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Additional biomass estimation alternatives: nonlinear two- and
three-stage least squares and full information maximum
likelihood for slash pine
Dehai Zhao, Thomas B. Lynch, James A. Westfall, and JohnW. Coulston

Abstract: A system of nonlinear biomass component equations was developed for slash pine (Pinus elliottii Engelm. var. elliottii)
trees using an econometric approach in which endogenous right-hand-side variables were included in some equations. The sys-
tem was fitted to component biomass data from 306 slash pine trees sampled in the southeastern United States with weighted
two-stage (2SLS) and three-stage (3SLS) least squares and full information maximum-likelihood (FIML) estimation methods. The
predictive performances of the system fitted with these three estimation methods were ranked based on an array of statistics,
and the ranking follows the order of FIML > 3SLS > 2SLS. The new system performed as well or better than previously published
biomass equation systems developed using the aggregation and disaggregation approaches and fitted to the same data. The
results demonstrated that the econometric approaches such as FIML and 3SLS have the potential to be useful for tree biomass
modeling.
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Résumé : Un système d’équations de composantes de la biomasse non linéaire a été développé pour les pins d’Elliot (Pinus elliottii
Engelm. var. elliottii) en utilisant une approche économétrique dans laquelle les variables endogènes du côté droit ont été incluses
dans certaines équations. Le système a été ajusté aux données des composantes de la biomasse de 306 pins d’Elliot échantil-
lonnés dans le sud-est des �Etats-Unis avec des moindres carrés pondérés en deux étapes (2SLS) et en trois étapes (3SLS) et des
méthodes d’estimation du maximum de vraisemblance à informations complètes (FIML). Les performances prédictives du sys-
tème ajusté avec ces trois méthodes d’estimation ont été classées en fonction d’un éventail de statistiques et le rang suit l’ordre
du FIML > 3SLS > 2SLS. Le nouveau système a performé aussi bien ou mieux que les systèmes d’équations de la biomasse publiés
antérieurement qui avaient été développés en utilisant les approches d’agrégation et de désagrégation et ajustés aux mêmes don-
nées. Les résultats ont démontré que les approches économétriques telles que le FIML et le 3SLS ont le potentiel d’être utiles
pour la modélisation de la biomasse des arbres. [Traduit par la Rédaction]

Mots-clés : pin du sud, systèmes d’équations, économétrie, séquestration du carbone.

Introduction
Models for estimating the components of individual tree dry

biomass generally include predictors for bole wood, bole bark,
branches, and foliage. Several approaches have been used to de-
velop prediction models for total tree biomass and its compo-
nents. Among them aggregative and disaggregative modeling
strategies are commonly used to develop additive biomass equa-
tions, in which the predictions for the components sum to the
prediction from a total tree biomass equation. The aggregative
strategy is to develop biomass prediction models for each biomass
component and obtain the total biomass by adding the compo-
nents. Parresol (2001) proposed simultaneous estimation of a sys-
tem of biomass component equations and the aggregated total
biomass equation using a weighted nonlinear seemingly unrelated
regressions method (SUR, referred to as SUR1). The SUR1 approach
has been used by several others including Sabatia et al. (2008) for
shortleaf pine (Pinus echinataMill.) biomass components, Zhao et al.

(2015) for loblolly pine (Pinus taeda L.), and Zhao et al. (2019) for slash
pine (Pinus elliottii Engelm. var. elliottii) biomass components. Affleck
andDiéguez-Aranda (2016) proposed to jointlyfit only biomass com-
ponent equations using maximum-likelihood (ML) estimation,
arguing from the standpoint of how biomass data are collected that
it was more appropriate to simply add predictions of biomass com-
ponents to obtain total biomass. Zhao et al. (2019) used SUR to fit
biomass component equations only (referred to as SUR2), and they
demonstrated both analytically and empirically that the SUR2
should be more reasonable for estimating the aggregative models
than the SUR1. The SURmethod accounts for the fact that the resid-
ual errors for models in the system may be correlated (Judge et al.
1985, p. 468; Zellner 1962).
Thedisaggregative strategy is the “componentproportion” approach

in which total tree biomass is disaggregated into tree components
based on their estimated proportions (Tang et al. 2000; Jenkins
et al. 2003; Zhao et al. 2019). Tang et al. (2000) developed a disaggre-
gation approach in which a total biomass model is first developed,
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and the biomass componentmodels are defined and then the com-
ponent proportions are derived from these biomass component
models and total biomass model (also see Dong et al. 2015). The esti-
mated value of a dependent (endogenous) variable— total biomass—
is used as explanatory variables to solve the parameters of biomass
component equations with two-stage nonlinear error-in-variable
models (TSEM) (Tang et al. 2001). Affleck and Diéguez-Aranda (2016)
used a different option to disaggregate the total biomass, i.e., speci-
fying models for the total and discrimination functions between
components (component proportions) but then fitting the system
using component biomass observations on themass scale viaML or
SUR. Unlike the approaches of Tang et al. (2000) and Affleck and
Diéguez-Aranda (2016), Zhao et al. (2019) proposed another disag-
gregation approach in which biomass component proportions
are directly modeled using the Dirichlet regression model (DRM)
(Zhao et al. 2016) and the total biomass model is separately devel-
oped. A potential problem with this approach is that biases can
occur when predictions from a model fitted by ordinary least
squares (OLS) are used to obtain predictions in a second model
fitted independently by OLS. A formula that could be used to
quantify this bias is derived in Appendix A.
Except for systems of biomass equations developed by the

