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Impacts of the US southeast wood 
pellet industry on local forest 
carbon stocks
Francisco X. Aguilar1*, Houston Sudekum2, Ronald McGarvey3, Benjamin Knapp4, 
Grant Domke5 & Consuelo Brandeis6

We assessed the net impacts of a wood-dependent pellet industry of global importance on 
contemporaneous local forest carbon component pools (live trees, standing-dead trees, soils) and 
total stocks. We conducted post-matched difference-in-differences analyses of forest inventory data 
between 2000 and 2019 to infer industrial concurrent and lagged effects in the US coastal southeast. 
Results point to contemporaneous carbon neutrality. We found net incremental effects on carbon 
pools within live trees, and no net effects on standing-dead tree nor soil pools. However, we found 
concurrent lower carbon levels in soils, mixed effects associated with increased procurement pressures 
and large mill pelletization capacity, and possible spillover effects on standing-dead tree carbon pools 
beyond commercial procurement distances. There is robust evidence that although some trade-offs 
between carbon pools exist, the wood pellet industry in this particular context and period has met the 
overall condition of forest carbon neutrality.

Nations around the world are adopting strategies to decarbonize their  economies1,2. One decarbonization path-
way is to substitute fossil fuels with biological resources in the generation of energy as illustrated by the European 
Union (EU) Bioeconomy Strategy and its Renewable Energy  Directives1,3,4. Bioenergy—energy generated from 
biomass—is the EU28 (EU27 and Great Britain) largest renewable energy source with woody biomass procured 
from forests as the dominant biofuel in the generation of heat and  power5. Worldwide, the EU28 is the biggest 
market for pelletized wood used as biofuel—internal trade of wood pellets more than tripled and imports into 
the EU28 grew seven-fold over the 2009–2019 period following adoption of the Renewable Energy  Directives3,4. 
In 2020 the US was the world’s top producer (20%, weight) and exporter (25%, weight) of wood pellets, and the 
leading extra-regional supplier of wood pellets to the  EU281. US exports to the EU28 have grown 12-fold over 
the 2009–2019 period to reach 6.8 million Mg (1 Mg = 1 metric ton)6. Global wood pellet production topped 42 
million Mg and their trade value surpassed US$4.3 billion in  20207.

The capacity of biofuels to contribute to the decarbonization of the energy sector is inexorably linked to their 
procurement not depleting land carbon (C)  stocks8,9. However, there are divergent views on this  premise10–13 
and robust empirical analyses testing it are lacking. Current understanding of wood-dependent biofuel industry 
effects on local forest C stocks has focused on market  projections12,13 and state-of-knowledge  syntheses14,15 with 
few empirical  evaluations16–18. Empirical assessments are scarce partly due to the complexity of discerning the 
impacts of a wood-dependent biofuel industry that overlaps other economic sectors, social actors, and natural 
 disturbances15,18.

Here, we used a post-matching difference-in-differences (DiD) approach to assess whether an industry that 
pelletizes woody biomass has affected total C stocks and individual component pools within live trees, standing-
dead trees, and soils. We tracked C stocks in national forest inventory (NFI) plots located on private and public 
lands suitable for commercial management (timberland) sampled over the 2000–2019 period. During this period 
wood pellet annual manufacturing capacity grew from 40.823 thousand Mg to 6.652 million Mg in the US coastal 
southeast states of Alabama, Georgia, Florida, Mississippi, North Carolina, South Carolina, and Virginia (Fig. 1). 
We identified NFI plots located within prevalent commercial procurement distances measured by wood pel-
let mill-centered, tortuosity-adjusted geodesic radii, and across extended radii to examine possible spill-over 
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impacts. We tested concurrent, lagged, and net contemporaneous industry effects—respectively denoting impacts 
within current year, delayed impacts at 5-year intervals, and net impacts of concurrent and lagged effects—on 
total C stocks and component pools. We expected to be able to statistically detect industry effects on local forest 
C stocks given the sharp rise in wood pellet manufacturing but were ambivalent as to their directional impacts.

Our contributions are three-fold. First, we analyzed industrial spatio-temporal effects on local timberland 
C stocks after controlling for the non-random siting of wood-using facilities. To our knowledge, this is the first 
post-matching DiD assessment of the impacts of a wood-dependent industry on local forest C stocks using 
NFI data. It expands on recent evaluations of the wood pellet industry’s effects using landscape-based estimates 
conducted in the  US16,17, and remote-sensed analyses completed in  Europe18. Second, our analytical framework 
offers an empirical alternative to evaluate systematic compliance with EU mandates to monitor forest C stocks in 
areas where woody biomass is procured for  bioenergy3,8. We robustly examined our findings by using different 
algorithms to match NFI plots within and outside procurement radii, and confirmed general trends from a sub-
sample of states where the industry had the largest expansion in capacity to-date. We also tested effects of mills’ 
large manufacturing capacity, and procurement pressures proxied by the number of procurement radii overlap-
ping an NFI plot. Third, our results contribute to an enhanced understanding of C fluxes near wood-dependent 
industries. Of particular novelty, we estimate C in soils—an understudied pool—from empirical observations 
in our assessment of individual and total C  stocks20.

