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• Epiphytic moss is an emerging, cost-
effective, approach to identifying air
pollution.

• Local youth collected 61 moss samples, an-
alyzed for concentrations of 25 elements.

• We assessed the location-specific spatial
predictors of heavy metal concentrations.

• Traffic, dirt roads, industrial corridor pre-
dicted higher concentrations.

• Tree canopy predicted lower metal
concentrations.
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The use of bio-indicators is an emerging, cost-effective alternative approach to identifying air pollution and assessing
the need for additional air monitoring. This community science project explores the use of moss samples as bio-
indicators of the distribution ofmetal air particulates in two residential neighborhoods of the industrial Duwamish Val-
ley located in Seattle,WA (USA). We applied geographically weighted regression to data from 61 youth-collected sam-
ples to assess the location-specific area-level spatial predictors of the concentrations of 25 elements with focus on five
heavy metals of concern due to health and environmental considerations. Spatial predictors included traffic volume,
industrial land uses, major roadways, the airport, dirt roads, the Duwamish River, impervious surfaces, tree canopy
cover, and sociodemographics. Traffic volume surrounding sample locationswas themost consistent positive predictor
of increasing heavy metal concentration. Greater distance from the heavy-industry corridor surrounding the
Duwamish River predicted lower concentrations of all metals, with statistically significant associations for chromium
and lead in some areas. As the distance from dirt roads increased, the concentration of arsenic and chromium de-
creased significantly. Percent tree canopy within 200 m of sample locations was a significant protective factor for cad-
mium concentrations. In addition, percent people of color was significantly positively associated with increasing lead,
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chromium and nickel concentrations. Our findings underscore the potential influence of heavy industry and mobile
sources on heavy metal concentrations, the buffering potential of trees in local environments, and persistent opportu-
nity to improve environmental justice.
1. Introduction

Air pollution exposure has a negative impact on multiple health out-
comes, including cardiovascular and respiratory diseases, adverse birth out-
comes, andmortality (Manisalidis et al., 2020). The Clean Air Act, the Right
to Know Act, and other policies have developed in response to increasing
knowledge of these impacts. However, there are segments of the population
that remain exposed to harmful levels of air pollution. When considering
areas in the United States (U.S.) subject to regulatorymonitoring (primarily
urban), non-Hispanic Black and Hispanic populations are disproportion-
ately exposed to poor air quality (Mohai and Bryant, 2019; Woo et al.,
2019).

Documenting and subsequently addressing disproportionate exposures
is difficult when regulatory monitoring primarily focuses on regional
scale criteria pollutants and is conducted at few stationary monitoring
sites in metropolitan areas (Government Accountability Office, 2020). In
many airsheds, the deposition patterns of particulate pollutants can be
complex due to multiple sources which have significant deposition (and
ambient concentration) gradients over relatively small distances (Varela
et al., 2014). Networks of air-quality monitors in U.S. cities are too
widely-spaced to characterize pollutant patterns, and the dispersionmodels
regulators typically use to visualize smaller-scale patterns rely on emission
inventories, and therefore do not incorporate unknown pollution sources.
Although local-scale monitoring would be necessary to identify missing
sources or smaller scale pollution gradients, air monitoring is typically
costly in terms of knowledge and resources. Communities with dispropor-
tionate air pollution burden often seek accessible and accurate monitors,
and these types of technologies, ranging from “bucket brigades” to wireless
sensors, have been under development for decades (Idrees and Zheng,
2020).

The use of bio-indicators is an emerging, cost-effective, alternative ap-
proach to identifying air pollution and assessing the need for additional
air monitoring. Lichen and moss are the most commonly used bio-
indicators, and dozens of studies link heavymetals accumulated in their tis-
sues to levels measured in the atmosphere (e.g., see Berg and Steinnes,
1997; Fernández et al., 2007; Messager et al., 2021; Schröder et al.,
2013). As both lichen and moss can integrate pollutants over long periods
of time (i.e. six months to over a year), they are well-suited to measuring
chronic low-levels of pollution, and can be at similar or below the detection
limits of conventional air-quality monitors. They might also detect pollu-
tion sources that emit intermittently (Donovan et al., 2016). The effective-
ness of this approach was demonstrated by Donovan et al. (2016) in
Portland, OR using Orthotrichum lyellii (O. lyellii, Hook. & Taylor), a com-
mon moss in many Pacific Northwestern cities. This study led to discovery
of undetected sources of cadmium pollution in residential areas of Portland,
and a related study demonstrated that polycyclic aromatic hydrocarbons
(PAHs) found in moss were elevated near traffic-sources, and were reduced
in proximity to tree canopy (Jovan et al., 2021). There is some evidence, lo-
cally, thatmoss can be used to assessfine-scale pollution patterns (Messager
et al., 2021). The spatial-scale of urban bio-indicator studies (utilizing li-
chen or moss) is commonly limited by the scarcity of bio-indicators due
to poor air quality, the heat island effect, and other stressors (Ares et al.,
2012).