approach of Tang et al. (2000), the right-hand sides of additive
biomass equations developed recently include the independent
(exogenous) variables only. Some biomass components may be
highly related to each other. Taking advantage of such relation-
ships provides an alternative, that is, using the dependent (en-
dogenous) variable from one component model equation as an
explanatory variable in another component model equation. For
example, we may expect foliage to be highly related to branch
biomass and bark biomass to be related to stem wood biomass.
So, wemay use branch biomass, typically the dependent (endoge-
nous) variable in branch component equation, as an explanatory
variable to predict foliage biomass in the foliage component equa-
tion. Similarly, we may use stem wood biomass as an explanatory
variable to predict bark biomass even though stem wood biomass
is the dependent (endogenous) variable in another component pre-
diction equation. This approach leads to simultaneous equations in
which at least one of the equations contains endogenous right-
hand-side variable(s), thus, yielding biased and inconsistent param-
eter estimates upon parametrization via SUR. Alternatively, however,
two-stage (2SLS) and three-stage (3SLS) least squares (e.g., Judge et al.
1985, pp. 597–600) and full information maximum likelihood (FIML)
(Judge et al. 1985, p. 601; Theil 1971, pp. 524–526) are econometric
methods that can be used to estimate multiple equations with
endogenous right-hand-side variables.
2SLS is applied to a system of model equations by regressing

each endogenous variable on all exogenous variables in the first-
stage regression model, and then replacing the original values of
the endogenous right-hand-side variables in the second-stage regres-
sionmodel with the predicted values from the first stage and fitting
it with OLS. This single equation method leads to consistent estima-
tors but generally has the disadvantage of being asymptotically in-
efficient. 3SLS results when the estimated variances and covariances
of the residuals from the 2SLS are used to re-estimatemodel parame-
ters using generalized least squares in the third stage. 3SLS can be
more efficient than 2SLS when the cross-equation covariation (i.e.,
cross-equation error correlation) is large (Belsley 1988). 2SLS and
3SLS procedures have been used by several authors in the forest
biometrics literature (e.g., Furnival and Wilson 1971; Murphy and
Sternitzke 1979; Borders 1986; Lynch and Clutter 1998). FIML,
another full systemmethod, uses ML estimation with the multivari-
ate distribution of errors for the system of model equations. The
multivariate error distribution used in FIML has usually been the
multivariate normal distribution. Rothenberg and Leenders (1964)
have demonstrated that FIML and 3SLS have the same asymptotic
limiting covariancematrix (Theil 1971, p. 526).

2SLS, 3SLS, and FIML could conceivably be applied to the prob-
lem of component proportion estimation, especially for biomass
equations developed by the approach of Tang et al. (2000). How-
ever, parameterization software for TSEM is not currently avail-
able. Conversely, 2SLS, 3SLS, and FIML could be easily performed
using the SAS/ETSVR MODEL Procedure (SAS Institute Inc. 2011).
The objective of this study was to develop and compare biomass

prediction models for estimating components directly using 2SLS,
3SLS, and FIML for slash pine trees. Their predictive performances
were evaluated and comparedwith othermodel systems developed
by Zhao et al. (2019) using SUR and DRM approaches on the same
slash pine dataset.

Materials and methods

Tree biomass data
Because of our desire to compare the new biomass estimation

methods proposed here with previous methods, we intended to
use the same slash pine plantation data as Zhao et al. (2019). The
data consisted of two sets: one from destructive biomass sam-
pling of 96 slash pine trees conducted in 2016 and a second set of
210 slash pine trees from a legacy biomass database available for
download at legacytreedata.org assembled by Radtke et al. (2015).
Combining the two data sources provided 306 individual slash
pine tree observations from plantations on the coastal plain of
Georgia and north Florida. Each tree had observations for wood,
bark, branch, and foliage oven-dry biomass values, which when
summed provided total biomass. Each tree also had diameter at
breast height (DBH) and tree total height (HT) measurements.
Summary statistics for these data are given in table 1 of Zhao
et al. (2019), which indicates that DBH ranged from 3 to 53.3 cm
with a mean of 18.4 cm, HT ranged from 2.9 to 30.2 m with a
mean of 18.4 m, and total biomass ranged from 0.98 to 1861.9 kg
with amean of 201.83 kg.
Stem wood, stem bark, branch, foliage and tree total above-

ground biomass of all trees and their relationships with tree DBH
andHT are shown infigure 1 of Zhao et al. (2019). Figure 1 presented
here illustrates relationships between the natural logarithms
of DBH and HT and the natural logarithms of the wood, bark,
branch, and foliage biomass components. Nearly linear rela-
tionships between the logarithms of DBH and HT with biomass
components indicates that power functions of DBH and HT may
be effective starting points for modeling the component rela-
tionships. A close linear relationship between the logarithms of
wood biomass and bark biomass (Fig. 1) indicates that power
function relationships between the two variables should be
appropriate. Similarly, a linear trend between the logarithms of
branch and foliage biomass supports the use of a power func-
tion relationship between these variables.

