fig. 2). For 
example, at US-MMS, a 90-100 year old deciduous broadleaf forest in 
southern Indiana (Dragoni et al., 2011), there was a well-defined 
decrease in Rah near green-up, shifting from 23 s m− 1 to 15 s m− 1 

(Fig. 2). This shift in Rah directly tracked Rbh, which shifted from 15 s 
m− 1 to 7 s m− 1. Conversely, Rah was anti-correlated with Ram (Fig. 2). 
These patterns and linkages between Rah and Rbh were reinforced by 
results from our attribution analysis where the total variance in Rah was 
partitioned between Ram, Rbh, and the covariance between Ram and Rbh 

Fig. 3. Timing of seasonal maximum and minimum values for aerodynamic resistance to heat transfer (Rah). Red and blue histograms display the empirical dis
tribution of the seasonal maximum or minimum timing, respectively. Specifically, the histograms are for day of year values (relative to green-up) for all days that 
were either above the 75th percentile (i.e., maximum) or below the 25th percentile (minimum). Day 0 (at the top of each plot) represents green-up. These empirical 
distributions of maximum or minimum timings are summarized by the 10th, 50th, and 90th percentiles of these relative day-of-year values as the beginning, middle, 
and end points, respectively (i.e., the red and blue “slices”). The green “slices” represent the green-up phenological transition period, bounded by dates when the GCC 
curve reaches 10% and 90% of the total seasonal amplitude of GCC. Plots for additional sites can be found in Fig. S6. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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(Fig. 4). We found clear evidence among non-agricultural PFTs that the 
total variance in Rah was primarily explained by Rbh, not Ram (Fig. 4). 
For example, across all deciduous broadleaf sites, variance in Rbh 
explained 42-87% of the total variance in Rah compared to Ram (2–36%) 
(Fig. 3). There were only two non-agricultural sites where we found 
evidence for Ram having higher explanatory power than Rbh: CA-TP4 and 
US-NR1 (e.g., 63% vs 37% for CA-TP4) (Fig. 4). 

Seasonal variation in Rbh is attributable to seasonal shifts in kB− 1 

rather than u∗ (Eq. (7)), as u∗ exhibits considerably less seasonal 

variability. We found distinct and corresponding seasonal cycles be
tween Rbh and kB− 1 occurring at many sites (Figs. 2, 5, and 6); kB− 1 

generally reached its highest values immediately prior to or during 
green-up, followed by decreases during the transition to the growing 
season at deciduous broadleaf, grassland, shrubland, and agricultural 
sites (Figs. 5 and 6). At drier evergreen needleleaf sites, such as US-Me6, 
we found the opposite pattern, with kB− 1 lower during the dormant 
season and increasing during the growing season (Figs. 5 and 6), with 
strong similarity to the signal in Rah found at these same sites (Figs. 2 

Fig. 4. Attribution of the total seasonal variance in Rah to either Ram, Rbh, or 2Cov (Ram, Rbh). Corn and soybean data are obtained from US-Ne1, US-Ne2, and US-Ne3.  
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and 3). When comparing Figs. 3 and 5, we observe that a deciduous 
broadleaf site (US-MMS) the timing of maximum Rah and kB− 1 over
lapped considerably. Similar patterns can be found at the other end of 
the precipitation gradient; at a shrubland site in southern Arizona (US- 
Whs), the median day-of-year of peak Rah and kB− 1 were almost iden
tical: 43 and 45 days prior to start-of-season green-up (Figs. 3 and 5). 
When comparing all sites, we found a strong positive linear relationship 
between the transition dates for Rah and kB− 1, with the transition dates 
for Rah and kB-1 occurring within 30 days of each at 60% of all sites 
(Fig. 7a). 

