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Abstract
The geographical distributions of non-native forest insects and pathogens (pests) result 
from a multitude of interacting abiotic and biotic factors. Following arrival, the presence 
of suitable host trees and environmental conditions are required for pests to establish and 
spread, but the role of forest biodiversity in this process is not well-understood. We ana-
lyzed county-level data for 22 non-native forest pests in the conterminous United States, 
developing species-specific models to investigate the effects of spatial contagion, human 
activities, and host and non-host tree biomass or richness on the occurrence of pest spe-
cies. Species-specific models indicated that (i) the spatial contagion of invasions was the 
most common driver of invasion incidence, (ii) facilitation effects from host biomass and 
richness were present in approximately half of the invasions and almost entirely observed 
in invasions by sap-feeding insects or pathogens, and (iii) there was substantial variation in 
the direction and magnitude of the effects of non-host tree biomass and richness on inva-
sion. Our analyses highlighted the prominent role of spatially derived propagule pressure 
in driving intracontinental invasions whereas effects of forest biodiversity were variable 
and precluded broad generalizations about facilitation and dilution effects as drivers of for-
est pest invasions at large spatial scales.
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Introduction

The theory that plant diversity promotes ecosystem stability has a long history in ecol-
ogy (MacArthur 1955; Elton 1958; May 1975; Tilman and Downing 1994; Naeem and 
Li 1997). In forest ecosystems, biodiversity is widely believed to reduce susceptibility to 
insect outbreaks (Brockerhoff et al. 2017; Jactel et al. 2021), with several reports indicating 
that tree diversity is inversely related to damage from herbivores (Jactel and Brockerhoff 
2007; Guyot et  al. 2016). Several mechanisms have been offered to explain this pattern, 
including a “dilution” effect in which tree diversity increases the complexity of chemical 
and physical cues through which an herbivore must navigate to procure a host (i.e., decreas-
ing plant apparency) (Barbosa et al. 2009; Castagneyrol et al. 2013). Other explanations 
are that higher tree diversity supports a greater diversity and abundance of natural enemies 
or that tree diversity supports increasing physiological resistance of individual plants via 
plant-plant interactions (i.e., associational protection via defense priming) (Barbosa et al. 
2009; Brockerhoff et al. 2017; Jactel et al. 2021). Most investigations of forest biodiversity-
pest impact relationships, however, have focused on native herbivores and been conducted 
at the stand scale (Brockerhoff et al. 2017).

The diversity-stability hypothesis has also been extended to biological invasions. Sev-
eral studies have found that native plant diversity increases resistance to invasions by non-
native plant species (Naeem et al. 2000; Fargione and Tilman 2005; Iannone et al. 2016). 
However, other studies, mostly conducted at larger spatial scales, have found the opposite 
relationship (Levine and D’Antonio 1999; Stohlgren et al. 2003). These contradictory find-
ings have been reconciled in the “invasion paradox” theory that posits that diversity-invasi-
bility relationships are scale-dependent (Fridley et al. 2007; Iannone et al. 2015).

Similarly, there are mixed results concerning the relationship between forest biodiver-
sity and invasion by insects and pathogens (pests) (Bosso et  al. 2017; Guo et  al. 2019; 
Panzavolta et al. 2021). The effect of plant diversity on habitat invasibility can be positive 
(Liebhold et al. 2013, 2018; Hudgins et al. 2017), negative (Jactel et al. 2006; Haas et al. 
2011), or both, differing between diversity of host vs. non-host plants (Guo et al. 2019). 
Tree diversity effects can also be neutral and/or dependent on spatial scale (Morin et al. 
2007; Brockerhoff et al. 2017) and/or where on the biodiversity spectrum a community is 
located (i.e., relationships could be nonlinear) (Guo et al. 2019). At the country-level, num-
bers of non-native insect species were positively associated with both native and non-native 
plant species richness, potentially as a result of “facilitation” effects: increased plant diver-
sity creates more niches for specialist herbivore species and these additional herbivores 
create more niches for insects at higher trophic levels (Liebhold et al. 2018). At a slightly 
smaller spatial scale (counties within the United States (US)), the number of non-native 
insect and pathogen species increased with overall tree diversity (Liebhold et al. 2013; Guo 
et al. 2019). But while host tree richness had a positive effect on the richness of non-native 
pests, richness of non-host trees had a negative effect (Guo et al. 2019), with the latter indi-
cating a dilution effect of non-host plants. Thus, the diversity of hosts vs. non-hosts may 
disparately influence invasion success compared with overall plant community richness.