This project explores the use of moss samples as bio-indicators of the
distribution of metal air particulates in the Georgetown and South Park
neighborhoods of the Duwamish Valley in Seattle, WA. This study utilized
a community science approach, and prior analyses have identified overall
spatial patterns of metals found inmoss, as well as internal and external va-
lidity (Jovan et al., under review). These neighborhoods,which serve as our
study area, are situated on either side of the Duwamish River, the city's
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main industrial core. In Seattle, lower-income populations, people of
color, and immigrant populations are over-burdened by exposure with
traffic-related air pollution (Schulte et al., 2015; Schulte et al., 2013; Su
et al., 2010) and air toxics (Abel and White, 2011). These two neighbor-
hoods in particular are home to thousands of residents previously identified
as over-burdened with pollution sources (City of Seattle, 2018; Gould and
Cummings, 2013; Jovan et al., under review;Washington State Department
of Health, 2021). We sought to infer the spatial patterns and area-level de-
terminants of the elemental components of air particulate pollutants within
the study area by examining a dataset of the elemental concentrations
found in moss samples collected from 61 sample sites. Using exploratory
spatial data analyses, including geographically weighted regression
(GWR) methods, we assessed the location-specific spatial predictors of the
concentrations of each element, and we report in detail on five heavy
metals of concern due to health and environmental considerations. Find-
ings from our study will help characterize the potential influence of
heavy industry and mobile sources on heavy metal concentrations, and
the buffering potential of trees; evidence necessary to address environmen-
tal justice issues that plague these types of neighborhoods.

2. Methods

2.1. Study area and partners

The Georgetown and South Park neighborhoods of Seattle are located
along the shores of the Duwamish River (see Fig. 1). The river's historic
and present industrial activity, active port, and proximity to an airport, rail-
way lines, and major highways all contribute to the contamination of the
study area. The U.S. Environmental Protection Agency (EPA) designated a
five-mile segment of the Duwamish River that transects the study area as
a Superfund site in 2001 due to the presence of arsenic, carcinogenic
polycyclic aromatic hydrocarbons, volatile organic compounds and
polychlorinated biphenyls (U.S. Environmental Protection Agency, 2014).

The study area (population 4745) contains 2239 housing units, includ-
ing single and multi-family residences. The neighborhoods comprise two
census tracts which house a higher percentage of Hispanic residents than
the City of Seattle (20.2% in Georgetown and South Park, compared to
6.7% in the City of Seattle), a higher percentage on non-White residents
(53.4%, compared to 36.2%), a higher percentage of people who speak a
language other than English at home (28.1%, compared to 21.3%), a higher
percentage of people living below the poverty line (23.2%, compared to
11.0%), and a higher percentage of residents 25 and older with less than
a high school diploma (16.9%, compared to 5.4%) (U.S. Bureau of the
Census, 2019).

This study is the product of a community science (Charles et al., 2020)
collaboration between over 15 partners, including local organizations and
non-profits, residents, city and federal agencies, and universities. The com-
munity science approach prioritized co-producing actionable scientific
knowledge, with adult and youth community members leading many
project phases. The collaboration is described in detail in Derrien et al.
(2020) and Jovan et al. (under review). Key partners in data collection
included the Duwamish Valley Youth Corps (DVYC), Duwamish Infrastruc-
ture Restoration Training (DIRT) Corps, and the U.S. Forest Service.

2.2. Sampling and data collection

Sampling protocols, laboratory preparation and analysis methods, and
quality control procedures are described in detail elsewhere (Derrien
et al., 2020; Jovan et al., under review) and were based on protocols from
prior studies (Donovan et al., 2016; Gatziolis et al., 2016). We used a



Fig. 1. Overview Map of Study Area, Land Features and Sample Locations (N = 61) in Seattle, WA - Georgetown and South Park neighborhoods (2019).
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“train-the-trainer” approach where scientists experienced in leading moss
studies trained leaders of the DVYC and DIRT Corps, who then trained all
youth DYVC participants (Derrien et al., 2020). DVYC and DIRT Corps par-
ticipants collected moss samples on four warm, dry days in late spring of
2019 using a quarter kilometer sampling grid (250 m × 250 m) across
the study area. Participants collected O. lyellii moss at the nearest tree to
the centroid of each grid cell. Most moss samples were collected from
trees on streets, but several samples were collected from trees near rivers
and in parks.