The timing of seasonal shifts in Rah and kB− 1 appeared to track green- 
up transition dates for some, but not all, sites (Fig. 7b,c). Linkages be
tween green-up dates and shifts from higher to lower Rah and kB− 1 were 
notable at most deciduous broadleaf, grassland, and at least one 
shrubland site. For example, there were distinct decreases in kB− 1 at two 
deciduous forest sites (US-MMS and US-MOz) immediately after spring 
green-up occurred, and this response was consistent even when green-up 
occurred approximately 30-days earlier than normal in 2012 (Fig. 6). 
This strong association between transition dates is visualized in Fig. 7b, 

c; transition dates between kB− 1 and Gcc occurred within 30 days of each 
other for 80% of deciduous broadleaf, two out of three of grassland, and 
one of two of shrubland sites. By comparison, for many evergreen nee
dleleaf forests and woody savanna ecosystems, kB− 1 transition dates 
generally occurred more than 120 days from green-up, if at all. In gen
eral, these patterns between kB− 1 and greenness were comparable to the 
patterns we found for Rah. 

Finally, to help understand which surface roughness parameter (z0m 
or z0h) is driving kB− 1 changes, we estimated d and z0m through aero
dynamic canopy height (ha) and wind-profile data. In general, we found 
that ha increases during the growing season, implying z0m is also 
increasing (Fig. S4). We found a similar pattern for a cropland site with 
corn (US-Ne1), where there was a distinct increase in both d and z0m 
during the growing season (Fig. 8). While this pattern occurred at most 
sites, we also found examples where z0m decreased during the growing 
season, indicating that the canopy became smoother. Specifically, at US- 
MMS and US-Syv, z0m decreased by approximately 1.5 m during the 
transition from spring to summer (Figs. 8 and S4). 

Fig. 5. Same as Fig. 3 but for kB− 1.  
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3.3. Rah seasonality in croplands 

There were relatively unique patterns at several of the cropland sites 
in our analysis, compared to other sites. Specifically, a significant pro
portion of the variation in Rah was attributable to Ram, contrasting with 
results at most other sites (Fig. 4). Ram exhibited significant influence at 

the Nebraska corn and soybean agricultural sites (US-Ne1, US-Ne2, and 
US-Ne3). Our attribution analysis indicated Ram explained a significant 
part of the total variance in Rah, with Ram explaining 37% and 52% of the 
variability in Rah for corn and soybean, respectively, compared to Rbh 
which explained 47% and 48%. This similarity can be visualized in 
Fig. 2, as both Rah and Ram closely tracked each other immediately after 

Fig. 6. Time series for kB− 1 and Gcc for a range of different PFTs. Each panel covers a time period of three years. Three-day optimized kB− 1 values are represented as 
the grey points, while the black line indicates the smoothed time series described in Section 2.4. Solid green curves indicate PhenoCam-derived GCC and the vertical 
dashed lines indicate PhenoCam transition dates for green-up. The numbers printed next to each green-up line indicates the day-of-year of green-up. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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green-up in both corn and soybean sites. Seasonal patterns in Rbh and 
kB− 1 also differed notably compared to deciduous forest and grassland 
sites; Rbh and kB− 1 in cropland sites increased immediately after green- 
up, followed by a sudden decrease after canopy greenness reached its 
seasonal maximum (Figs. 2 and 6). 

Strong seasonal patterns in Rah were also observed at weekly time
scales at the alfalfa (Medicago sativa L.) sites in the Sacramento–San 
Joaquin River Delta in central California (US-Bi1 and US-Tw3), with Rah 
and kB− 1 decreasing as z0m and canopy greenness increased (Figs. 9 and 
S7). Alfalfa harvesting takes place 5-7 times per year during the spring 
and summer (Hemes et al., 2019). At these two sites, we observed 
distinct seasonal patterns in Rah responding to changes in aerodynamic 
canopy height (ha), canopy greenness, and kB− 1 (Fig. 9 and S7). At 
US-Bi1, changes in z0m ranged from 0.02 to 0.06 m, closely tracking 
canopy greenness, and Rah and kB− 1 inversely tracked these changes in 
ha and greenness. Similar patterns were found at US-Tw3 (Fig. S7). The 
data at these sites highlight three key patterns. First, kB− 1 was the main 
driver of Rah. Second, maximum values in Rah and kB− 1 occurred when 
canopy greenness and z0m were at a minimum, shortly after a harvesting 
event. Finally, there was little-to-no change in Ram accompanying these 
patterns in Rah. These results were comparable to the patterns observed 
in deciduous broadleaf, grassland, and shrubland sites; maximum and 