Previous analyses of invasibility to forest pests in the US have focused on the effects of 
tree diversity at the pest community level, such as the numbers of pest species per county 
(Liebhold et al. 2013; Guo et al. 2019). However, these analyses have inherent limitations 
as counts of pest species do not meaningfully allow for differentiation of host and non-host 
tree species; individual pest species have unique sets of host trees, so it is ambiguous to 
classify tree species as hosts when analyzing aggregate numbers of pest species. Here, we 
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quantified the role of host and non-host tree biomass and richness on invasions of indi-
vidual forest pest species across the conterminous US. Our main objective was to develop 
species-specific models predicting county-level occurrence of pest  invasion as a function 
of host and non-host tree biomass and richness. This species-level approach was aimed at 
investigating variation in facilitation and dilution effects among pest invasions, as knowl-
edge of these patterns could provide insight into the context in which biodiversity governs 
invasion dynamics (Prospero and Cleary 2017).

Material and methods

We analyzed data from the Alien Forest Pest Explorer database (Liebhold et  al. 2013), 
which documents county-level occurrence (hereafter invasion incidence) of non-native for-
est insects and pathogens across the conterminous US and is limited to non-native species 
known to cause damage to forest trees. We selected pest species from this database for 
which we had approximate locations of first discovery locations (Ward et al. 2019) as well 
as exhaustive county-level occurrence data, as county occurrence records for several pest 
species are incomplete. We also excluded pests (e.g., Australian Eucalyptus longhorned 
beetle) that primarily attack non-native tree species. These criteria (i) narrowed-down the 
number of species from ~ 90 in the full Alien Forest Pest Explorer database to 13 insect and 
9 pathogen species (n = 22 pests; Table 1) and (ii) meant that we analyzed a subset of those 
species evaluated by Liebhold et al. (2013) and Guo et al. (2019). For brevity, scientific 
names and authorities are provided in Table 1 rather than with the first mention of common 
names in the main text.

We linked invasion incidence for each pest with Forest Inventory and Analysis (FIA) 
data collected by the US Department of Agriculture—Forest Service (USDA-FS) (Bech-
told and Patterson 2005), categorizing each tree species in the FIA database as a host or 
non-host for each insect and pathogen (Liebhold et al. 2013). The FIA program inventories 
forest attributes across the US, with a sampling intensity of approximately one, ~ 0.067 ha 
plot per ~ 2428 ha. We extracted data on biomass as total metric tons per county of live 
aboveground biomass for native tree species and richness as total number of native tree 
species occurring on plots sampled in each county. Biomass values were ln(x + 1)-trans-
formed for analysis. Data from a total of 130,210 permanent fixed-area forest plots were 
used to obtain these estimates. A summary of diet breadth for each pest species is provided 
in Fig. 1, and the average host tree biomass and richness available to each pest per county 
is provided in Fig. 2.

To evaluate the effects of tree biomass and richness on invasion incidence, we needed to 
also incorporate (i) the propensity of pests to invade counties closer to their point of initial 
discovery and (ii) human activities that could facilitate the establishment and spread of 
pests in new areas into models. To account for spread, we estimated a term, spatial proxim-
ity, by taking the inverse of the distance of each county centroid to the first discovery loca-
tion of each pest. Thus, larger values indicated a given county was closer to the discovery 
location. The variable for spatial proximity was ln(x)-transformed for analysis. To account 
for human activities, such as the spread of infested materials and any potential detection 
biases, a variable for human population density per county in 2010 was obtained from the 
US Census Bureau (US Census Bureau 2010) and ln(x + 1)-transformed for analysis.

Previous analyses of forest pest invasions in the US have focused on patterns of pest 
diversity per county (i.e., a community-level approach) and indicated that tree species 
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biomass and richness have similar effects on invasion (Guo et  al. 2019). To assess the 
robustness of that conclusion, we developed two models predicting invasion incidence of 
each pest as a function of spatial proximity, human population density, and then a combi-
nation of either (i) host and non-host biomass (biomass models) or (ii) host and non-host 
richness (richness models). Thus, we developed two logistic regression models for each 
species (22 species × two modeling frameworks for 44 total models). We did not fit models 
that included biomass and richness together because of collinearity, for which we adopted 
a threshold of |r|> 0.7 (Dormann et al. 2013), between host biomass and host richness. Col-
linearity between predictors in each of the 44 models was assessed using pairwise correla-
tions and, when collinearity between any pair of predictors surpassed our chosen threshold, 
the pest was removed from the corresponding analysis. This meant that three and five pests 
were removed from the biomass and richness analyses, respectively (Online Appendix 1).