The DVYC and DIRT Corps led initial sample preparation following lab-
oratory protocols. Samples were then prepared and analyzed, including
quality control measures, at the US Forest Service Grand Rapids, MN
3

analytical chemistry laboratory. Full sampling and analysis methods are de-
scribed in Jovan et al. (under review). Plasma optical emission spectrome-
try (ICP-OES) was used to quantify the concentrations of 25 elements. We
excluded six macronutrients because they are not directly related to pollu-
tion, and conducted exploratory analyses on 19 elements, including: alumi-
num (Al), arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium
(Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb),manganese (Mn),molyb-
denum (Mo), nickel (Ni), silicon (Si), sodium (Na), strontium (Sr), titanium
(Ti), vanadium (V), and zinc (Zn). Chromium was not speciated to deter-
mine the Cr(VI) fraction (the valence that is highly toxic to humans). Rep-
licate samples (collected at 18 of 61 sampling locations) were used to
ensure that measurements were repeatable. Expert samples (collected at
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17 of 61 sampling locations) showed acceptable statistical agreement
(Derrien et al., 2020).

In this study, we focus on five heavy metals (out of the 19 elements)
which are associated with negative impacts on the environment and
human health: arsenic, cadmium, chromium, lead, and nickel (hereafter re-
ferred to as “priority” metals). Our rationale for selection of these five
metals is described in Section S2.2. We made analytical decisions based
on preliminary analyses of the priority metals, and we focus our presenta-
tion and discussion of results on these metals (although results for all 19
elements are shown).

2.3. Measures

2.3.1. Spatial factors
We estimated various potential spatial determinants of heavy metal

concentrations in and near the study area. Variable specifications and
data sources are listed in Table S1. Heavy industrial land use could be a
source or associatedwith dispersion of air toxics. We calculated the percent
of these land uses within a 500 m buffer surrounding each sample location.
Traffic- or goods transport-related emissions could also contribute to metal
concentrations found in moss. We therefore calculated the distance (in
meters) from each sample location to the nearest major “roadway” (arterial
or highway), and the average daily traffic volume (average weekday count)
within a 500 m buffer. We chose to calculate traffic volume within a 500 m
distance because previous research has demonstrated that traffic-related air
pollutants can travel at least 300 m from trafficked-roadways (Zhu et al.,
2002). In addition, traffic volume within a smaller buffer size (e.g. 200
m) was highly correlated with the distance from roadway variable. We
also calculated the distance (in meters) from each sample location to the
nearest airport facility, dirt road, and the Duwamish River, which contains
port facilities. Only roads with complete dirt or gravel surface, and not
those only with dirt or gravel shoulders, were included in the dirt road
dataset. Finally, vegetation can remove gaseous and particle air pollution
via uptake and deposition (Nowak et al., 2006). We therefore calculated
percent tree cover within a 200 m buffer surrounding each sample location
using a landcover dataset (University of Vermont Spatial Analysis Lab,
2016). We chose a 200m buffer because trees have been shown tomitigate
air pollutants, for example in a near-road environment, within close prox-
imity (Tong et al., 2016).

2.3.2. Sociodemographic
We included block-group level percentage of residents with less than a

high school educationwas estimated for each sampling site to assess the po-
tential relationship between educational attainment and heavymetal expo-
sure. We also included block-group level median household income as a
proxy for economic status. In addition, we included block-group level per-
cent people of color (defined as population not categorized as non-
Hispanic White) as an important demographic indicator in the study area.
We derived all sociodemographic data from the U.S. Census Bureau's
American Community Survey 5-year Estimates for 2019.

2.4. Statistical analyses

We utilized several descriptive statistics and exploratory spatial data
analysis methods to evaluate the varying spatial relationships between
the elemental concentrations and neighborhood characteristics. We first
computed descriptive statistics, including summary measures and Spear-
man correlation statistics. We then investigated the presence of spatial au-
tocorrelation using Moran's I statistics (Anselin, 1995).

We then assessed the relationship between metal concentrations and
spatial predictors using ordinary least squares (OLS) regression. As a sensi-
tivity test, and to determine final model sample for each metal, we identi-
fied outliers using diagnostic plots and ran OLS regression models again
with outliers removed.

Next, given the presence of spatial autocorrelation, we considered the
local regression approach found in GWR models (Brunsdon et al., 1996)
4

to assess the spatially varying relationships between the elemental concen-
trations and the neighborhood characteristics. GWR models allow for the
estimated relationship between the elemental concentrations and the
neighborhood characteristics to vary over space within sample locations,
as opposed to the global assumption of a fixed relationship provided by
the naïve ordinary least squares approach. The form of the GWR model is
as follows:

y ¼ Xβ u, vð Þ þ ε

where y is a 61× 1 vector of elemental concentrations measured at the 61
sample locations. The independent measures are represented in the matrix
X, which has dimensions 61× p, due to the p neighborhood characteristics
considered. The residuals are captured in the vector ε, which are assumed
to follow a Normal distribution with mean 0 and variance σ2. Most impor-
tantly, the local regression coefficients, β, are estimated at each specific
location (u,v), which is the latitude and longitude of the collected sample
for each element, respectively.