minimum values of Rah and kB− 1 occurred during dormant and growing 
periods, respectively. 

3.4. Implications for understanding seasonal changes in aerodynamic 
resistance 

At many sites, we found evidence that kB− 1 differs between the non- 
growing season and growing season, indicated by the clear bifurcation in 
kB− 1 with higher values occurring during the non-growing season and 
lower values occurring during the growing season (Fig. 10). To under
stand how this seasonal variation in kB− 1 may influence predictions of H 
when compared to the assumption of static kB− 1 (i.e., kB− 1 = 0 or kB− 1 

= c), we estimated the full annual pattern of relative differences between 
estimated and measured H (i.e., Ĥ/H) at a 3-day timestep. We found that 
estimates of H were quite sensitive to kB− 1 = 0 or kB− 1 = c; at many 
sites, we found that the highest relative differences generally occurred 
during the nongrowing season and under the assumption kB− 1 =

0 (Fig. 11). For example, at US-MMS, Ĥ/H was approximately 300% 
right before green-up, indicating that assuming kB− 1 = 0 will produced 
large biases (Fig. 11). At the arid US-Ses shrubland site, the highest 
values of Ĥ/H (> 400%) occurred immediately prior to green-up 
(Fig. 11). We found similar seasonal patterns of Ĥ/H by assuming 

Fig. 7. Comparison of transition dates for Rah, kB− 1, and green-up. Plot symbols and colors indicate different PFTs, while the size of the plot points is inversely 
proportional to the distance from the 1:1 line. Transition dates for Rah and kB− 1 are equated to the end points for the empirical distribution of the timing of maximum 
values for each variable (e.g., see Figs. 3 and 5). 
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kB− 1 is constant for each PFT (i.e., kB− 1= c), although the magnitude of 
Ĥ/H was considerably reduced relative to kB− 1 = 0 (Fig. 11). Further
more, the seasonal patterns in Ĥ/H observed at many sites were similar 
to the seasonal patterns in Rah (Fig. 2). In summary, these results indi
cated that accounting for seasonal changes in kB− 1 is critical for 
significantly reducing biases and errors when predicting H using a “big 
leaf” approach. 

4. Discussion 

Using 190 site-years of data from the AmeriFlux and PhenoCam 
networks, our findings highlight how aerodynamic resistance to heat 
transfer (Rah) exhibits distinct seasonal patterns among multiple plant- 

functional types (PFTs) and climate regimes, and how vegetation 
phenology may play a role governing this seasonality in certain PFTs. 
Specifically, PFTs that exhibit the strongest seasonal changes in canopy 
structure also consistently displayed strong seasonality in Rah, and the 
timing of the seasonal patterns in Rah closely track phenological start-of- 
season green-up at most of these sites. Incorporating these seasonal 
patterns of Rah, as well as potential linkages to spring phenology, is 
important for improving model-based predictions of sensible heat fluxes, 
and thus our understanding of how seasonal changes in the land surface 
more broadly impact atmospheric dynamics such as boundary layer 
height, vertical temperature profiles, and near-surface micro-climate. 

Fig. 8. Changes in d and z0m estimated from wind-profile data.  
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4.1. How does aerodynamic resistance change seasonally? 