Fig. 1   Number of tree a species, 
b genera, and c families fed on 
by 20 non-native forest insects 
and pathogens in the US. Two 
extreme generalists, spongy moth  
(feeds on 480 species, 154 gen-
era, 58 families) and winter moth 
(143, 13, 9) are not depicted
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Model results were visualized graphically and Bonferroni corrected values (i.e., 
|Z|≥ 2.99, indicating p = 0.05/(36 models)), used to identify statistically clear relationships 
between invasion incidence and predictors, were overlaid on graphs to account for develop-
ing multiple models. We also visually assessed the role of pest feeding guild (borer, foli-
age-feeder, sap-feeder, or pathogens) by coloring points by guild. The data that support 
findings of this study are available in the supplementary material (Online Appendix 2).

Results

Across all the individual species models except one (the richness model for sudden oak 
death), the spatial proximity predictor was strongly, positively correlated with invasion 
incidence, indicating that, as expected, counties located closer to the initial discovery loca-
tion were more likely to be invaded (Fig. 3). The effects of human population density on 
invasion incidence varied in both modeling frameworks, with invasions by about half of the 
pests exhibiting a non-significant (|Z|< 2.99) relationship (Fig. 3).

There was support for the facilitation hypothesis, as invasions by approximately half of 
the pests were positively associated with biomass (11 pests) or richness (9 pests) of host 
trees (Fig. 3). Of the invasions that did exhibit a significant, positive association with host 
biomass (Fig. 3a) and richness (Fig. 3b), all were either by sap-feeding insects or patho-
gens except for the invasion by pine shoot beetle. Analyses of pine shoot beetle provided 

Fig. 2   Average host and non-host 
tree biomass (ln(metric tons + 1)) 
and richness across all counties 
per species for 22 non-native for-
est insects and pathogens estab-
lished in the conterminous US. 
Tree data are from the USDA 
Forest Service—Forest Inventory 
and Analysis program
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contradictory evidence for facilitation-dilution effects, as invasion by this pest was nega-
tively correlated with host biomass but positively correlated with host richness.

Invasions by most pests were not clearly associated with biomass or richness of non-
host trees, but there was some mixed evidence of both facilitation and dilution effects from 
non-hosts. Invasions by emerald ash borer, pine shoot beetle, and white pine blister rust 
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Fig. 3   Summary of logistic regression models (one model per pest per panel) predicting county-level occur-
rence of 19 (panel a) and 17 (panel b) forest insects and pathogens in the conterminous US fit as a function 
of four predictors (x-axes, with each panel indicating a modeling framework). The solid black line indi-
cates zero whereas the dashed lines indicate Z-values corresponding to Bonferroni-corrected p-values to 
account for fitting multiple models. Points are jittered in the x-direction to reduce overlap and colored by 
guild (green = borers, yellow = foliage-feeders, red = sap-feeders, purple = pathogens). Thicker horizontal 
bars indicate mean Z-values for each predictor across all models
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were positively associated with non-host biomass (Fig. 3a) and invasions by emerald ash 
borer, hemlock wooly adelgid, and dogwood anthracnose were positively associated with 
non-host richness (Fig.  3b), indicating facilitation effects. However, invasions by pine 
shoot beetle and white pine blister rust provided contradictory evidence, indicating dilution 
effects by exhibiting negative correlations with non-host richness. There was additional 
evidence of dilution effects in invasions by three other species: invasion by butternut can-
ker was negatively associated with non-host biomass whereas invasions by balsam wooly 
adelgid and laurel wilt were negatively associated with non-host richness.

Discussion

The density of both host (Morin et al. 2009; Hudgins et al. 2017; Ward et al. 2020; Mally 
et al. 2021) and non-host (Rigot et al. 2014) trees can be key determinants in the spread of 
invading insects and pathogens. Overall, our results indicate that facilitation effects, act-
ing through both host species biomass and richness, often mediate landscape-scale inva-
sion dynamics (Guo et al. 2019). However, it appears that the facilitative role of host trees 
(Fig. 3a, b) is highly idiosyncratic, varying substantially among species (Fig. 3): invasions 
by about half of the pests were not clearly associated with host biomass (Fig. 3a) and/or 
richness (Fig. 3b). Effects of non-host trees were rarer, but there was weak evidence of both 
facilitation and dilution effects driving some invasions (Fig. 3).