Model development and estimation
Based on the relationshipsmentioned above, the following bio-

mass component equations with endogenous right-hand-side
variables were developed for slash pines:

ð1Þ y1 ¼ b11DBHb12HTb13 þ « 1

ð2Þ y2 ¼ b21ðy1Þb22DBHb23 þ «2

ð3Þ y3 ¼ b31DBHb32HTb33 þ «3

ð4Þ y4 ¼ b41ðy3Þb42 þ «4

where y1 is wood biomass (kg), y2 is bark biomass (kg), y3 is branch
biomass (kg), y4 is foliage biomass (kg), bij (i = 1, 2, 3, 4; j = 1, 2, 3)
are unknown parameters, « i (i = 1, 2, 3, 4) are random equation
errors, DBH is diameter at breast height (cm), and HT is tree total
height (m).
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y1, y2, y3, and y4 would be termed endogenous variables in econo-
metrics because they are determined within the model system
while DBH and HT would be considered exogenous variables
because they are not determined within the system of model
equations (Theil 1971, pp. 430–431). The term “explanatory varia-
bles” is often used for variables on the right-hand side of economet-
ric prediction models because models used to predict endogenous
variables may be composed of exogenous variables as well endoge-
nous variables fromother systemmodel equations. Stemwood and
branch component equations (Models 1 and 3) weremodeled using
power functions of exogenous variables DBH and HT. This is a non-
linear form of volume equation originally proposed by Schumacher
and Hall (1933) and has been used successfully in many tree content
modeling efforts including biomass componentmodels (e.g., Clutter
et al. 1983, p. 8; Zhao and Kane 2017; Zhao et al. 2019). In Model 2
the endogenous variable bark biomass y2 is a function of the endog-
enous variable — wood biomass y1 — and the exogenous variable
DBH. Foliage component equation (Model 4) has only the endoge-
nous variable— branch biomass y3 — as explanatory variable. The
variable DBH was added to the bark prediction model equation

because the amount of bark needed to cover a stem having a given
wood content can vary systematically due to factors such as bark
thickness and stem form that are related to individual tree DBH.
Econometric methods such as 2SLS, 3SLS, and FIML allow both
endogenous and exogenous variables to be used as explanatory
variables as in Models 2 and 4 above.
This model system follows the perspective of Affleck and

Diéguez-Aranda (2016) and the findings of Zhao et al. (2019) in
that total biomass is obtained by adding predictions from all the
components but there is no model in the system to fit directly to
total biomass as was the case with Parresol (2001). The system of
biomass component equations (Models 1–4) was fitted to the bio-
mass data of 306 slash pine trees using the weighted 2SLS, 3SLS,
and FIML, respectively, by using the SAS/ETSVR MODEL Procedure
(SAS Institute Inc. 2011). This includes three-fitting steps: (1) fitting
the system using PROC MODEL with 2SLS, 3SLS, or FIML, without
taking into account the heteroscedasticity problem inmodel resid-
uals; (2) squaring the estimated residuals of the unweighted model
from the first step as the dependent variable and then fitting it as a
function of DBH and HT on the natural log scale to determine the

Fig. 1. Relationships among the natural logarithms of DBH (ln(DBH)), total height (ln(HT)), stem wood biomass (ln(Wood)), bark biomass
(ln(Bark)), branch biomass (ln(Branch)), and foliage biomass (ln(Foliage)) for slash pine.
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weighting functions for each component equation (Parresol 2001;
Zhao et al. 2015); and (3) finally, utilizing the resultant component-
specific weighting functions in refitting the equation system using
PROCMODELwith 2SLS, 3SLS, or FIML.

Evaluation
The following criteria were used to evaluate the performance of

2SLS, 3SLS, and FIML for the slash pine data:mean error (E), percent
mean error (E%), mean absolute error (MABE), percent mean
absolute error (MABE%), root-mean-squared error (RMSE), percent
root-mean-squared error (RMSE%), and pseudo R2, defined as follows:

ð5aÞ E ¼

XN
j¼1

ðyij � ŷijÞ

N

ð5bÞ E% ¼ 100
N

XN
j¼1

yij � ŷij
yij
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ð8Þ R2
i ¼ 1�

XN
j¼1

yij � ŷij
� �2

XN
j¼1

yij � yi
� �2

where yij and ŷij are the jth observed and predicted biomass for
the ith component or total, and yi is themean of N biomass obser-
vations for the same component or total.
In this study, the biomass equation system was fitted to the

entire data set (N = 306 trees). Model validation was accomplished
by the leave-one-out (LOO) cross-validation technique, in which

themodel systemwas fitted using all but one tree (leaving one tree
out), and then the fitted model system was used to predict the
values of all components and total biomass for that left-out tree.
The summary statistics were calculated using the same formulas
(eqs. 5a–8).
The predictive performance of the new system of component

equations was also compared with the previously reported bio-
mass equation systems by Zhao et al. (2019) with aggregation and
disaggregation approaches and fitted to the same slash pine data
used here. The same evaluation criteria and the same data facili-
tate these comparisons.