We first assessed simple spatially-varying bivariate relationships in an
effort to establish the pool of potentially informative and meaningful
relationships between each elemental concentration and the various neigh-
borhood characteristics. To evaluate these bivariate relationships, we
examined the mean, 1st, and 3rd quartile values of the GWR coefficient es-
timates for each neighborhood characteristic for the 61 sample locations.
We selected neighborhood characteristics as potentially informative if the
mean, 1st, and 3rd quartile of the bivariate GWR coefficient estimates all
had either positive or negative values. Once the pool of objectively signifi-
cant neighborhood characteristics was established, we assessed the
variance inflation factor (VIF) to determine evidence of significant multi-
collinearity between characteristics (Chatterjee and Price, 1991). If the
VIF value was larger than 10, this was evidence of significant multicollin-
earity and the variable was therefore removed from the list of final neigh-
borhood characteristics for each metal. All regression analyses were
conducted in R using the spgwr package (Bivand et al., 2013; Bivand and
Piras, 2015).

We calculated summary statistics for the GWR results, including model
fit statistics for all locally varying relationships, as well as the percent of the
GWR estimates that were statistically significant (p < 0.05). We assessed
both the R2 and the corrected Akaike information criterion (AIC)
(Brunsdon et al., 2000) model fit statistics for both the OLS and GWR
models. We also assessed for GWR model improvement using an approxi-
mate likelihood ratio test using the bfc99.gwr.test() function in the spgwr
package in R (Leung et al., 2000), in which a statistically significant finding
based on the F-test indicates improved performance of the GWR over the
OLS model (Devkota et al., 2014).

Finally, we present maps of the estimated GWR local regression coeffi-
cients and their associated statistical significance for the priority metals of
interest. While there are many mapping approaches available to deal with
the wealth of information that results from using locally-varying ap-
proaches like GWR models, we present maps of the GWR estimates along
a shaded continuum of colors to indicate the strength of the varying associ-
ations, with a notation of those estimates that are statistically significant.

3. Results

3.1. Descriptive statistics

Fig. 1 provides an overview map of the study area for the 61 moss sam-
ple locations where the elemental concentrations were measured. Trees
with sufficient moss to sample were more frequently located in residential
areas, rather than in industrial areas, such as along the Duwamish River.

Descriptive statistics, including the Moran's I statistic, for concentra-
tions (mg/kg) of the five priority metals found across the 61 moss locations
are presented in Table 1. Statistics for the remaining elements are shown in
Table S2. There appears to be a number of elements with over-dispersed
concentrations, as evidenced by the largermeasures of variability (standard



Table 1
Descriptive statistics and Moran's I of metal concentrations (mg/kg) found in moss.

Metal Mean SD Median Min Max Moran's Ia

Arsenic (As) 1.2 0.7 1.0 0.4 3.2 0.12
Cadmium (Cd) 0.6 0.4 0.4 0.1 1.9 0.05
Chromium (Cr) 16.7 12.8 11.7 4.3 61.1 0.09**
Lead (Pb) 23.6 18.8 18.1 5.9 110.6 0.12***
Nickel (Ni) 7.9 7.9 6.2 2.1 59.0 0.06**

a * p < 0.05; ** p < 0.01; *** p < 0.001.
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deviation and range) compared to the mean values. The majority of the el-
ements had Moran's I statistic values that were statistically significant (p <
0.05), with the exception of arsenic and cadmium of the prioritymetals and
boron, copper, and strontium of the remaining metals. These significant
Moran's I values indicate there was spatial autocorrelation, and supports
the need to incorporate spatial dependence in the relationships between
the elemental concentrations and the neighborhood characteristics.

Descriptive statistics of the neighborhood characteristics are provided
in Table 2, where all characteristics also display significant spatial autocor-
relation (p < 0.05) with the exception of distance from major roadway.

The correlation between the elemental concentrations found in moss is
presented in Fig. S1. Generally, there were strong positive correlations
among the 19 elemental concentrations. Cadmium and boron, which
were strongly correlated with each other, were weakly (although still posi-
tively) correlated with the other elements. These findings mirror those in
the previous study by Jovan et al. (under review), which found elements
As, Cr, Co, Pb, Ni, Ca, Al, Ba, Cu, Fe, Mn, Mo, Si, Na, Sr, Ti, V, and Zn con-
tributing to a main principal component which explained 76.5% of varia-
tion among priority metals, and cadmium and boron contributing to a
second, non-significant, principal component.