Methods
Our empirical methods (Fig. 2) included three main steps: (1) estimation of timberland C stocks and covariate 
information across our study region; (2) statistical pseudo-randomization of NFI plots located within industrial 
procurement radii; and (3) post-matching estimation of average wood pellet mill industrial effects based on DiD 
panel regressions. Supporting analyses included examination of parallel trends prior to DiD, robustness checks 
for main effects, and evaluation of heterogeneous industry effects. Steps 1 and 2 were conducted in  Python21, 
with final estimation completed in Stata Version  1522. Maps were generated using  QGIS23.

Estimation of timberland carbon stocks and covariate information including treatment. Esti-
mates of C stocks above and belowground in live trees and standing-dead trees, and soils were obtained from 
plots sampled over the period 2000–2019 by the US Department of Agriculture Forest Service’s Forest Inventory 
and Analysis NFI program. Whether on public or privately owned lands, our sample included all NFI plots on 
timberlands (forestland capable of producing in excess of 1.4  m3 of industrial wood per ha per year and not 
legally withdrawn from timber production, with a minimum area classification of 0.41 ha)24 inventoried at least 
twice during our time period with no fewer than one observation recorded during or after 2005. Except for C 
in soils (available on request at this time—and eventually in the NFI database), all estimates are publicly avail-
able. Our compilation of soil C  estimates20 relied on soil organic C observations from the NFI and auxiliary site 
and climate variables representing soil forming factors. These are used in US greenhouse gas reporting under 
the United Nations Framework Convention on Climate Change and better characterize localized soil condi-
tions than current NFI information not meant for estimation at specific  locations20,24. Extracted NFI plot-level 
information included data on tree-level measurements (e.g., number of live trees, standing-dead trees, biomass 
volume, stocking), as well as site characteristics (e.g., evidence of fire or weather damage) and assigned forest 
conditions (e.g., forest type). Details on NFI program sampling design, inventory procedures, and estimation 
of attributes are available  online24. Descriptions of selected C stocks and total carbon (obtained by aggregating 

Figure 1.  Total wood pelletization capacity in the US coastal southeast, 2000–2019. Source: Adapted from 
 Forisk19.
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selected and other remaining C stock) are presented in Table 1. Per-hectare values were obtained using NFI 
expansion factors and aggregated based on plot sequence numbers, with estimates proportionally adjusted if less 
than 100% of a plot was classified as  timberland25.

Covariate information was distinguished between abiotic, biotic (Table 2), or of anthropogenic origin 
(Table 3)15,26,27. Assignment of several explanatory variables to an NFI plot (e.g., whether it sits within procure-
ment radii of the wood products industry) required georeferencing, made possible by available plot-level latitude 
and longitude coordinates. It must be noted that plot locations in the NFI database are systematically ‘fuzzed’ 
or ‘swapped’ to protect the privacy of landowners and the integrity of the data collection  process25. The ‘fuzzing’ 
process involves randomly relocating most plots within 0.8 km of their true location. The ‘swapping’ process 
occurs on 0–10% of forested plots, only for those that fall within private  land25, and consists of exchanging coor-
dinates with another similar plot within the same county. This random relocation process can have discernible 
effects in the estimation of forest conditions within small areas but any systematic bias on timberland attributes 
measured over a large geographic area, such as the procurement radii evaluated over the entire US southeast 

Figure 2.  Methodological steps followed to estimate industrial impacts on local forest carbon component pools 
and total stocks.

Table 1.  Description of selected component pools and total carbon forest stocks within timberlands of 
the US coastal southeast. DBH: diameter at 137 cm above ground. DRC: diameter at root collar. Mean and 
standard deviations derived from 39,882 national forest inventory plots in the original sample. Estimates were 
compiled at the inventory plot-level based on tree, condition and plot information. Plot-level timberland 
estimates were obtained from conditions contained within a plot. Non-timberland conditions were excluded, 
and plot level estimates were expanded proportionally. Live-tree and standing-dead tree carbon estimates 
were derived entirely from tree-level measurements on timberland conditions and expanded proportionally 
to the timberland portion of a plot. Other NFI-derived estimates were aggregated from condition to plot level. 
‡ Includes carbon in above- and below-ground portions of seedlings and woody shrubs as reported by NFI 
aggregated to carbon of organic material on the forest floor, including fine woody debris, humus, and fine roots 
in the organic forest floor layer above mineral soil.