Results

Model fitting by the weighted 2SLS, 3SLS, and FIMLmethods
Parameter estimates for the system of biomass equations

(Models 1–4) fitted with the weighted 2SLS, 3SLS, and FIML are
given in Table 1. The b33 parameter estimate was not signifi-
cantly different from zero for the 2SLS option (p = 0.712) so that
parameter was not considered in the final 2SLS estimation pro-
cess. Conversely, the parameter estimate b33 was appreciably differ-
ent from zero when fitted by 3SLS (p = 0.079) and FIML (p = 0.08).
Table 1 indicates that the other parameter estimates were highly
significant, with p < 0.0001 for the weighted 2SLS, 3SLS, or FIML
estimation.
The equation system (Models 1–4) was first fitted using 2SLS

method. Scatterplots of the residuals against the predicted values
for each biomass component in the system equations fitted with
2SLS revealed significant heteroscedasticity (Appendix Fig. B1).
Residual variances from the unweighted model system were
modeled as a power function of DBH for stem bark and branch
equations, and a power function of DBH and HT for stem wood
and foliage biomass equations, leading to the weighting func-
tions DBH4.205 HT1.137, DBH3.766, DBH5.139, and DBH6.061 HT–3.377,
which were used for stem wood, stem bark, branch, and foliage
biomass equations, respectively. In the PROC MODEL, the weights
for different component equations are specified as an inverse to a
square root of the corresponding weighting functions (Zhao et al.
2015). Finally, the equation system was refitted using 2SLS and the
weighting functions. After fitting with weighting function for each
equation, scatterplots of Pearson residuals against the predicted
values for each biomass component showed that there were no
marked departures that would nullify the homogeneous error
variance assumption (Appendix Fig. B1). The 2SLS with or without
weight functions did not consider the contemporaneous correla-
tions among different biomass component equations but could
estimate them. The estimated cross-correlation matrix with the
weighted 2SLSwas

Table 1. Parameter estimates and their standard errors (SE) and p values for the system of biomass component model equations fitted with
three-stage least squares (3SLS), two-stage least squares (2SLS), and full informationmaximum likelihood (FIML).

Parameter

3SLS FIML 2SLS

Estimate SE p value Estimate SE p value Estimate SE p value

b11 0.0125 0.0006 <0.0001 0.0115 0.0008 <0.0001 0.0124 0.0007 <0.0001
b12 2.0956 0.0344 <0.0001 2.0662 0.0318 <0.0001 2.0930 0.0338 <0.0001
b13 0.9881 0.0425 <0.0001 1.0469 0.0477 <0.0001 0.9935 0.0426 <0.0001
b21 0.1488 0.0303 <0.0001 0.1507 0.0289 <0.0001 0.1395 0.0281 <0.0001
b22 0.2861 0.0522 <0.0001 0.2923 0.0529 <0.0001 0.2694 0.0518 <0.0001
b23 1.2013 0.1503 <0.0001 1.1873 0.1467 <0.0001 1.2498 0.1486 <0.0001
b31 1.903E-3 3.35E-4 <0.0001 2.334E-3 3.54E-4 <0.0001 1.649E-3 2.24E-4 <0.0001
b32 3.1554 0.0867 <0.0001 3.1941 0.0964 <0.0001 2.9986 0.0446 <0.0001
b33 –0.2093 0.1188 0.0790 –0.3206 0.1202 0.0081 — — —

b41 1.1609 0.0527 <0.0001 1.0557 0.0508 <0.0001 1.1610 0.0527 <0.0001
b42 0.6345 0.0175 <0.0001 0.6818 0.0189 <0.0001 0.6345 0.0175 <0.0001
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In the same way, the equation system (Models 1–4) was fitted
to the slash pine data using the weighted 3SLS. The weighting
functions DBH3.819 HT1.883, DBH3.835, DBH5.033, and DBH6.061

HT–3.377 were used for stem wood, stem bark, branch, and foli-
age biomass equations, respectively, to address heteroscedasticity
problem (Appendix Fig. B2). The estimated cross-correlationmatrix
among biomass component equations with the weighted 3SLS
was

ð10Þ
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The equation system was also fitted using the weighted FIML.
The weighting functions DBH3.734 HT1.265, DBH3.456, DBH5.041, and
DBH5.690 HT–2.807 were used for stem wood, stem bark, branch,
and foliage biomass models, respectively. Heteroscedasticity
that existed in each of the biomass equation was well addressed
by the weighted FIML (Appendix Fig. B3). The estimated cross-
correlation matrix among biomass component equations with
the weighted FIML was