3.2. Regression analyses

Based on bivariate relationships, we initially selected the following
neighborhood characteristics as predictor variables in regression models
for each metal: % tree (200 m), % heavy industrial (500 m), % impervious
surface (500m), traffic volume (500m), distance frommajor roadway (m),
distance from Duwamish River (m), distance from airport (m), distance
from dirt road (m), median household income ($, census block group), %
less than a high school education (500 m), and % people of color (census
block group). Correlations between neighborhood characteristics are also
shown in Fig. S1. We found strong negative correlations between the %
heavy industrial and distance from Duwamish River spatial predictors, as
well as between% tree cover and% impervious surface cover.We therefore
compared model fit between four models: 1) including all covariates, 2) in-
cluding all covariates except % heavy industry, 3) including all covariates
except % impervious surface, and 4) including all covariates except %
heavy industry and % impervious surface. We selected Model 4 as our
final model because it had the lowest VIF values (see Table S3) most consis-
tent lower AIC and R2 values except in comparison with Model 1 (see
Table S4), and it avoids correlations between independent variables.
Table 2
Descriptive statistics of neighborhood characteristics.

Exposure variable Mean SD

% Tree (200 m) 10.8 6.9
% Heavy industrial (500 m) 4.6 7.7
% Impervious surface (500 m) 75.6 15.3
Traffic volume (500 m) 296,767 225,022
Distance from major roadway (m) 68.2 74.4
Distance from dirt road (m) 375.3 285.5
Distance from airport (m) 845.7 470.6
Distance from Duwamish River (m) 683.8 356.5
Median household income $41,422 $5482
% < High school education 23.7 7.8
% People of color 44.4 15.5

a * p < 0.05; ** p < 0.01; *** p < 0.001.
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Therefore our final model for each metal adjusted for % tree cover, traffic
volume, distance frommajor roadway, dirt roads, Duwamish River and air-
port, median household income, % less than high school education, and %
people of color.

We ran an OLS regression model for each metal using this final variable
selection. In addition, we ranOLSmodels after removing outliers as a test of
sensitivity. Based on diagnostic plots, we removed one outlier from As, Cd
and Ni, and we removed two outliers from Cr and Pb. Regression coeffi-
cients and standard errors for OLS models, with and without outliers, are
shown in Table S5. While R2 and AIC values suggest that removing outliers
slightly improved model fit, removing outliers changed the magnitude of
estimates slightly, and the direction of the mean differences in metal con-
centrations per unit increase in neighborhood characteristics was main-
tained, except for with Ni. Three covariates changed direction due to
removal of one, the most extreme (Cook's distance = 1.0) outlier. There-
fore, in the interest of maintaining sample size, we removed an outlier
from the Ni model but not from the remainder of metals in GWR analyses.

We thenfit GWRmodels for prioritymetals and remaining elements as a
function of spatial neighborhood characteristic predictors. The GWR esti-
mates represent the mean differences in metal concentrations (for priority
metals shown in Table 3 and for remaining elements shown in Table S6)
per unit increase in each neighborhood characteristic (standardized).
When comparing model fit statistics between OLS models (in Table S5)
and GWR models (Table 3), AIC values were approximately equivalent be-
tween OLS and GWR models for all priority metals. However, R2 values
were higher for GWR models than for OLS models, indicating that the
GWR models could have improved explanatory power than the OLS
models. P-values for the approximate likelihood ratio test (Table 3) of
GWR models were less than 0.05 for all metals except for As, indicating
that the GWRmodel was an improvement over the OLSmodel, and that av-
eraged OLS associations should not be assumed to be constant across the
study area.

The overall directional associations (as well as the percentage of varying
estimated relationships that are statistically significant) are presented for
the priority metals in Fig. 2, and for the remaining elements in Fig. S2.
There were consistent inverse trends in the varying associations between
% tree cover and metal concentrations, indicating that as tree cover in-
creased surrounding sample locations,metal concentrations decreased. Dis-
tance from the airport and from the Duwamish River were also negatively
associated with each of the priority metal concentrations, indicating that
as the airport and River were further away from the sampled locations,
the priority metal concentrations tended to be lower. There was also nega-
tive association between distance from dirt road and all metals except cad-
mium. The direction of association between distance from major roadway
and metal concentrations was mixed.