Carbon pools Description Mean (mg/ha) SD

Live-tree carbon Carbon in the above- and below-ground portions of the tree, excluding foliage, of live trees ≥ 2.54 cm DBH/DRC 66.816 48.504

Standing-dead tree carbon Carbon in the above- and below-ground portions of the tree, excluding foliage, of standing-dead trees ≥ 12.7 cm DBH/
DRC 1.319 3.368

Carbon in soil organic material
Carbon in fine organic material below the soil surface to a depth of 1 m estimated from a model using soil forming 
 factors20. Does not include roots. This attribute is a component of the US Environmental Protection Agency’s Green-
house Gas Inventory and was obtained from a model developed directly from Phase 3 measurements of soil attributes 
in the US Department of Agriculture Forest Service’s Forest Inventory and Analysis  NFI program

67.152 23.490

Total carbon
Carbon aggregated from forest plot measurements at tree-level (e.g. C in live and standing-dead trees) and at 
condition-level (C in down and dead trees, C in soil organic material, C in litter, and above- and below-ground carbon 
in the  understory‡)

159.148 77.526
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coastal region, are reportedly  negligible28. Other attributes recorded at the county-level are very unlikely to carry 
any statistical noise from the fuzzing and swapping  process29.

Treatment was identified by whether a NFI plot was within commercial industrial procurement distances of 
operational wood-using pellet mills at year of sampling. We drew concentric circles delimited by radii of 48.28 km 
(30 imperial miles), and 80.47 km (50 imperial miles) from a mill’s centroid if its annual pellet manufacturing 
capacity was, respectively, below or at least 100 thousand Mg to identify treated plots. The selected radii corre-
spond with prevalent maximum travel distances and regional road tortuosity used in previous definitions of wood 
procurement  areas30–32. Travel distances were validated with NFI’s Timber Products Output mill-level surveys 
and justified the longer procurement radius used for larger-capacity  mills33. Defined procurement radii to assess 

Table 2.  Abiotic and biotic (non-anthropogenic) covariates used in the study of selected component pools 
and total carbon stocks in forest inventory plots located within timberlands of the US coastal southeast. n.a. 
Not applicable to categorical variables. *Forest types adapted  from25 where 1 = ‘White/Red/Jack Pine Group; 
Spruce/Fir Group, and other NFI 100-forest type codes’24; 4 = ‘Oak/Pine Group’; 5 = ‘Oak/Hickory Group’; 
6 = ‘Oak/Gum/Cypress Group’; 7 = ‘Elm/Ash/Cottonwood Group’; 8 = ‘Maple/Beech/Birch Group’; 9 = ‘Alder/
Maple Group’. No NFI plots belonging to groups 2–3 found in our sample area. Time variation possible due to 
differences in measurement between inventory cycles.

Covariate Units Spatial level Mean SD Source

Evidence of fire damage since previous meas-
urement Yes = 1; Otherwise = 0 NFI plot 0.052 n.a. 24

Evidence of weather damage (other than fire), 
since previous measurement Yes = 1; Otherwise = 0 NFI plot 0.020 n.a. 24

Evidence of insect or disease disturbance since 
previous measurement Yes = 1; Otherwise = 0 NFI plot 0.022 n.a. 24

Palmer drought severity index Index NFI plot  − 0.488 2.106 24

Shannon’s diversity index (large-diameter): 
Meets diameter threshold for sawtimber-size 
trees; ≥ 22.9 cm (≥ 9 inches) for softwoods 
and ≥ 27.9 cm (≥ 11 inches) for hardwoods

Index NFI plot 1.149 0.703 24

Shannon’s diversity index (small-diameter): 
Tree size classification at midpoint with diam-
eter ≥ 12.7 cm (≥ 5 inches) and less than the 
sawtimber-size threshold

Index NFI plot 0.803 0.618 24

Ecological forest type group* Forest Inventory and Analysis Program’s group 
number: 1 = plot within a group, 0 = otherwise NFI plot

Group 1 = 0.387 Group 4 = 0.121 Group 
5 = 0.340 Group 6 = 0.107 Group 7 = 0.003 
Group 8 = 0.300 Group 9 = 0.013

n.a. 24

Table 3.  Anthropogenic covariates used in the study of selected component pools and total carbon stocks in 
forest inventory plots located within timberlands of the US coastal southeast. *Denoted concurrent and lagged 
‘treatment effects’ identified by concentric circles of 48.28 km (30 imperial miles), and 80.47 km (50 imperial 
miles) of radii from a wood pellet mill’s centroid if its annual pellet manufacturing capacity in inventory year ‘t’ 
was, respectively, below or at least 100 000 Mg. †Distances estimated from NFI plot centroids. ₸Time-invariant 
during our observed sampling period.

Covariate Units Spatial level Mean SD Source

Location within procurement radii of the wood 
pellet industry, year of inventory (t)* Yes = 1; Otherwise = 0 NFI plot 0.276 n.a. 24

Location within procurement radii of the wood 
pellet industry, previous inventory year (t − 1)* Yes = 1; Otherwise = 0 NFI plot 0.123 n.a. 24

Location within procurement radii of the wood 
pellet industry, two previous inventory years 
(t − 2)*

Yes = 1; Otherwise = 0 NFI plot 0.036 n.a. 24

Geodesic distance to nearest operating pulp 
 mill† Km NFI plot 58.247 34.793 36

Geodesic distance to nearest power plant gen-
erating at least 25,000 MWh from wood  fuels†,* Km NFI plot 155.385 81.081 37

Geodesic distance to the nearest port trading 
forest  products†,₸ Km NFI plot 109.480 71.635 38