ð11Þ
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Evaluation of 2SLS, 3SLS, and FIML
Fit statistics for evaluating 2SLS, 3SLS, and FIML methods for

fitting the system of eqs. 1–4 can be found in Table 2. The R2 value
was ≥0.98 for stem wood and total biomass, 0.97 for stem bark
component, and 0.92–0.93 for branch component for all 2SLS,
3SLS, and FIML estimation methods. The FIML resulted in higher
values of R2 for total biomass and biomass components, except
for stem bark component where all three estimation methods
had the same value of R2. For foliage component, FIML had R2 =
0.879 and both 2SLS and 3SLS had R2 = 0.787. For branch compo-
nent, the values of E% were most substantially negative, less than
–22.6% with all three estimation methods, while the E values
were positive with 2SLS and FIML (0.15 and 0.59 kg, respectively)
and negative with 3SLS (–0.48 kg). The values of E% for foliage
component were –7.4% for both 2SLS and 3SLS, and 1.3% for FIML,
while all E values for foliage component were positive with 1.0 kg
for both 2SLS and 3SLS and 0.2 kg for FIML. The values of E% for
stem wood and total biomass were negative (ranging from –1.7%
to –1.1%) with 2SLS and 3SLS and positive with the FIML estima-
tion (3.6% and 1.7%), while the E values for stem wood and total
biomass were positive (ranging from 1.7 to 2.8 kg) with all estima-
tion methods. The E% for stem bark component ranged from
–5.7% to –2.4%, while all E values were close to zero (from –0.097 to
0.038 kg) for all three estimation methods. The values of MABE%
and RMSE% were largest for foliage and branch biomass compo-
nents and smaller for wood, bark, and total biomass predictions
with all estimation methods. The values of MABE and RMSE, how-
ever, were naturally largest for stem wood and total biomass, and
substantially smaller for bark and foliage biomass predictions with
all estimationmethods.
Figure 2 shows the relationship between the predicted and

actual biomass components with 2SLS, 3SLS, and FIML estima-
tion. As might be expected from Table 2, the performance of the
three methods appears to be very close. Symbols for FIML and
3SLS are essentially superimposed at the level of resolution visi-
ble in Fig. 2 for nearly all predictions. 2SLS predictions are some-
what different in some cases especially for the branch and foliage
biomass components. FIML and 3SLS tended to provide somewhat

Table 2. Fit statistics for the component biomass of slash pine trees from the model equations developed in this study
fitted with weighted two-stage least squares (2SLS), three-stage least squares (3SLS), and full information maximum
likelihood (FIML), previously developed equations using the aggregative approach fitted biomass component equations
with weighted nonlinear seemingly unrelated regression (SUR2) (Zhao et al. 2019).

Method Biomass E E% MABE MABE% RMSE RMSE% R2

2SLS Stemwood 1.699 –1.698 14.217 10.338 31.354 14.331 0.980
Stem bark –0.003 –2.497 2.400 11.989 4.087 16.308 0.970
Branch 0.145 –22.611 5.012 43.752 10.991 75.943 0.916
Foliage 1.010 –7.445 2.135 35.323 4.498 49.657 0.787
Total 2.851 –1.064 16.936 8.586 38.119 11.821 0.982

3SLS Stemwood 1.773 –1.699 14.213 10.340 31.352 14.354 0.980
Stem bark 0.038 –2.397 2.403 11.966 4.080 16.195 0.970
Branch –0.477 –23.539 4.973 44.008 10.728 77.406 0.920
Foliage 1.010 –7.444 2.135 35.322 4.498 49.655 0.787
Total 2.344 –1.135 16.627 8.550 36.963 11.830 0.984

FIML Stemwood 1.387 3.597 13.803 11.167 29.179 14.983 0.982
Stem bark –0.097 –5.708 2.431 13.406 4.102 19.092 0.970
Branch 0.593 –33.118 5.167 53.428 10.099 100.560 0.929
Foliage 0.167 1.310 2.026 34.976 3.386 45.339 0.879
Total 2.051 1.664 16.450 8.952 34.734 12.524 0.985

SUR2 Stemwood 2.584 –1.576 14.599 10.281 33.016 14.131 0.978
Stem bark 0.086 –2.875 2.501 12.627 4.299 17.735 0.967
Branch –0.043 –21.553 4.986 43.201 10.940 74.714 0.917
Foliage –0.398 –20.103 2.109 40.342 4.147 67.313 0.819
Total 2.229 –1.593 17.838 9.590 39.378 13.698 0.981

Note: E, mean prediction error; E%, percent mean prediction error; MABE, mean absolute error; MABE%, percent mean absolute error;
RMSE, root-mean-square error; RMSE%, percent root-mean-square error; pseudo R2.
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better predictions of the foliage and branch biomass components
for large trees than 2SLS. However, all the three estimation meth-
ods underestimated foliage biomass for larger trees (DBH> 30 cm).
The performances of 2SLS, 3SLS, and FIML could be ranked sim-

ply by variation accounted for (i.e., R2), by error statistics computed
on the mass scale (E, MABE, RMSE), by error statistics computed on
the percentage scale (E%, MABE%, RMSE%), or by combinations of
these statistics. Based only on R2, FIML was best for total biomass
and biomass components, except for stem bark component where
all three estimation methods had the same performance. Com-
pared with 2SLS and 3SLS (R2 = 0.787), FIML seemed to substantially
improve foliage component prediction (R2 = 0.879). Based only on
R2, the overall ranking of the three estimation methods followed
the order of FIML> 3SLS> 2SLS, with the sum of the ranks being 5,
9, and 11, respectively (Appendix Table B1). Using E, MABE, RMSE,
and R2 to rank the three estimationmethods, the FIML was best for
stemwood, foliage, and total tree biomass, while the 3SLS was best

