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ABSTRACT
A lidar-derived canopy height profile (CHP), generated from canopy 
bulk density (CBD) estimates for a sequence of 1-m increments 
through the canopy, provides a physical measure of forest struc-
ture. Measurement of physical properties are intuitively under-
standable and thus facilitate the use of lidar for investigating 
hypotheses regarding avian resource use. We illustrate the use of 
lidar-derived physical measures to explore the hypothesis that 
golden eagles (Aquila chrysaetos) prefer an open understory, 
which potentially aids visual identification of prey. Two golden 
eagles fitted with GPS tracking devices overwintered in the New 
Jersey Pinelands National Preserve. We generated CHPs from dis-
crete-return lidar data for an area occupied by the birds. We com-
pared the CHPs of sites the birds occupied to the surrounding 
available habitat and found that the occupied sites were signifi-
cantly lower in CBD from the ground up to 5 m for perched/sta-
tionary birds, and from the ground up to 8 m for birds in flight. 
These results could be used by forest resource managers for pro-
moting golden eagle habitat through prescribed fire. In addition, 
these results demonstrate the power of lidar to generate physically 
and intuitively meaningful measures of forest structure.
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1. Introduction

Light detection and ranging (lidar) data can be used to generate detailed forest structure 
information that has proved to be useful for characterizing avian habitat (Vierling, Swift, 
Hudak, Vogeler, and Vierling 2014). In habitat modelling, keeping the number of expla-
natory variables small is generally regarded as desirable, in part because the fewer the 
variables, the easier it is to understand the model. For this reason, many lidar-based forest 
structure studies focus on summary, integrative measures that describe overall properties 
of the canopy, such as mean, skewness, percentiles or other statistical measures of the 
distribution of the lidar returns (Acebes, Lillo, and Jaime-González 2021). However, 
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physically based metrics that describe the distribution of biomass in the canopy can be 
particularly useful for exploring and understanding habitat characteristics. Nevertheless, 
physically based estimates of forest structure using lidar that go beyond measures of 
height and canopy cover (e.g., Hagar, Yost, and Haggerty 2020) are only rarely used for 
avian studies. In this paper, we illustrate the potential of canopy height profile data for 
answering questions regarding golden eagle (Aquila chrysaetos) habitat preference. 
Specifically, we explore the hypothesis that golden eagles preferentially occupy habitat 
with an open understory, which would facilitate the finding of prey, whether in flight or 
perched.

The golden eagle is one of the largest raptors in the world, and has a broad 
distribution across North America, Eurasia and parts of North Africa (Katzner, Kochert, 
Steenhof, McIntyre, Craig, and Miller 2020). Superb hunters, golden eagles mostly prey 
on leporids (e.g., hares and rabbits), sciurids (e.g., squirrels), and waterfowl; carrion can 
also be an important part of their diet, especially in the winter months (Bedrosian, 
Watson, Steenhof, Kochert, Preston, Woodbridge, and Crandall 2017; Katzner, Kochert, 
Steenhof, McIntyre, Craig, and Miller 2020). Golden eagles hunt from flight or when 
perched, typically on prominent sites, but also within the canopy (Katzner, Kochert, 
Steenhof, McIntyre, Craig, and Miller 2020, Miller personal observation). Research on 
the ecology of the golden eagle, including its habitat, is of interest in support of 
conservation of the species (Katzner, Smith, Miller, Brandes, Cooper, Lanzone, and 
Bildstein 2012). Habitat can have both direct and indirect influences on the availability 
and ease of hunting of prey. For example, reduced breeding success was observed 
once a closed-canopy forest formed following afforestation in Scotland (Watson 1992). 
However, characterizing the golden eagle’s habitat can be challenging due to low 
population densities, especially in the Eastern U.S. (Morneau, Tremblay, Todd, 
Chubbs, Maisonneuve, Lemaître, and Katzner 2015; Katzner, Kochert, Steenhof, 
McIntyre, Craig, and Miller 2020). Tracking devices can overcome some of these 
challenges by generating highly detailed information regarding animal movement 
and habitat use. Lidar-derived habitat information provides a valuable complement 
to avian telemetry data, because it potentially can be used to characterize the habitat 
at each of the locations occupied, something that would generally not be feasible using 
field work.