Road density₸ Km/ha County 0.004 0.002 39

Population density Number of county-level inhabitants per ha County 8.200 13.063 40

Artificial forest regeneration Evidence of artificial regeneration = 1; Other-
wise = 0 NFI plot 0.270 n.a. 24

Land tenure (ownership) categories Private ownership = 1; Otherwise = 0 NFI plot 0.911 n.a. 24

Location within US coastal southeast state₸
Alabama, Florida, Georgia, Mississippi, North 
Carolina, South Carolina, and Virginia: 1 = plot 
within a state, 0 = otherwise

NFI plot AL = 0.196; FL = 0.074; FA = 0.225; MS = 0.091; 
NC = 0.157; SC = 0.138; VA = 0.120 n.a. 24
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industrial effects on forests have been applied to the wood  product16,17 and other  industries34,35. We explored the 
effects of adjusting procurement radii by extending them by 20 km as part of our assessment of spill-over effects.

Statistical pseudo-randomization of forest inventory plot location within industrial procure-
ment distances. Estimation of net industry effects on timberlands’ contemporaneous C levels first con-
trolled for the non-random location of wood-using pellet mills. The siting of land-based resource-dependent 
facilities is a non-random process particularly when a large proportion of input expenditures arise from pro-
curement and transportation costs of localized resources, and manufactured products have relatively low value-
to-weight  ratios41. The non-random siting process is well reported in wood pellet industry case  studies42 and 
optimization  applications43.

We relied on propensity score matching (PSM) to pseudo-randomize treatment and reduce initial observ-
able heterogeneity in explanatory factors, leading to more accurate panel model  estimations44,45. Use of PSM to 
pseudo-randomize plots has only recently been applied to NFI  data46,47. PSM allowed us to identify inventory 
plots with conditions that could have made them as statistically-likely as those within procurement radii to be 
treated, yet were not. The estimation of the probability of an NFI plot in our sample (n) being within the procure-
ment radius of a wood pellet mill was given by:

where R takes on value of ‘1’ if the ith plot was located within the procurement radius of a wood pellet mill at 
any point during our sample period, and ‘0’ otherwise. Industry location theory and empirical evidence were 
our basis for choosing PSM covariates in vector Mi

42,48,49. These included: (a) Geodesic distance to nearest port 
trading forest products, (b) county’s road density, (c) land ownership (private or other), (d) geodesic distance to 
nearest wood-using power plant, (e) geodesic distance to nearest pulp mill, and (f) state- and (g) forest group 
type-specific effects. Respectively, the first three covariates proxied conditions that directly affect production 
costs including delivery to markets (hauling to trading ports), local transportation infrastructure (affecting ease 
of raw fiber procurement and delivery of manufactured pellets), and transaction costs (in this particular context, 
costs of procuring timber from privately held timberlands are on average lower than other ownerships partly 
due to contractual and administrative expenses). The next two covariates captured local competition by other 
industries procuring similar types of woody biomass (power plants burning wood, pulp mills). The last two 
covariates controlled for effects specific to a state and forest ecological subsection such as policies and regulations, 
and ecological conditions,  respectively50,51. Vector Mi also included an intercept term. Geodesic distances were 
natural log-transformed to capture non-linear  associations52,53. Incorporation of ecological and socio-economic 
variables has been empirically explored when using NFI plot information to test anthropogenic interventions on 
forest  conditions54, and the inclusion of explicit spatial dimensions when matching NFI plots has enhanced PSM 
 performance46. PSM variables were time-invariant with the exception of distances to nearest wood-using power 
plant and pulp mill, in which cases we used the average minimum distance over the sample period.

PSM scores for NFI plots within both commercial and extended procurement radii were estimated using a 
probit function with heteroskedasticity-robust standard  errors45. We matched (with and without replacement) 
each plot of R = 1 with a non-treated plot using a caliper of 0.005. We used other matching algorithms including 
single matching with caliper 0.01, matching with two non-treated plots (caliper: 0.00005), and Mahalanobis-
distance nearest neighbor. In the Results section we present findings following one-to-one (caliper: 0.005, without 
replacement) matching due to its performance in terms of reduced bias and conservation of original sample size 
after matching. Core PSM performance measures across matching algorithms are disclosed in Supplementary 
information (Tables S1–S2).

Post-matching difference-in-differences to infer industry effects. Carbon in selected component 
pools (live-trees; standing-dead trees; soil organic material) and total stocks at the ith NFI plot of the sth forest 
type group in year t were modeled post PSM as:

where X is a matrix capturing time-variant covariates (excluding wood pellet industry effects); D is a matrix 
denoting whether a plot was within the wood pellet industry procurement radii at inventory year t − l (l = 0, 1, 
2) for concurrent and lagged average effects; c, ω and γ capture plot-, forest type- and year-effects; and ε denotes 
a random error. Our model specification included NFI plot-level (ci) fixed effects after Breusch-Pagan Lagrange 
multiplier and Hausman test-statistics, respectively, favored ith-specific effects over pooled OLS estimation and 
their inclusion as fixed (over random)  terms55. Standard errors were clustered at the plot level using the Delta 
method. Estimation of Eq. (2) and other models described in this section included an intercept term. Estimated 
regression parameters are found in vectors β, δ.