for branch and 2SLS best for stem bark component estimation,
leading to the overall ranking: FIML> 3SLS> 2SLS, with the sum of
the ranks being 28, 39, and 45, respectively (Appendix Table B1).
Using E%, MABE%, RMSE%, and R2 to rank the three estimation
methods, FIML was best for foliage component, 3SLS best for
bark and branch components, 2SLS best for stem wood compo-
nent, and both 2SLS and 3SLS better for total biomass. This
resulted in the overall ranking: 3SLS > 2SLS > FIML, with no
large difference in the sum of the ranks being 36, 40, and 42,
respectively (Appendix Table B1). If considering all criteria, FIML
was best for stem wood and foliage components and had the
same performance as 3SLS for total biomass, 3SLS was also best
for stem bark component and 2SLS best for branch component.
The FIML and 3SLS had almost the same overall performance and
were better than the 2SLS. The order of overall ranking followed:
FIML > 3SLS > 2SLS, with the sum of the ranks being 65, 66, and
71, respectively (Appendix Table B1).

Fig. 2. Relationships between predicted and actual stem wood, bark, branch, and foliage biomass components with prediction model
equations fitted by two-stage least squares (2SLS), three-stage least squares (3SLS), and full information maximum likelihood (FIML) for
slash pine. [Colour online.]
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LOO cross-validation statistics for evaluating 2SLS, 3SLS, and FIML
methods for fitting the system of eqs. 1–4 can be found in Table 3.
The performances of these three fitting methods were also ranked
based on the cross-validation statistics (Appendix Table B2).
Compared with the ranks based on the fit statistics, there were
some little changes in the ranks of 2SLS, 3SLS, and FIML for some
biomass components based on the LOO cross-validation statis-
tics. Both the fit and LOO cross-validation statistics suggested
that FIML improved foliage component prediction in terms of ei-
ther R2, or its combinations with other error statistics on the mass
scale, on the percentage scale, or on both the scales (Table 3 and
Appendix Table B2). Using R2 or (E, MABE, RMSE, R2) associated
with LOO cross-validation results, the FIML and 3SLS had the same
or almost the same overall performance and were better than the
2SLS (Appendix Table B2). Based on LOO cross-validation statis-
tics E%, MABE%, RMSE%, and R2, the order of overall ranking fol-
lowed: FIML > 2SLS > 3SLS, with the sum of the ranks being 33,
40, and 42, respectively (Appendix Table B2). If considering all
criteria, the LOO cross-validation statistics led to the same order
of overall ranking: FIML> 3SLS> 2SLS, as the fit statistics did.

Discussion
Inspection of Tables 2 and 3 indicates that most of the E% values

are negative, whilemost of the corresponding E values are positive.
The difference in the signs between E% and E is largely due to the
mathematical formula for E%, eq. 5b. For a given level of the explan-
atory variables in the prediction model, the negative deviations
(actual values are smaller than the predicted) have smaller denomi-
nators than positive deviations (actual values are larger than the
predicted) of equal absolute value. These negative values of devia-
tion divided by actual value are larger than corresponding positive
terms at that level of the explanatory values. Thus, negative terms
tend to “outweigh” positive terms in the computation of E%
although it is possible to obtain positive values of E as reported
in Tables 2 and 3. A model equation that is performing well
would be expected to have a negative but small E% value and a
small E value. Furthermore, there was no single system to pre-
dict biomass that was best for all components and total tree bio-
mass, as demonstrated in the current study and others (Zhao
et al. 2015, 2019; Dong et al. 2015). So, the better practice for
evaluating different systems of biomass equations is to com-
pare their overall predictive performances based on an array of
statistics in absolute units and percentages for each biomass

component and total tree biomass, using a ranking system as
we did in the current study.
Zhao et al. (2019) developed three systems of biomass equations

for slash pine using the same dataset used in the current study.
Two systems were developed using the aggregation approach,
one of which included component biomass equations and a total
biomass equation that were jointly fitted using weighted SUR
(SUR1), and the other included component equations only that
were fitted using weighted SUR (SUR2). The third system followed
a disaggregative approach and involved multiplying total bio-
mass predictions by the estimated component ratios from the
Dirichlet regression model for component ratios (DRM). The
right-hand sides of equations in these systems included only ex-
ogenous variables. Based on E%, MABE%, RMSE%, and R2, Zhao
et al. (2019) found that the system associated with SUR2 had the
best overall performance, when compared to the SUR1 and DRM
systems. For comparison purposes in this study, we also calcu-
lated the E, MABE, and RMSE for the SUR2 system (see Table 2). In
terms of the overall prediction performance, the new system
developed in this study with FIML or 3SLS was marginally supe-
rior to the SUR2 system.
Recall, the SUR2 system includes only component biomass

equations that are a power function of DBH and HT (Zhao et al.
2019). The system developed in the study (Models 1–4) also con-
sisted of component biomass equations, in which stemwood and
branch component equations are a power function of DBH and
HT but stem bark and foliage component equations include an
endogenous right-hand-side variable. Neither system included a
total biomass prediction model in the estimation process, and
total biomass predictions were obtained by adding predictions of
individual biomass components. Zhao et al. (2019) found that the
SUR2 was better for predicting total biomass than the SUR1 even
though SUR1 uses total biomass as a dependent variable. The
SUR2 was even better for predicting total biomass than the sepa-
rately developed total biomass model (Zhao et al. 2019). It is espe-
cially revealing that addition of biomass component predictions
from 2SLS, 3SLS, and FIML performed better than the SUR2, in
terms of an array of statistics utilized (Table 2). This again con-
firmed that it is not necessary to include a total biomass equation
in a system of biomass equations.
There were large differences in foliage biomass prediction

among these approaches (Fig. 2, and figure 5 in Zhao et al. 2019).
The 2SLS, 3SLS, and FIML methods tend to underpredict foliage