The aerodynamic resistance to heat transfer (Rah) comprises two 
additive resistance terms (Rah = Ram + Rbh, Eq. (2)), and our findings 
provide evidence that for most sites excess resistance to heat transfer 
(Rbh) is a significantly stronger control over seasonal patterns of Rah, 
relative to the resistance to momentum transfer (Ram) (Figs. 2–5). Recall 
that excess resistance (Rbh) accounts for differences between the 
roughness lengths for momentum (z0m) and heat (z0h) through the kB− 1 

parameter (i.e., k ⋅ Rbh ⋅ u∗ = ln(z0m/z0h) = kB− 1, Eq. (7)). In this study, 
we found that the seasonality (Figs. 2, 3, 5, 7a) and total variance (Fig. 4) 
in Rah is best explained by Rbh and kB− 1. Taken together, these multiple 
relationships linking kB− 1 to Rah through Rbh imply changes in surface 
roughness (i.e., through z0m or z0h) are a key factor determining seasonal 
patterns in Rah. 

At most deciduous broadleaf, grassland, and shrubland sites, kB− 1 

decreases during start-of-season phenological transitions, implying the 
potential for a direct causal linkage between phenology and seasonal 
changes in kB− 1 (Figs. 6, 7 and 10). Decreasing kB− 1 in response to 
increasing LAI has been identified in other studies. For example, kB− 1 is 
commonly modeled as a function of LAI (Brutsaert, 1979; Hu et al., 
2020; Kubota and Sugita, 1994; Yang and Friedl, 2003). This modeling 
captures decreases of kB− 1 in response to increasing LAI and provides 
accurate estimates of H as well (Qualls and Brutsaert, 1996). Decreasing 
kB− 1 after green-up must be related to either z0m or z0h (Eq. (6)). Here, 
we conclude z0h is more influential than z0m in most cases. Specifically, 
we posit shifts to higher z0h (lower kB− 1) during start-of-season green-up 
are due to decreases in the fractional coverage of understory and bare 

soil. Landscapes dominated by bare soil or sparse vegetation exhibit z0h 
heights effectively at the soil surface, especially during warm and dry 
meteorological conditions where the soil is acting the primary source of 
heat (Verhoef et al., 1997; Yang et al., 2008). A theoretical addition of 
taller un-foliated roughness elements to a landscape would increase z0m, 
while z0h would remain unchanged due to surface temperature of the 
understory exceeding that of the canopy temperature (Brutsaert and 
Sugita, 1996). During phenological transitions, such as leaf emergence 
in temperate deciduous forests, the canopy fills in, the coverage of bare 
soil and understory decreases, and transpiration increases cooling of the 
surface (Verhoef et al., 1997), together leading to increases in z0h and 
lowering kB-1. Similar behavior of kB− 1 is found between PFTs that have 
dense and sparse canopies. Permeable-rough surfaces (e.g., deciduous 
broadleaf or agriculture sties) have kB− 1 values lower than bluff-rough 
surfaces (e.g., shrubland sites) (Brutsaert, 1982; Rigden et al., 2018). 
These bluff-rough surfaces, generally occurring at more arid sites, have 
higher proportions of land cover dominated by bare soil (Fig. S3). 

While changes in z0m, as well as z0h, may also play a role in altering 
kB− 1, our results imply that observed changes in z0m are not driving 
seasonal decreases in kB− 1. Specifically, we found that z0m generally 
increases during the growing season, indicated by increasing aero
dynamic canopy height (ha; Fig. S4) or wind-profile data (Fig. 8). All 
other factors being equal, increasing z0m by itself would lead to higher 
kB− 1; however, we found that kB− 1 decreases after green-up (Figs. 5, 6, 
9, and 10). Therefore, we infer that increases in z0h offset increasing z0m, 
thereby leading to decreases in kB− 1 (e.g., Fig. 1) and implying z0h is the 
more important control over kB− 1. Patterns observed at an alfalfa agri
cultural site (US-Bi1, Fig. 9) capture this dynamic. Significant decreases 