The direction and statistical significance of coefficients in δ measured average wood pellet industry effects. 
We assessed net industry effects using F Chow-tests of joint statistical significance of parameters in δ. Concur-
rent (t) and lagged (prior inventory year ‘t − 1’, and two inventory years prior ‘t − 2’) captured treatment effects. 
We refer to their corresponding signals on contemporaneous C levels as lagging on 5 and 10 years (NFI plots 
were sampled most frequently every 5 years as per NFI program design and every 5.64 years on average). It is 
worth noting that our choice of using operational wood pellet mills (e.g., over actual production) to assess aver-
age treatment effects is rooted on rent principles, as an industry affects land net present value by the stream of 
expected future revenues, and not only on production in a particular  year53. By extension, any form of antici-
patory harvest behavior prior to the beginning of pelletization operations could have impacted land rents and 

(1)Probi(R = 0, 1|Mi), i = 1, 2 . . . n;

(2)Cist = Xitβ + Di,t−lδ + ci + ωs + γt + εist ,
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confounded treatment  effects56. However, this is very unlikely to be a source of bias in our NFI data. The period 
from announcement of intent to construct a wood pellet mill to actual operations commonly takes less than a 
 year57 in our study region, making it unlikely to have had anticipatory effects reflected in NFI plot conditions 
re-sampled every five years.

Tests to validate our post-matching DiD regression included examining parallel trends prior to a NFI plot 
being within a wood pellet mill’s procurement radius. Empirically, we investigated pre-trends through an event 
study design. C levels in selected pools and total stocks post PSM were modeled as:

where y denotes the number of years prior to and after being in the radius of an operating wood pellet mill, with 
y = 0 reflecting when the ith NFI plot was first treated. τ is a vector of respective coefficients. Upper and lower 
limits denote years before/after treatment reflect maximum values in our dataset post PSM. Standard errors 
were clustered at the plot level.

The robustness of our findings, in addition to applying different PSM matching algorithms prior to DiD, was 
checked by estimating parameters from a subsample of NFI plots. We selected NFI plots within the states of 
Alabama, Georgia, and Virginia, where the industry has had some of the largest expansion and where most NFI 
observations during our study period were. We also tested for heterogeneous industry effects by: (a) distinguish-
ing between mills of large manufacturing capacity (≥ 100 thousand Mg/year) and those of smaller size to assess 
shifts caused by manufacturing capacity, and (b) counting the number of procurement radii overlapping an NFI 
plot to examine incremental procurement pressures. To test the former, we estimated:

where Si,t−l captures wood pellet mill size information (1 = NFI plot within the radius of a wood pellet mill 
of manufacturing capacity ≥ 100 thousand Mg/year, 0 = otherwise) at inventory year t − l, and ν is a vector of 
estimated coefficients. We calculated Chow F-statistics to test joint significance of main-effects coefficients in 
δ, and heterogeneous size effect coefficients in ν. To test effects of overlapping procurement radii we estimated:

where Vri,t−l denotes the r number of overlaps per ith NFI plot from 1 to ‘R’ at inventory year t-l, and λ is a vec-
tor of estimated coefficients. We identified as many as five (R = 5) industry radii overlaps at inventory year t and 
t − 1, and as many as two at t − 2. Over extended radii, we identified as many as six overlaps at each t and t − 1, 
and as many as two at t − 2. The baseline category was our control of a NFI plot not being within the procure-
ment radii of the wood pellet industry. We calculated Chow F-statistics to test joint significance of coefficients 
capturing single radius (r = 1), heterogeneous effects of industry radii overlap (r > 1) within vector λ, and net 
total industry effects (r ≥ 1).

Results
Timberland carbon stocks after propensity score matching. Results of the probit regression [Sup-
plementary information, Table S3] showed that the probability of a plot being within commercial procurement 
radius of a wood pellet mill decreased with the longer distance from the nearest port (ρ coeff. = −0.335, p < 0.001). 
A similar, but only marginally significant association (ρ coeff. = −0.024, p = 0.105) was found with distance to 
nearest pulp mill. This weaker spatial correlation might be explained by the co-location of supply chains. Con-
trary, there was a direct association with distance to nearest wood-using power plant (ρ coeff. = 0.159, p < 0.001) 
possibly explained by how these two industries directly compete for similar low-cost wood fibers. A negative 
coefficient was found for the density (km/ha) of primary and secondary roads in the county of the ith plot (ρ 
coeff = −30.249, p  < 0.001), which might point to how above average region-wide road density also increases land 
opportunity costs as it is the case of more urbanized areas. We found a direct association with private owner-
ship (ρ coeff. = 0.282, p < 0.001) over other types of ownership. Table S3 also shows respective results when the 
expected probability was that of a plot being located within extended procurement radii.