Table 3. Leave-one-out (LOO) cross-validation statistics for component biomass of slash pine trees from the model
equations developed in this study fitted with weighted two-stage least squares (2SLS), three-stage least squares (3SLS),
and full information maximum likelihood (FIML).

Method Biomass E E% MABE MABE% RMSE RMSE% R2

2SLS Stem wood 1.806 –1.699 14.493 10.445 32.212 14.495 0.979
Stem bark –0.002 –2.900 2.540 12.778 4.362 17.900 0.966
Branch 0.148 –22.733 5.082 44.025 11.264 76.358 0.912
Foliage 0.943 –16.548 2.353 42.240 4.901 67.176 0.747
Total 2.896 –1.180 18.271 9.606 41.034 13.440 0.980

3SLS Stem wood 1.982 –1.701 14.474 10.448 32.244 14.530 0.979
Stem bark 0.044 –2.815 2.542 12.750 4.375 17.830 0.966
Branch –0.471 –23.714 5.075 44.409 11.113 78.078 0.914
Foliage 0.875 –16.683 2.302 41.723 4.705 66.610 0.766
Total 2.340 –1.315 18.017 9.596 39.960 13.559 0.984

FIML Stem wood 1.994 –1.124 14.616 10.410 32.887 14.225 0.978
Stem bark 0.030 –2.590 2.549 12.730 4.379 17.681 0.965
Branch –0.305 –25.029 5.039 45.243 10.870 80.694 0.918
Foliage 0.495 –15.959 2.178 40.297 4.137 64.382 0.819
Total 2.213 –0.886 18.069 9.639 40.294 13.483 0.980

Note: E, mean prediction error; E%, percent mean prediction error; MABE, mean absolute error; MABE%, percent mean absolute
error; RMSE, root-mean-square error; RMSE%, percent root-mean-square error; pseudo R2.
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biomass for large trees while the SUR1, SUR2, and DRM methods
tend to overpredict foliage biomass for large trees. For easier
comparison, the actual versus predicted biomass components
and total biomass from the current FIML system and the previous
SUR2 systemwere shown in Appendix Fig. B4. For several of large
values of foliage biomass, the FIML symbol is above and the SUR2
symbol is below the 1:1 line, but the FIML symbol is closer to the
1:1 line. Thus, FIML tended to provide somewhat better predic-
tions of foliage biomass for larger trees than SUR2, as indicated
by substantially better values of E, E%, MABE, MABE%, RMSE,
RMSE%, and R2 provided by FIML (Table 2). Possibly the link
between branch and foliage predictions used by 2SLS, 3SLS, and
FIML enabled improvements in foliage biomass prediction for
this slash pine dataset.
The heteroscedasticity problem that always exists in biomass

model residuals could be addressed by having each equation
with its own weighting function as we did in this study and
others (Zhao et al. 2015, 2019; Dong et al. 2015). In addition to this
problem, mathematical relationships between biomass equation
themselves and relationships between the error terms of biomass
equations determine how to develop and estimate the system of
biomass equations. For the system of biomass component equa-
tions that are all defined as a power function of DBH and HT, when
it was fitted using weighted nonlinear least squares estimation
(WNLSE) with the same weighted functions used in SUR2 (Zhao
et al. 2019), the estimated cross-correlationmatrix (Appendix Matrix B1)
indicated high correlations between stem wood and bark resid-
uals (0.322), branch and foliage residuals (0.421), stem wood and
branch residuals (0.205), and between stem wood and foliage
residuals (0.208). The presence of correlation between error terms
of biomass equations and the large sample size (N = 306) enable the
SUR approach to achieve more efficient estimation compared with
WNLSE (Zhao et al. 2019). In the current study, we took advantage
of the close relationships between stem wood and stem bark, and
between branch and foliage components (Fig. 1) and proposed
a system of component equations including endogenous right-
hand-side variables. When this new system was naively fitted
using WNLSE, the estimated cross-correlation matrix across
the component equations (Appendix Matrix B2) indicated a sub-
stantial reduction in correlations between stem wood and bark
residuals, between stem wood and foliage residuals, and between
branch and foliage residuals, compared with Appendix Matrix B1.
This result highlighted the importance of mathematical relation-
ships between equations (i.e., model structure) on correlation
between the errors of the equations.
For comparison purpose, we reported the cross-correlation ma-