Traffic volume and % people of color were consistently positively asso-
ciated with priority metal concentrations. Median household income was
inversely associated with all metals, indicating that with higher income,
metal concentrations were lower. Percent with less than high school educa-
tion was inversely associated with all metals except cadmium. While %
with less than high school education is typically inversely related, there is
Median Min Max Moran's Ia

8.8 1.4 26.4 0.18***
1.5 0 36.9 0.14***

83 45 95 0.36***
221,101 11,353 1,162,661 0.15***

37.5 1.3 335.3 0.04
291.3 5.6 1132.1 0.30***
860.8 13 1801.3 0.26***
562 189 1387 0.23***

$40,450 $36,216 $52,727 0.28***
19 11 41 0.36***
37.6 21.4 72.6 0.28***



Table 3
Mean differences (standard deviation) in five priority metal concentrations per unit increase in neighborhood characteristics (standardized) for geographically weighted re-
gression (GWR) model, and fit statistics for N = 61 sample locationsa.

Exposure variable As Cd Cr Pb Ni*

% Tree (200 m) −0.08 (0.07) −0.10 (0.06) −1.46 (1.85) −1.75 (2.66) −0.65 (0.71)
Traffic load (500 m) 0.36 (0.07) 0.10 (0.06) 7.16 (1.56) 5.50 (2.43) 1.34 (0.60)
Distance to major roadway (m) −0.03 (0.06) 0.02 (0.05) −0.06 (1.47) 0.69 (2.13) −0.53 (0.59)
Distance to dirt road (m) −0.33 (0.11) 0.05 (0.10) −4.26 (3.06) −4.38 (4.20) −1.44 (1.13)
Distance to airport (m) −0.25 (0.11) −0.10 (0.09) −6.64 (2.84) −16.28 (4.1) −1.64 (1.06)
Distance to waterway (m) −0.17 (0.13) −0.17 (0.11) −5.58 (3.54) −9.07 (4.93) −1.51 (1.32)
Median household income −0.13 (0.09) −0.12 (0.07) −1.96 (2.06) −6.05 (3.15) −1.13 (0.78)
% < High school education −0.14 (0.09) 0.01 (0.08) −3.06 (2.30) −8.94 (3.48) −1.35 (0.88)
% People of color 0.20 (0.12) 0.11 (0.10) 6.22 (3.00) 14.26 (4.39) 1.83 (1.13)
AIC 80.38 61.25 457.67 518.61 333.63
R2 0.69 0.38 0.69 0.54 0.61
F 1.28 1.60 2.13 2.02 1.75
p-Value 0.20 0.05 0.01 0.01 0.03

a One outlier removed from Ni model.
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one census tract in the neighborhood in which they are positively related. It
could be that residents in this neighborhood without high school diplomas
are employed in high-paying jobs potentially related to a local industry.

The directional associations and percentage of relationships that were
statistically significant for the remaining elements are presented in
Fig. S2. As with the priority metals, traffic volume was a consistent positive
predictor across all elements, and was statistically significant for all except
molybdenum, copper, boron and cobalt. Distance fromdirt roadwas consis-
tently inversely associated with all elements, but was statistically signifi-
cant primarily for zinc, sodium, strontium, and at a few locations for
copper, aluminum, vanadium and cobalt. Greater distance from the airport
was inversely associated with all elements except boron and cobalt, and %
people of color was positively associated with all elemental concentrations
except boron. Other spatial predictors showed varying relationships, by di-
rection and statistical significance, throughout the study area.

Maps of the varying relationships between each of the priority metal
concentrations and the various neighborhood characteristics are presented
in Fig. 3a–e. As shown in Fig. 3a, % tree canopywithin 200m of the sample
site was associated with stronger decreases in cadmium concentrations in
residential areas of Georgetown. This pattern held true with arsenic, chro-
mium and lead, but was not statistically significant.

Traffic volume was a statistically significant positive predictor through-
out the study area for arsenic, chromium and lead (Fig. 3b). It was a
* one outlier removed from Ni model

Fig. 2. Geographically weighted regression (GWR) model estimate direction (of the me
significant * one outlier removed from Ni model.
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significant positive predictor of cadmium primarily in the northeastern
area of Georgetown close to Interstate-5. Traffic volume was also signifi-
cantly negatively associated with nickel along the Duwamish River and
throughout South Park.

The direction of association at different locations between distance from
major roadway and metal concentrations was mixed, and none of the asso-
ciations were statistically significant (Fig. 3c). The direction of association
at different locations between distance from dirt road and metal concentra-
tions was also mixed (Fig. 3d). Greater distance predicted statistically sig-
nificant lower concentrations of arsenic (at all locations) and chromium
(at some Georgetown locations). Finally, greater distance from the
Duwamish River predicted lower concentrations of all metals, with statisti-
cally significant associations for chromium lead in South Park as well as in
the south western area of Georgetown for lead (Fig. 3e).