2. Study area, data and pre-processing

2.1. Study area

The study area is within the New Jersey Pinelands National Reserve (PNR) in Burlington 
County, New Jersey (Figure 1). The PNR covers 445,000 ha in seven counties and is an 
International Biosphere Region (Pinelands Commission 2021). The region is relatively flat, 
and underlain by sandy, acidic soils. The upland forests grade from pure pine (dominantly 
Pinus rigida Mill.) to pure oak (including Quercus alba L.Q. velutina Lam., Q. coccinea 
Muenchh. and Q. prinus Willd.) (Little 1998). The PNR ecosystem is fire-adapted, with fire 
generally promoting pioneer pine species. Fire was likely more frequent in the pre- 
European era; for the last ~80 years, fire in the PNR has included prescribed burns and 
occasional wildfires (La Puma, Lathrop, and Keuler 2013).

REMOTE SENSING LETTERS 557



Figure 1. The study area. Selected land use/land cover (LULC) classes (New Jersey Department of 
Environmental Protection 2015) and Pinelands Land Use Management Area (LUMA) Classes (Pinelands 
Commission 2021). Boundaries of fires during the period between the lidar acquisition and golden 
eagle telemetry data are also shown.
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The Pinelands Commission, a legislatively mandated oversight organization for the 
PNR, has classified the region into nine land use management areas (LUMA classes) 
(Pinelands Commission 2021). The largest LUMA is the Preservation Area District, which 
is characterized by large, contiguous areas of wilderness-like forest. Special Agricultural 
Production Areas, which are primarily used for berry agriculture and cultivation of native 
plants, include large blocks of forest, and therefore are combined with the Preservation 
Area District in Figure 1 Other management areas include zones associated with other 
agriculture, low density residential development and small villages, all of which are 
grouped under ‘Other LUMA classes’ in Figure 1.

2.2. Golden eagle GPS location data

Two golden eagles (labelled 252 and 253) were captured in 2016 and fitted with solar 
global positioning systems (GPS) tracking devices (Cellular Tracking Technologies (CTT), 
LLC, Rio Grande, NJ). Bird 253, a hatch-year male, was recorded in the study area between 
17 October 2016 and 24 October 2016, and bird 252, an adult female, was recorded in the 
study area between 25 December 2016 and 13 March 2017 (Figure 2).

GPS data were collected from 1 h before sunrise to 1 h after sunset and stored onboard 
the telemetry unit. The unit attempted to send the data via the cellular phone network once 
per day to CTT servers. An onboard accelerometer, used to detect movement, estimated 
when the eagle was in flight, and if so, increased GPS data collection to 6 s intervals. After 
detecting more than 1 min of stationary behaviour, the data collection cycle decreased to 15  
min intervals to conserve battery power. Information collected by the GPS included position, 
altitude above mean sea level (m), velocity (km hour−1), course over ground (°), and measures 
of vertical and horizontal error. Using velocity recorded by the GPS, we categorized data as 
one of four classes: flight (>2 km hour−1), flight or perched/stationary (>1 and <2 km hour−1), 
likely perched/stationary (>0 and <1 km hour−1), or perched/stationary (0 km hour−1).

2.3. Lidar data and pre-processing

Discrete return lidar data of the study area were collected in April 2015, a little less than 
two years prior to the bird data collection. The Leica Geosystems (Heerbrugg, Switzerland) 
lidar sensor was able to collect up to four returns per outgoing pulse. The maximum scan 
angle was set to 36°, the flying height was 1580 m, and an average of 8 points/m2 was 
collected. The resulting bare earth digital elevation model was estimated to have 
a vertical uncertainty of 4.1 cm (Quantum Spatial Inc 2015).

The lidar data were processed to generate canopy height profile (CHP) data. CHP is 
a lidar-based metric originally developed for large-footprint, full waveform lidar data, in 
order to describe the vertical distribution of foliage (Lefsky et al. 1999). Skowronski, Clark, 
Duveneck, and Hom (2011) used discrete lidar data to generate a CHP based on canopy 
bulk density (CBD), a measure of biomass per unit volume. Relative CHP is calculated as 
the proportion of incoming lidar pulses for an arbitrary area (i.e., a pixel) that are returned 
from within a specified height interval (i.e., voxel), typically 1 m. The CBD values within 
each pixel’s CHP are calculated from the top of the canopy down, to facilitate correction 
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for the reduction in the number of incoming pulses due to occlusion by canopy in the 
voxels above (Skowronski, Clark, Duveneck, and Hom 2011; Skowronski, Gallagher, and 
Warner 2020; Warner, Skowronski, and La Puma 2020).