Fig. 9. Growing season patterns in z0m (i.e., 0.1ha), GCC, Ram, Rbh, Rah, and kB− 1 for an agricultural site (US-Bi1) for 2017. Images are from the PhenoCam site 
bouldinalfalfa at midday. Due to the short time period, these data are daily (individual points) and smoothed using a loess. Solid and dashed lines represent the 
smoothed values for the left and right y axes, respectively. 
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in z0m after a harvesting event by itself should lead to decreasing kB− 1. 
However, we found kB− 1 increases after harvesting events, likely due to 
significant decrease in z0h relative to z0m. Increases in z0m after green-up, 
while common, are not ubiquitous. Decreases in z0m can also occur. 
Specifically, functions relating z0m to the plant area index (i.e., PAI) 
exhibit non-monotonic relationship and higher leaf area and foliage 
density at the top of the canopy can act as a smooth surface (Blanken and 
Black, 2004; Shaw and Pereira, 1982). While we see such decreases in 
z0m at US-MMS, US-Syv, and US-NR1 (Figs. 8 and S4), this likely does not 
outweigh the importance of z0h given its strong influence at other sites. 

While z0h may have more control over seasonal changes in Rah 
relative to z0m, this is partially due to z0m simply not changing as much 
relative to z0h between the non-growing and growing seasons, as the 
physical structure of the canopy generally remains in place even if it is 
defoliated (Nakai et al., 2008). Using the corn and soybean sites, we can 
investigate and better understand the influence of z0m in a system where 
the landscape transforms from bare soil to a full canopy within a season. 
Here, we found patterns in Ram closely tracking Rah (Fig. 2), and Ram 
explains significantly more of the observed variance in Rah compared to 
other sites (Fig. 4). This increased importance in Ram is due to significant 
increases in z0m as the crops increase in height (Figs. 2 and 8) and the 
subsequent effect on the log-wind profile Eqn (13). 

Phenology does not have the same level of control over Rah in 
evergreen-needleleaf sites (Figs. 2, 3 and 5). This is not surprising, given 
that our evergreen-needleleaf sites exhibit only minor leaf turnover each 
season. Where we did observe seasonal changes in Rah (e.g., US-Me6), 
these changes are also associated with changes in Rbh and kB− 1, com
parable to other PFTs. Therefore, changes in Rah in evergreen-needleleaf 
sites are not driven by changing leaf area and the fractional cover of the 
forest canopy, but likely by two other interacting factors. First, 
increasing solar radiation and surface heating during the course of the 
growing season alters the temperature source height (z0h), thereby 
altering Rah through kB− 1, comparable to diurnal changes in kB− 1 

tracking solar radiation (Fig. 1) (Lhomme et al., 1997; Yang et al., 2008). 
Second, these impacts of seasonal changes in solar radiation on kB− 1 

only occur at more arid sites with taller vegetation, compared to 
shrublands or grasslands, and that likely have lower stand density (i.e., 
US-Me2, US-Me6, and US-Mpj; Figs. 2 and S3). The higher exposure of 
the understory or bare soil, compared to the more closed canopy sites (i. 
e., CA-TP4, US-Ho1, US-NR1), exacerbates the effects these changing 
environmental conditions have on kB− 1. Finally, it should be noted that 
phenology may still play an important role in controlling seasonal pat
terns of kB− 1 at lower density evergreen-needleleaf sites through the 
phenology of understory vegetation. However, the greenness index from 
PhenoCam for these sites is only derived for the canopy and does not 
capture the understory phenology. 