4. Discussion

We employed a dataset built via a community-powered youth data-
collection effort and applied exploratory spatial data analysis methods, in-
cluding geographically weighted regression models, to determine the
location-specific relationships between area-level spatial predictors and
heavy metal concentrations found in moss. This study builds upon geo-
graphic descriptions of heavy metals distributions found in moss, described
an) for five priority metals and percent of 61 sample locations* that are statistically



* one outlier removed from Ni model 

a

Fig. 3. a. Maps of geographically weighted regression (GWR)model coefficient values for heavymetals at 61 sample locations* for the% tree canopy within 200m predictor.
Locations circled in red indicate p< 0.05 statistical significance. * one outlier removed fromNimodel b.Maps of geographically weighted regression (GWR)model coefficient
values for heavy metals at 61 sample locations for the traffic volume predictor. Locations circled in red indicate p < 0.05 statistical significance. c. Maps of geographically
weighted regression (GWR) model coefficient values for heavy metals at 61 sample locations for the distance from major roadways predictor. Locations circled in red
indicate p < 0.05 statistical significance. d. Maps of geographically weighted regression (GWR) model coefficient values for heavy metals at 61 sample locations for the
distance from dirt roads predictor. Locations circled in red indicate p < 0.05 statistical significance. e. Maps of geographically weighted regression (GWR) model
coefficient values for heavy metals at 61 sample locations for the distance from Duwamish River predictor. Locations circled in red indicate p < 0.05 statistical
significance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in Jovan et al. (under review), by identifying possible spatial drivers of
these patterns. Our findings underscore the potential influence of heavy in-
dustrial corridor and mobile sources, as well as the buffering potential of
trees in local air pollution environments.

When considering average effect across sample locations, greater traffic
volume was consistently associated with higher concentrations of
the five priority metals. Nickel is a product of diesel combustion
(U.S. Environmental Protection Agency, 1984), and therefore higher con-
centrations would be expected near heavy traffic. We found that both
higher traffic volume and roadway proximity significantly predicted higher
nickel concentration along East Marginal Way, along 14th/16th Avenue
South and near State Route 99, which are roadways with high levels of
8

truck-traffic. It could also be that there are nearby emissions related to oil
combustion or metal processing in these areas. At the same time, greater
tree canopy cover was protective for nickel concentrations in much of the
same locations.

While nickel and arsenic are the main heavy metal by-products of fuel
(diesel) combustion, statistically significant positive associations with
traffic volume occurred throughout the study area also for chromium and
lead, and in the northeastern area of Georgetown close to Interstate-5 for
cadmium. Other heavy metals produced from vehicle traffic could come
from tire wear (cadmium and lead), brake pad dust (chromium), asphalt
pavement wear (nickel and chromium), road paint (lead) (Adamiec et al.,
2016; Hong et al., 2020; Panko et al., 2018). It could also be that traffic is
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re-suspending dust containing these metals from other, past or current
sources (Askariyeh et al., 2020).

Estimates for proximity to dirt roads provided other evidence that
metals could be traveling via dust. Closer proximity to dirt roads was asso-
ciated with higher concentrations of all metals except cadmium, on aver-
age. Statistically significant associations for arsenic existed throughout
the study area. Closer proximity to dirt roads also predicted higher chro-
mium concentrations (at some locations scattered on the north/east side
of the Duwamish River). These findings contribute to other evidence
(Jovan et al., under review) that heavy metal concentrations in moss
were elevated near the industrial corridor, and were highly correlated
with chemical elements indicative of fugitive dust (e.g. Al, Ca, Fe, Si, Sr,
9

Ti). While our investigation relied on a windshield survey of public road-
ways, a high-quality landcover dataset specifying precise locations of bare
earth/soil would be required to investigate potential influence of dust
from industrial properties.

Closer proximity to the Duwamish River, which is lined with heavy in-
dustrial properties that are potential sources of air toxics emissions, was an-
other consistent predictor of higher concentrations for all metals, on
average, with significant associations for chromium in South Park and
lead in both South Park and Georgetown. Close proximity to the Duwamish
River predicted elevated lead concentrations especially along EastMarginal
Way in Georgetown, south of Michigan Street. Ship traffic may have con-
tributed to metal pollution near the river through combustion of fuel oils
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contaminated with nickel, or coal contaminated with nickel, lead, arsenic,
cadmium, or chromium.