We generated CHPs with 23 vertical layers, using 30 m × 30 m (horizontal) × 1 m (ver-
tical) voxels using the Toolbox for Lidar Data Filtering and Forest Studies (Tiffs; Chen 
2007). The voxel dimensions were chosen to allow the representation of even tall trees (up 

Figure 2. Lidar-derived canopy bulk density for selected layers (1–2 m, 4–5 m and 12–13 m). The lidar 
data were acquired in April 2015. Also shown are the golden eagle GPS locations from October 2016 to 
March 2017.
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to 23 m), and also to ensure a sufficient number of lidar returns within each layer to 
characterize the biomass. The relative CBD was converted to physical units using the field 
measurement-derived empirical conversion of Skowronski, Clark, Duveneck, and Hom 
(2011) for this region:

CBDbin ¼ 0:182ρbin þ 0:005 (1) 

where CBDbin is the CBD for the voxel, with units of kg m−3, ρ is the relative CBD as 
described above, and the subscript bin is the voxel height label. Based on our previous 
experience (Warner, Skowronski, and La Puma 2020), in which we found that a slight 
smoothing of the CBD data improved the correlation with field measurements, we applied 
a Gaussian low-pass filter of size 3 × 3 pixels, and .85 standard deviation.

Figure 2 is a false composite formed by three sets of heights (voxels) from the CHP data. 
Areas in red are dominated by biomass close to the ground (the 1–2 m layer), green at 
intermediate heights (4–5 m), and blue at higher values (12–13 m). Developed areas have 
little vegetation and have characteristically dark tones and speckled appearance in the 
image. Open water and areas where no data were collected (Ocean and Atlantic counties), 
are depicted in black.

2.4. Other data sets

The digital land use/land cover (LULC) of New Jersey 2012 map (New Jersey Department 
of Environmental Protection 2015), generated through visual interpretation of aerial and 
satellite imagery, was used to constrain the analysis to upland coniferous-dominated 
forests, in order to minimize confounding effects from different forest and land use types 
in the analysis. Specifically, we selected the coniferous forest classes of 4210 and 4220 
(10–50% and >50% crown closure, respectively) and coniferous-dominated mixed forest 
classes of 4311 and 4312 (10–50% and >50% crown closure, respectively) (Figure 3).

As noted above, there was slightly less than 2 years between the lidar data acquisition 
and the collection of the golden eagle telemetry. However, Vierling, Swift, Hudak, Vogeler, 
and Vierling (2014) found that a six-year gap between lidar acquisition and avian field 
data, a considerably longer period than in this study, had only minimal effect on their 
results. For our study, the only major change during this time that could be observed in 
the lidar data in the PNR area of interest was due to fire. We therefore obtained a vector 
database of PNR fire boundaries, established by La Puma, Lathrop, and Keuler (2013) and 
maintained by New Jersey Forest Fire Service, to mask areas that experienced fire after the 
lidar collection date.

3. Methods

We evaluated the golden eagle habitat preferences by comparing the distribution of CBD 
values in the sites occupied to the CBD distribution in the available habitat (upland 
coniferous and coniferous-dominated mixed forest occurring within the Pinelands 
Commission Preservation Area District and Special Agricultural areas of Burlington 
County; Figure 1). The GPS telemetry data within the area defined as available habitat 
comprised 3,873 flight, 519 flight or perched/stationary, 2,315 likely perched/stationary and 
1,532 perched/stationary points, totaling 8,239 points. As a final step, the GPS points were 
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also masked in the available habitat raster, so that there would be no overlap between the 
occupied points and the available (but not recorded as having been occupied) habitat. 
This resulted in 368,882 pixels defined as available habitat (Figure 3).

We used the R function wilcox.test in the ‘stats’ package v4.0.0 (R Core Team 2020) to 
run a non-parametric Wilcoxon rank sum test (equivalent to a Mann-Whitney U test) 
(Hogg, Tanis, and Zimmerman 2020). The null hypothesis was that, for each 1 m stratum 
within the forest, there was no difference between the distributions of forest CBD values 

Figure 3. Pixels defined as potential habitat for the statistical analysis.
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for the available habitat and the habitat occupied by the golden eagles. The alternative 
hypothesis was that the distribution of CBD values in the occupied sites was lower than 
that of the potential habitat (i.e., the test is one-tailed). The statistical analysis was initially 
carried out on all the eagle GPS data. The analysis was then repeated, with two separate 
analyses using only GPS data classified as flight and perched (the classes of flight or 
perched/stationary, and likely perched/stationary were excluded in these subsequent 
analyses, since these locations had uncertainty in their designation). Because the analysis 
involved multiple comparisons, we used the Benjamini–Hochberg procedure to control 
the false discovery rate (incorrect rejections of the null hypothesis) at a critical value of .05 
(Benjamini and Hochberg 1995).