From this analysis we conclude that phenology can be a key driver 
over observed seasonal shifts in kB− 1 in some ecosystems, which sub
sequently influences Rah and predictions of H. However, the full seasonal 
trajectory of kB− 1 is not explained by phenology alone; across the sites 
we considered, significant variations in Rbh and kB− 1 occurred well 
before and after phenological transitions (Figs. 2 and 6). For example, at 
a semi-arid grassland site in southern Arizona (US-Wkg), we observed 
distinct increases in kB− 1 beginning in January of each year, which 
continued throughout the dormant season prior to green-up (Fig. 6). 
These shifts in kB− 1 occurred well after senescence and before spring 
green-up, and such shifts are likely influenced by other environmental or 
meteorological factors, including evapotranspiration, net radiation, 
wind speed, and surface temperature (e.g., Blyth and Dolman, 1995; 
Lhomme et al., 1997). As a brief supplementary analysis, we conducted a 
multiple linear regression at US-Wkg that related kB− 1 to a list of 
meteorological factors: Rn, surface temperature (Ts), latent heat flux, soil 
water content, wind speed, and cumulative 10-day precipitation. We 
found that Ts emerged as the most important among these variables at 
seasonal time scales (p < 0.001 and partial correlation = 0.437, 
Table S2), having a strong positive relationship with kB− 1 (Fig. S8). This 

Fig. 10. Relationships between kB− 1 and the Reynolds roughness number (Re∗) for different phenology phases (non-growing and growing season) at six example 
sites. The darker plot points and confidence bounds represent the median and inter-quartile range of the distributions along each axis. 
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influence of Ts is likely due to progressively warmer soil conditions that 
occur from January-June under increasing Rn, with the soil thereby 
acting as the primary source of heat exchange, relative to the canopy, 
and resulting in z0h to be at the height of the soil surface. As monsoonal 
precipitation begins in late-June or July and green-up occurs, the soil 
temperature shifts and begins to cool and is therefore less sensitive to 
continued increases in Rn that occur during the remainder of the sum
mer. While this analysis is admittedly brief, it does indicate that there 
are other potential drivers of seasonality in kB− 1. In general, quantifying 
the influence of these factors on kB− 1 – as well as how they interact with 
each other and phenology – is crucial for developing accurate models of 
kB− 1. 

4.2. How does changing aerodynamic resistance influence predictions of 
H? 

Substantial differences between estimated (Ĥ) and measured H 
occurred when kB− 1 is assumed constant or equal to 0 (Fig. 11). These 
results have important implications for modeling of the land-surface 

energy balance using “big leaf” energy balance equations (e.g., Eq. 
(1)). First, simplified assumptions of a static kB− 1 (i.e., kB− 1 = 0 or kB− 1 

is constant) are insufficient to accurately model the complete seasonal 
trajectory of H. Assuming z0m = z0h (i.e., kB− 1 = 0) appears to be invalid 
for vegetated surfaces, a result agreeing well with the literature (Yang 
et al., 2008). Similarly, assuming a constant value for each PFT, while 
helping to reduce biases (i.e., Ĥ/H) relative to the assumption kB− 1 = 0, 
still resulted in significant seasonal deviations from measured H at many 
sites. These results demonstrate that including a time-varying estimate 
of kB− 1 that accounts for changes can eliminate seasonal patterns in Ĥ/H 
compared to assuming kB− 1 = 0 or kB− 1 = c, implying that anticipating 
how and why surface roughness changes is important for understanding 
seasonal dynamics in land-atmosphere interactions (Blythe and Dolman, 
1994; Kustas et al., 1989). 

4.3. Implications and directions for future work 

The sensitivity of H to seasonal variations in kB− 1 is unexpected 
when compared to inferences from past studies. Increasing z0m under 

Fig. 11. Seasonal signals in relative differences between measured and estimated sensible heat flux (Ĥ/H) for different sites depending on whether kB− 1 is assumed 
equal to 0 or a constant (i.e., kB− 1 = 0 or kB− 1 = c). Lines and confidence bounds are the median and interquartile range across all years. 