Figure 3 shows the NFI plots included in our analyses post PSM. Matching reduced bias across covariates 
particularly regarding distance to other wood-using industries (pulp mills and power-generating facilities using 
wood as a feedstock), and distance to ports trading forest products. Over our time period across timberlands of 
the US coastal southeast, there was a steady increase in total C levels as well as in live trees and standing-dead 
trees (Fig. 4). C within soils showed the least variability over time as expected. Tests of parallel trends [Supple-
mentary information, Figure S1] prior to a NFI plot being within a wood pellet mill’s procurement radius using 
an event study design showed no systematic differences.

Wood pellet industry impacts on local forest carbon stocks. There was statistical evidence from a 
sample of 14,342 NFI plots that the wood pellet industry in the US coastal southeast affected contemporaneous 
levels of C in live trees (F-test: p = 0.009) and total forest C stocks (F-test: p = 0.035) within commercial procure-
ment radii (Fig. 5A). We found no statistically discernible net contemporaneous effects within standing-dead 
trees (F-test: p = 0.172), nor soils (F-test: p = 0.214). Net industry effects identified across extended radii (Fig. 5B) 
estimated from a sample of 19,438 NFI plots suggests no statistical significance on C within live-trees (F-test: 

(3)Cist =

y=19∑

y=−15

τyit + ci + ωs + γt + εist ,

(4)Cist = Xitβ + Di,t−lδ + Si,t−lν + ci + ωs + γt + εist ,

(5)Cist =

R∑

r=1

Vri,t−l�+ ci + ωs + γt + εist ,
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A

Figure 4.  Annual mean estimates of selected component pools and total carbon stocks over inventory years 
(2000–2019). By (A) overall sample, and by treatment category after propensity score matching (caliper = 0.005, 
without replacement) within (B) commercial, and (C) extended procurement radii.
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B

Figure 4.  (continued)
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p = 0.242), soils (F-test: p = 0.387), nor total C stocks (F-test: p = 0.196), but an effect on standing-dead tree C 
pools (F-test: p = 0.044).

Within commercial procurement radii, total C stocks showed higher concurrent and 5-year lagged effects at 
an average of 1.871 Mg/ha (p = 0.023) and 3.116 Mg/ha (p = 0.052). There were average higher concurrent and 
5-year lagged effects of 0.844 Mg/ha (p < 0.060) and 1.866 Mg/ha (p = 0.003), respectively, on C in live-tree pools; 
and 10-year lagged effects (0.302 Mg/ha, p = 0.070) on C in standing-dead trees. C in soils showed lower concur-
rent levels (− 0.180 Mg/ha; p = 0.061). Average industry effects identified over extended procurement radii point 
to no statistically significant concurrent nor lagged impacts on live-tree, soil C pools, or total stocks. However, 
there was a concurrent inverse effect (− 0.105 Mg/ha; p = 0.044) on the standing-dead tree C component pool.

Average industry effects relative to total and component C pools were modest (Table 4). Their absolute effects 
declined across extended procurement radii for total C stocks and live tree C pools, with the exception of 10-year 
lagged effects (although these were not statistically significant). Relative average effects on standing-dead trees 
were the largest amongst individual C component pools: their greatest statistically-significant effect (p < 0.10) 

C

Figure 4.  (continued)
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A

B

Figure 5.  Estimated average concurrent and lagged effects of the wood pellet industry on selected pools 
and total C stocks in timberlands of the US coastal southeast. Results by (A) commercial [NFI plots = 14,342; 
Observations = 39,882], and (B) extended [NFI plots = 19,438; Observations = 52,895] procurement radii. 
Average effects inferred after propensity score matching (caliper = 0.005, without replacement) and fixed-effects 
panel regression. Bars denote robust inventory plot-clustered standard errors. Type-I errors (* < 0.10; ** < 0.05; 
*** < 0.01) of concurrent, lagged, and net effects on respective carbon stocks.
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show a 22.811% 10-year lagged increase within commercial procurement radii and a 7.530% concurrent decrease 
over extended radii. Soil C pools showed the lowest relative effects. Statistically significant (p < 0.10) mean relative 
effects on total stocks resulted in 1.135% concurrent and 1.890% 5-year lagged greater than average C within 
commercial procurement distances.

Parameters estimated after different matching algorithms and from a reduced sample (Supplementary infor-
mation, Figures S2-S4) showed overall consistency of net contemporaneous neutrality in total C stocks; the 
largest effects were found in live tree component pools within commercial radii. Notably, across extended radii 
there was some apparent indication of spill-over effects in individual C pools, but no evidence of change in total 
C stocks. Tests of heterogeneous size effects (Supplementary information, Tables S4–S5) suggest there was no 
net effect on total C stocks either. But we identified a net effect on standing-dead tree pools (F-test: p = 0.071) 
within the commercial procurement radii of wood pellet mills of at least 100 thousand Mg of annual capacity. 
Although not jointly significant, we found lower 10-year lagged levels on live C pools (− 8.100 Mg/ha, p = 0.05). 
When we tested heterogeneous size effects over longer radii, we detected a net increase in soil C (F-test: p = 0.038). 
Heterogeneous effects due to the overlap of commercial procurement radii (i.e., a plot overlapped by more than 
one wood pellet mill’s procurement radius) suggest similar trends (Supplementary information, Tables S6–S7). 
Greater overlaps in commercial procurement radii were associated with a significant mean increase in C within 
live trees (F-test, p < 0.001), soils (F-test: p < 0.001) and total stocks (F-test, p < 001). It is worth noting that we 
also detected some negative impacts (e.g., less C in live trees − 7.225 Mg/ha, p = 0.05 with 5-year lagged effect of 
a 5th radii overlap). Overlaps of mills’ extended procurement radii was associated with less C in standing-dead 
trees (F-test: p = 0.020).