Another consistent finding was that greater tree cover within 200 m of
sample sites was associated with lower metal concentrations in moss. In
particular, tree cover was a statistically significant protective factor for
nickel concentrations in residential areas in South Park. Urban forests
have an established ability to reduce particulate air concentrations both
at local and regional scales (Diener and Mudu, 2021), and strategic use of
“green infrastructure” is a common mitigation tool in urban planning
(Baldauf, 2017). Our results suggest that evenmodest tree canopy coverage
within the studied neighborhoods (approximately 10%) was associated
with lower levels of metal particulates pollution. However, only some of
10
these associations were statistically significant, and it is not clear why the
significant associations held only for cadmium and not other metals that
travel via particulate matter. Larger studies involving greater variability
in tree canopy cover are critical since vegetation is a modifiable factor
that is relatively easy to manipulate.

Prior studies have established that Georgetown and South Park neigh-
borhoods are overburdened with pollution (Min et al., 2019; Schulte
et al., 2015). Our study builds on this finding to show that within these
neighborhoods, locations with higher percent people of color had higher
measured levels of metal concentrations, on average. Furthermore, the esti-
mated difference in metal concentrations by race was statistically signifi-
cant at all sample locations for lead. This suggests that race is a consistent
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determining factor of inequalities in exposure to harmful air pollutants
within Seattle's Georgetown and South Park neighborhoods, and that stud-
ies linking measured exposure with health outcomes are warranted.

Our study is subject to a number of limitations. First, it is important to
note that our modeling method should be interpreted as an exploratory
technique, and not a tool for making specific spatial inferences, especially
in light of our small sample size (Páez et al., 2011). In previous studies,
small sample size has been found to introduce spurious correlations be-
tween local coefficients (Devkota et al., 2014; Páez et al., 2011). In addi-
tion, we did not adjust for multiple comparisons, where the possibility of
a statistically significant finding by chance increases with more than one
test on the same hypothesis (Williams et al., 1999). However, our model
11
comparison statistics indicated that OLS associations should not be as-
sumed to be constant across the study area, and GWR models provided
equivalent or better model fit than OLS values for all metals. While it
would not be advised to derive specific policy measures based on our find-
ings, our results can be used to guide further investigation.

Second, measurement of metals concentrations in moss samples does
not suffice for air pollution data from more traditional monitoring
techniques. A parallel monitoring and sampling campaign, which the
Puget Sound Clean Air Agency is initiating at this time of this study,
would be necessary to translate concentrations from moss to air pollution
concentrations, and ultimately to assess human exposures and evaluate
health effects.
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Third, modeling of spatial predictors does not suffice for advanced
source modeling that includes accurate data on emissions of these metals.
While some emissions are voluntarily reported from some industries in
the area, these data give an incomplete picture, and future research could
develop projections based on industry codes (such as Standard Industrial
Classification codes) and staffing levels for businesses in the study area. Po-
tential confounders that were not included in these analyses include infor-
mation on local climate conditions, wind flow patterns, soil cover and
drying. The potential contribution to airborne metal concentration of soil
re-suspension would also be an important area of future investigation.

GWR results for nickel were sensitive to a single outlier. We identified
this outlier using Cook's Distance based on OLS regression, indicating that
the concentration at this point does not relate to spatial predictors the
way it does at other points. Prior analyses suggest that this outlier is un-
likely due to measurement error, but rather reflects high air concentrations
of nickel (in addition to cobalt) (Jovan et al., under review). Air monitoring
near the site and throughout the study area would be required to confirm
this localized hotspot. GWR model results without the outlier provides a
conservative estimate of spatial predictors and is an accepted method to
produce robust results (Fotheringham et al., 2003).

Finally, our sample was collected using a community science approach,
and sampling methods could have influenced internal validity of our data.
These limitations are described elsewhere (Jovan et al., under review). How-
ever, samples taken by youth exhibited a high level of precision (Derrien
et al., 2020), and replicate samples taken by expert scientists, while differing
somewhat in absolute concentrations, captured similar spatial information
(Jovan et al., under review). Thesemeasures of sampling precision and accu-
racy strengthen our confidence that these moss samples are of high quality
and were suitable for our GWR analysis. Furthermore, we weigh any
tradeoffs in data quality against the value of community leadership, engage-
ment, and empowerment through our community science design.

5. Conclusions

This study provides further evidence of the utility of moss as a viable
bioindicator, combined with spatial statistical techniques, in detecting
spatial patterns and predictors of airborne metal deposition and semi-
quantitative concentrations. Our findings underscore the significance of
activities in or near the Duwamish River, and the volume of motor-
vehicle traffic, as predictors of metal concentrations found in moss in the
Duwamish Valley. Our results are consistent with the potential importance
of urban trees as mitigation measures for metal pollution. In addition, it
suggests that people of color are disproportionately exposed to heavy
metals – indicating additional evidence of the environmental injustices in
these neighborhoods. These results can aid in focusing further investiga-
tions into specific sources, relationships with air concentrations, and miti-
gation measures.
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