A.M. Young et al.                                                                                                                                                                                                                               



Agricultural and Forest Meteorology 310 (2021) 108613

17

land-cover shifts from grasslands to aerodynamically rougher forests 
leads to increased turbulence and decreasing resistance, subsequently 
impacting surface temperature (Burakowski et al., 2018; Lee et al., 
2011). Such mechanisms have been suggested to occur during pheno
logical transitions; increases in z0m during green-up could decrease 
aerodynamic resistance to momentum transfer (Peñuelas et al., 2009). 
Conversely, phenology may only play a minor role controlling aero
dynamic resistance. For example, in deciduous broadleaf forests, 
observed increases in Rah during phenological transitions have been 
attributed to decreasing synoptic-scale wind speed, and not z0m (Moon 
et al., 2020). Overall, our findings provide important new insight into 
the role of seasonally changing surface roughness, which in many cases 
appears to be associated with phenology, as a control on H. Perhaps 
more consequentially, the significant seasonal biases observed under the 
assumption of constant kB− 1 implies the behavior for both z0m and z0h 
represents a key source of uncertainty for modeling land-atmosphere 
interactions. 

Resolving uncertainty in the behavior of z0m and z0h at seasonal time 
scales is not only important for model improvement, but also critical for 
understanding how seasonal changes in H may impact atmospheric 
dynamics, such as boundary layer height, temperature profiles, and 
micro-climate (Helbig et al., 2020). For example, due to the exponential 
nature of kB− 1 (Eq. (6)), small increases in z0h would reduce Rah, leading 
to increased H and potentially decreasing aerodynamic surface tem
perature and near-surface air temperature (Novick and Katul, 2020). 
Understanding such dynamics will likely be important for anticipating 
ecosystem impacts as phenology responds to a changing climate 
(Richardson et al., 2013). To reduce this uncertainty, developing prog
nostic models of kB− 1 as a function of different environmental factors – 
including phenology – is a key next step. Other studies have modeled 
differences in kB− 1 among different PFTs, for example as a function of u∗

or Re∗ (e.g., Rigden et al., 2018). Expanding on such models to capture 
the seasonal shifts and bifurcation of kB− 1 would lead to a stronger 
understanding of how the horizontal and vertical structure of surface 
roughness elements impacts H (Garratt and Hicks, 1973; Maurer et al., 
2013). Finally, while more complex land-surface models such as CLM or 
a multi-layer approach do not rely on kB− 1, our work motivates the need 
for investigations into how seasonal changes in land-surface properties 
might impact predictions from these systems-based models. 

Conclusions 

Through a continental-scale synthesis integrating AmeriFlux and 
PhenoCam data and applying Monin–Obukhov similarity theory, we 
find that seasonal variability in aerodynamic resistance to heat transfer 
is pervasive across a range of ecosystems. We found evidence that the 
mechanisms underlying this variation in aerodynamic resistance are 
likely linked to vegetation phenology in deciduous broadleaf forests, 
grasslands, croplands, and shrublands. Specifically, shifts to a larger leaf 
area led to z0h increases during green-up, leading to decreases in kB− 1 

and in the overall total aerodynamic resistance to heat transfer. By 
comparison, the role of changing surface roughness to momentum 
transfer (z0m) appeared to be minimal compared to z0h. The total impact 
of seasonal variation in kB− 1 on model-based estimates of sensible-heat 
flux is important; large biases in (Ĥ/H) occurred when assuming kB− 1 is 
constant. Predicting the full seasonal trajectory of sensible heat flux 
using simple one-layer land-surface energy balance models requires 
prognostic models and parametrizations that account for seasonal 
changes in kB− 1 in response to phenology and other environmental and 
meteorological factors. In conclusion, we found evidence vegetation 
phenology can influence surface-roughness at relatively fine temporal 
scales, directly impacting seasonal variability in aerodynamic resistance 
to heat transfer across a range of North American ecosystems. Because 
this variation in aerodynamic resistance also influences the land-surface 
energy balance, our findings provide insight into how land-atmosphere 
interactions operate at seasonal time scales. 
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