Across most models, spatial proximity was the strongest predictor of invasion, high-
lighting the importance of spread from the point of introduction compared with host and 
non-host biomass or richness in non-urban forest areas, as our tree data did not include 
urban plantings. This accords well with the widely-recognized importance of propagule 
pressure as a driver of biological invasions (Simberloff 2009). The availability and den-
sity of urban forests, which were not directly measured here but could be correlated with 
human population density, may play a more important role than our findings suggest (Col-
unga-Garcia et al. 2009, 2010; Koch et al. 2018; Branco et al. 2019).

Invasion incidence was, surprisingly, negatively correlated with host biomass for one 
pest, pine shoot beetle (Fig. 3a), the opposite of what would be expected to result from a 
facilitation effect. The negative host biomass-invasion relationship might be attributable to 
the arrival of this pest in Ohio (Haack 2020) in an area with relatively low abundances of 
pine. Nonetheless, it is likely that climatic effects have inhibited the invasions of this and 
other pests into regions with suitable hosts, potentially obscuring or strengthening some 
facilitation and dilution effects.

Both modeling frameworks (i.e., biomass models and richness models) elucidated the 
positive effects that host trees can have on invasions by forest pests (Fig. 3), which could 
simply reflect the increased potential of finding a host and/or the increased potential that 
a preferred or optimal host occurs in a community. Insects can experience mismatches 
between host preference and insect performance (Gripenberg et  al. 2010), and the like-
lihood a preferred host that also maximizes insect fitness will be encountered increases 
with forest diversity. The negative association of invasion by some species with non-host 
richness but neutral or positive effects of non-host biomass (Fig. 3; e.g., pine shoot beetle) 
could indicate that dilution effects sometimes arise from the increased probability that a 
highly disruptive, non-host occurs in the community. That is, if a rare, non-host tree spe-
cies is attractive to an herbivore for oviposition but not suitable for its development, it 
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could serve as a population sink (i.e., an attractive sink) (Delibes et al. 2001); higher non-
host richness would increase the chance that such hosts occur in a given county.

The spatial and/or temporal scale of our analysis could have influenced results, as we 
were only able to evaluate the spatial configuration of trees at the county-level—the resolu-
tion of our pest data—potentially overlooking the influences of tree distributions on pest 
invasions at the subcounty level. For example, our richness metric would treat a county 
with two spatially isolated monocultures of different tree species numerically equivalent 
to a county containing a single forest with a mixture of two tree species. There is good 
evidence that the configuration of hosts across the landscape and within a stand could 
influence both herbivore and/or invasion dynamics (Rigot et al. 2014). Moreover, we quan-
tified variation in pest occurrence (presence/absence), but forest diversity can also influ-
ence impacts (e.g., annual host mortality rates or infection rates) caused by a given pest 
(Rottstock et al. 2014). Indeed, community wide prevalence of a pest might decrease with 
increasing forest diversity, but tree-level pest abundance may remain high (Rosenthal et al. 
2021).

Our analysis generally provides stronger support for the facilitation effect than the 
dilution effect, although results are highly variable among species, potentially because 
the invaded ranges analyzed here were likely constrained by factors not captured by our 
explanatory variables. As noted above, ranges of many forest pests are well known to be 
affected by climate (Srivastava et  al. 2021; Koch 2021). Additionally, our data were a 
recent snapshot of human population density and forest composition and may not reflect 
the historical conditions some pests encountered as they were invading decades ago. It may 
also be that facilitation-dilution effects are stronger along the leading edge of invasions, yet 
temporal invasion data for most non-native forest pests in the US are not available at a high 
enough resolution to detect such effects. Even within a site, associational resistance can 
change through time, as host plants can become more apparent to herbivores by exhibit-
ing faster growth rates than other members of the community (Castagneyrol et al. 2020). 
Another aspect of variability not considered was that of plant health or chemical defense 
(e.g., as mediated by site quality or plant functional group), which could influence pest 
population growth (Becerra 2015; Richards et al. 2015) and consequently establishment.

Lastly, we caution that our analyses were limited to pests that can cause significant eco-
nomic or ecological damage, and results may not hold for invading species that are less 
impactful and/or abundant. As more high-resolution spatial data become available, future 
investigations of facilitation and dilution effects on pest invasion would benefit from a 
more explicit consideration of spatial scale, including sub-county patterns of host density 
and dispersion. Understanding the influences of plant diversity at finer scales might inform 
the design of more pest resistant landscapes (Riley et al. 2022), of particular importance in 
urban environments that are a frequent point of establishment and initial spread for invad-
ing tree pests.
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