Discussion
Industry effects on contemporaneous C levels in live trees are likely explained by timber-oriented management. 
This is the one C pool that is actively valued financially, creating an expected stream of net revenues that increase 
land rents within industrial procurement  areas58. Higher land rents motivate the implementation of silvicultural 
practices to grow timber, thus yielding more C in live  trees14. Our results corroborate market projections of how 
new bioenergy demand can coexist with continued net biomass growth within commercially procured  areas12,13,57. 
Differences in units of observation and statistical models prevent direct comparisons, but our mean estimates 
fall within the average increase of 2 Mg/ha previously detected for large-scale wood pellet mills’ procurement 
landscapes operating for at least 10-years in the eastern US in the 2005–2017  period16. Noticeably, we found no 
statistically significant effects on live tree C pools across extended procurement radii (although other match-
ing techniques showed marginally significant effects). This might be explained by localized sourcing of woody 
biomass within ‘wood baskets’ due to transportation comprising a large proportion of procurement  costs59.

A land rent rationale might not be extended to C component pools that do not garner financial returns, but 
impacts could still be linked to timber-oriented management practices. In the case of standing-dead trees, this 
is consistent with past  studies16,17 reporting no statistically discernible changes in this C pool across industrial 
procurement landscapes. A plausible explanation of 10-year lagged effects on C in the standing-dead trees com-
ponent pool within commercial procurement radii might be the adoption of practices that retain a minimum 
number of standing-dead trees, tree crowns, and other woody debris during harvest. Every state in our sample 
has adopted such recommendations to address concerns over ecological impacts linked to additional woody 
biomass extraction exceeding prevalent harvesting and natural  disturbances60. However, associated industry 
effects over extended procurement distances suggest a concurrent decline in C in the same standing-dead tree 
component pool. This might be indicative of an expansive industrial procurement footprint reportedly associ-
ated with fewer standing-dead  trees16,17 yielding a decline in this C pool when compounded over a larger area.

In the case of C in soils, there is growing evidence that timber harvesting may lower these  stocks61–63 although 
post-harvest practices such as reforestation can help restore  them64. These might explain the concurrent sta-
tistically-significant lower levels of soil C within commercial procurement radii and 5-year lagged higher lev-
els detected across extended radii. Anthropogenic perturbations can lead to changes in soil temperature and 
moisture and, in turn, influence microbial accessibility and activity by reducing C inputs from litter material 
and  roots64. Differences in soil C levels can also be attributed to time-invariant natural factors such as forest 
type and parent  material64,65 which we controled for in our estimation. Another analysis using a different set 
of C estimates from ours also found an inverse trend for the soil C component pool across similarly-defined 

Table 4.  Estimated average wood pellet industry effects relative (%) to mean component pools and total 
forest C stocks in timberlands of the US coastal southeast, by prevalent commercial and extended radii. ₸Joint 
significance of concurrent and lagged industry effects estimated from Chow F-statistics. †Average of forest 
inventory plots located within respective procurement radii. Type-I errors: * < 0.10; ** < 0.05; *** < 0.01.

Procurement 
radii₸

Live trees Standing-dead trees Soils Total

Commercial** Extended Commercial Extended* Commercial Extended Commercial* Extended

(C, Mg/ha)† (72.323) (71.853) (1.326) (1.391) (65.653) (65.755) 164.858 164.104

Concurrent 1.167%*  − 0.245%  − 4.915%  − 7.530%**  − 0.275%* 0.027% 1.135%**  − 0.144%

5-year lagged 2.580%*** 1.218%  − 0.367%  − 6.614% 0.105% 0.289% 1.890%* 0.933%

10-year lagged  − 0.574%  − 1.528% 22.811%* 10.188%  − 0.153%  − 0.268%  − 0.761%  − 1.530%
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commercial procurement  areas16. Within these interpretations, it is important to stress that all soil C estimates 
carry inherent methodological uncertainty, that can challenge the attribution of mechanisms of C  change20,64,66.