4. Results

In Figure 4, the distribution of CBD values for each stratum is shown graphically using 
violin plots. Distributions for which occupied sites were found to be significantly lower 
than that of the overall habitat are shown by the asterisks (*). Combining all GPS points, 
the lower six strata (1–6 m) and also the uppermost layer (23 m) had significantly lower 
CBD distributions than the available habitat distributions (Figure 4(a)). When the flight and 
perched/stationary classes were analyzed separately, a similar pattern was found, with the 
lower 1–5 m strata and uppermost 23 m layer having a significantly lower distribution in 
CBD values (Figure 4(b)). For locations classified as flight, significantly lower CBD distribu-
tions were found for layers 1–8 m, and the uppermost three layers (21–23 m) (Figure 4(c)).

5. Discussion

The statistical analysis indicates that golden eagles in flight preferentially utilized forest 
that was significantly more open (had a lower CBD) from the ground up to 8 m, and when 
perched, the birds favored a more open understory up to 5 m. Similar results were found 
for the analysis for all points. These results confirmed our hypothesis that golden eagles 
preferred forest habitat with a relatively open understory. The fact that the flight loca-
tions, like the perched locations, favoured an open understory, and in fact one that 
extends higher into the canopy (8 m vs 5 m), suggest that the golden eagle may hunt 
when in flight, and not just when perched. The preference for a lower CBD in the upper 
canopy (20 m and above) was not expected. However, at these levels, many CBD values 
were 0 kg m−3, because the forests are mostly less than 20 m high. Thus, the results at the 
upper end of the canopy should be treated with caution.

These results could be useful for golden eagle conservation. Our previous research 
generally indicated that CBD in each of the canopy layers (1–23 m) shows an association 
with the number of previous fires and the types of fires that an area experienced (Warner, 
Skowronski, and La Puma 2020). The number of prescribed fires was associated with 
reduced CBD from 1 to 14 m, whereas the number of wildfires was associated with 
increased CBD from 1 to 7 m. Therefore, prescribed fire could potentially be used to 
increase the development of a more open understory the golden eagle seems to favour.

The strengths of this study include the fine spatial and temporal resolution of the 
telemetry data, which provided more than two and a half months of continuous monitoring. 
In addition, the lidar data gave us a detailed 3D view of the structure of the forest at every 
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Figure 4. Violin plots of the distribution of canopy bulk density values for sites utilized by the golden 
eagles. (a) All eagle GPS points. (b) Perched/stationary points only. (c) Flight points only. In all plots, 
grey represents the available habitat, as defined by figure 3. The centre dot in each distribution is the 
median value. Note that the y-axis labels represent the top of each 1 m layer. Golden eagle occupied 
CBD distributions labelled with an asterisk (*) in the final column are statistically lower than the 
potential habitat, based on the Wilcoxon rank sum test and the Benjamini and Hochberg (1995) 
procedure, controlling the false-positive rate at a value of 0.05.
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GPS location within the study area. The conversion of the lidar point cloud data to voxels 
representing the vertical profile of canopy bulk density, calibrated in physical units, was key 
to this work. The CHP allowed a quantitative evaluation of hypotheses regarding forest 
structure and golden eagle preferences that would not be possible with simple lidar 
measures, such as canopy height. The study was, however, limited by a dataset that 
included only two birds, and the two-year gap between the acquisition of the telemetry 
and lidar data. Nonetheless, our study demonstrates the utility of lidar data to describe 
details of habitat that are typically available only from ground surveys. Future studies with 
larger samples of birds might shed additional light on fine-scale habitat selection of golden 
eagles in other areas, such as southern pine forests that are also managed by prescribed fire.

6. Conclusions

This study demonstrated the value of lidar data for exploring habitat preferences of the 
golden eagle during the winter months in the eastern US. The lidar data were converted to 
the physical measure of CBD for each of 23 height layers through the canopy. By overlaying 
these data with telemetry data, we found that the golden eagles in this study favoured 
a more open understory, both when perched/stationary and in flight. The preference for an 
open understory was significant for 1–6 m height through the canopy for all telemetry 
data, 1–5 m for perched/stationary locations and 1–8 m for flight locations. These results 
support our hypothesis that an open understory would be preferred because it facilitates 
visual observation of prey. Resource managers can potentially use prescribed fire to open 
the understory and thus promote habitat that golden eagles were found to occupy.
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