Two of the key features of our methodological approach were the statistical pseudo-randomization of NFI 
plots located within industrial procurement radii, and controlling for important covariates (anthropogenic, other 
biotic, and abiotic factors). Others have attempted different approaches to control for non-random wood pellet 
mill location including the selection of a counterfactual  region16,35. We formalized this step when conducting a 
PSM before DiD analyses. It is also imperative to control for non-industrial factors that can affect forest C stocks 
in order to correctly tease out industry-related impacts. Here, we point to the statistical associations we found 
between fire and extreme weather damage (Supplementary information, Figure S5), both likely to intensify with 
a changing  climate67. For instance, evidence of fire damage and extreme weather other than fire were associated 
with an average drop in C in live trees of − 1.675 Mg/ha (p = 0.033) and − 7.473 Mg/ha (p < 0.001), respectively. 
We also found a direct association between insect or disease disturbance and C in live (3.050 Mg/ha; p = 0.005) 
and standing-dead (2.335 Mg/ha; p < 0.001) trees. These results might be respectively indicative of how such 
disturbance is more likely to be detected with more abundant live biomass and associated with an increase in 
tree mortality. It is important to note that the estimates associated with these abiotic and biotic factors surpass 
the industrial effects detected in our research.

Our methodological approach using NFI data can be applied to assess the localized land C neutrality of 
any industry dependent on woody biomass. But we stress that the ultimate neutrality of an entire bioenergy 
system—not just the land sector—is contingent on many factors besides wood procurement. Previous studies 
have reported that wood-based energy systems could result in a wide range of effects on net C  emissions68–70. For 
instance, life-cycle assessments of C emissions from land until power conversion show that electricity generated 
from woody biomass could yield as much as 83% reductions in net C emissions, or as high as 73% net increases, 
over coal usage. Net increases in emissions were detected when high energy intensive biomass supply-chains 
were modelled (e.g., drying biomass in kilns using fossil fuels)68. Others, after taking into account trans-Atlantic 
shipment of wood pellets manufactured in the US coastal southeast and combusted in the EU28, have still sug-
gested net lower C emissions over fossil fuel based-systems. This is because the market value created by the pellet 
industry can keep C stocks growing by preventing land use change away from  forests12,59.

On the whole, we found no evidence of a net decline in total contemporaneous local forest C stocks caused 
by the wood pellet industry in the US coastal southeast. This result suggests that wood pelletization in this par-
ticular context may contribute to decoupling bioenergy objectives and that no additional C emissions should be 
attributed to the land sector for national-level greenhouse gas  accounting8. Our findings also point to discern-
ible trade-offs, particularly net gains in C within live trees but lower C in soils within commercial procurement 
areas, likely due to more intensive timber management. While our assessment of net neutrality holds, continued 
evaluation of total C stocks and individual pools seems needed for at least two reasons. First, our results may be 
statistically robust but the 20-year period covered in our study is relatively short to measure sustainability trends 
in forestry. Second, wood pellets to-date remain a relatively small component of the array of wood products 
manufactured in the US coastal southeast (Supplementary materials, Figure S6) but it is one of the fastest grow-
ing sectors of the wood products industry. Future changes in harvesting pressures caused by expected increases 
in wood product manufacturing demand, in combination with other factors, could plausibly alter C dynamics 
and net stocks.

Regarding future research needs, empirical assessments could be expanded to study impacts beyond C and 
to other contexts. For instance, it will be important to better understand any causal effects on the complex socio-
demographic landscape where the US coastal southeast wood pellet industry has  emerged71. Assessments on how 
a growing wood pellet industry might affect local biodiversity or other land management objectives are merited. 
Within complex forested landscapes, changes in species composition across timberland could be supportive or 
detrimental to efforts aimed at enhancing the capacity of forests to cope with a changing  climate72. It would also 
be valuable to assess whether forest C stocks are impacted by the wood pellet industry in other geo-political 
contexts. For example, wood pelletization in Viet Nam has quadrupled in production over a five-year span to 
become the world’s third largest exporter. Its wood pellets exports exceeded 3 million Mg in  20196. Systematic 
assessments of forest C neutrality in the EU27, where the largest wood pelletization capacity worldwide is cur-
rently found, seem warranted to overcome concerns over potentially spurious associations with wood-dependent 
bioenergy  industries73.

Conclusions
We assessed impacts of the wood pellet industry on local forest C stocks within timberlands of the US coastal 
southeast, distinguishing between component pools in live and standing-dead trees, soils, and total stocks. Our 
estimates offer robust evidence that the wood pellet industry has met the overall condition of forest carbon 
neutrality. Hence, this industry could have contributed to decoupling objectives and no additional C emissions 
should have been attributed to the land sector in greenhouse gas accounting over the 2000–2019 period.

Our findings also point to discernible trade-offs (e.g., gains in C within live trees, lower C in soils within com-
mercial procurement areas) with timber management as the most plausible mechanism behind such changes, 
and possible spill-over effects particularly amongst non-financially traded C pools (e.g. lower C in standing-dead 
trees). When testing heterogeneous effects, there was also some indication of mixed effects on C pools when 
distinguishing wood pellet mill size and procurement pressure intensified. Nevertheless, our empirical evidence 
suggests C neutrality in the US coastal southeast. The relative recent emergence of the wood pellet industry 
limits our capacity to point to long-term sustainability trends, and emphasize that findings are applicable to the 
procuring of wood for pelletization in our particular study context.
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Data availability
The source code for our statistical analyses is available at https:// datav erse. harva rd. edu/ datav erse/ woodp ellet 
indus try. The online repository includes sample datasets and code data to reconstruct datasets.
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