trix across equations estimated using weighted 2SLS (Matrix 9),
although the 2SLS approach did not consider such correlations. All
the estimated cross-correlation matrices for 2SLS (Matrix 9), 3SLS
(Matrix 10), and FIML (Matrix 11) are very similar for most elements.
Although the correlation between wood and foliage residuals is
positive for 2SLS and FIML and negative for 3SLS, these correlations
are quite small being less than 0.051 in absolute value. The correla-
tions among other biomass components are all the same sign for
2SLS, FIML, and 3SLS and very similar in magnitude. Unlike the
2SLS approach, the 3SLS and FIML approaches estimates all coeffi-
cients simultaneously by taking into account such correlations
across equations and are expected to improve the efficiency of the
estimation. However, in the current study the 3SLS and FIML did
not appear to achieve a noticeable reduction in standard errors of
parameter estimates except for parameter b33 (Table 1) compared
to 2SLS. This is due to small correlations between the errors of
equations.
When estimates from 3SLS and FIML are compared, many pa-

rameters in the model system had similar estimates (Table 1). The
performance of 3SLS and FIML was particularly similar. This
might be expected with a sample size of over 300 trees because

3SLS and FIML are asymptotically equivalent for a large size
sample. If the sample size is relatively small, the 3SLS is a com-
pelling choice compared to the FIML. In the presence of corre-
lations of error terms of biomass equations, the 3SLS and FIML
with large samples should achieve more efficient estimates
compared with the 2SLS.

Conclusions
Unlike the previously published biomass equations developed

with the aggregation and disaggregation strategies, which include
only exogenous variables on the right-hand sides, a different sys-
tem of biomass component equations has been proposed for
slash pines using an econometric approach. By taking advantage
of relationships between the biomass components, the new sys-
tem included endogenous right-hand-side variables in stem bark
and foliage equations, in which parameters were estimated
using the weighted nonlinear 2SLS, 3SLS, and FIML. 3SLS and
FIML were extremely close each other in performance, and both
appeared to provide somewhat better predictions of branch and
foliage biomass for large trees and may have better properties in
extrapolations beyond the fitting data for large trees for these
biomass components. The overall predictive performances fol-
lowed the order of FIML > 3SLS > 2SLS. The new system per-
formed well or better than previously published biomass
equation systems developed using an aggregative approach and
fitted to the same data using weighted nonlinear seemingly
unrelated regressions (SUR). Our results demonstrated that rela-
tionships between the biomass components can be used to
enhance biomass predictions. The econometrics such as 3SLS
and FIML, which allow the endogenous (dependent) variables in
any of the system model equations to be used as explanatory
variables in other system model equations, expand the possibil-
ities for biomass component modeling. It is likely that these
approaches to the development of integrated systems of bio-
mass component prediction model equations could be success-
fully applied to data from other southern pine species as well as
many other tree species groups.
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Appendix A: Potential bias in component ratio
estimation with ordinary least squares

Let the value of a tree biomass component YC be expressed as
the product of the total tree biomass YT multiplied by the ratio
RC of that component biomass to the total tree biomass:

ðA1Þ YC ¼ YTRC

This equation is trivially correct for the observed values of
total, component, and component ratios for a particular tree.
The usual biomass components of interest include wood, bark,
branch, and foliage components which add to total tree biomass
YT. We now express YT and YC as true mean models f and g that
are functions of a vector of independent variables X, a vector of
true parameter values b and true error terms «T and «C such that
E(«T) = E(«C) = 0:

ðA2Þ YT ¼ f ðbT;XÞ þ «T

ðA3Þ RC ¼ gðbC;XÞ þ «C

The two equations above are trivially correct because the
equalities depend on true mean models and true error terms.
Nonlinear regression analyses would typically attempt to find
good approximations for the functional forms f and g together
with good parameter estimates b̂T and b̂C. Nowwe want to estimate

the expected value of the component as computed from the
component ratio approach:

ðA4Þ EðYCÞ ¼ EðYT � RCÞ ¼ E f ðbT;XÞ þ «T½ � � gðbC;XÞ þ «C½ �� �

ðA5Þ EðYCÞ ¼ E f ðbT ;XÞgðbC;XÞ þ f ðbT ;XÞ«C þ gðbC;XÞ«T þ «T«C½ �
¼ f ðbT ;XÞgðbC;XÞþ f ðbT ;XÞEð«CÞþ gðbC;XÞEð«TÞ þ Eð«T«CÞ

Recall that E(«T) = E(«C) = 0, so cov(«T, «C) = E(«T«C) – E(«T)E(«C) =
E(«T«C), leading to

ðA6Þ EðYCÞ ¼ f ðbT;XÞgðbC;XÞ þ covð«T; «CÞ

Therefore, even if the true mean and their true parameter
values were known for total biomass f (bT, X) and the ratio of the
desired component to total g (bC, X), there would be a bias equal
to the covariance of the error terms cov(«T, «C) for estimating
expected amounts of components by using the product of the
true meanmodels f (bT, X)g (bC, X).

Now we wish to investigate the more realistic situation in
which the parameters in the true mean models f and g are not
known but estimated independently by ordinary least squares
(OLS). Consider the following covariance between predictions
from product of the estimated mean models for total biomass
and component ratio:

ðA7Þ covðŶ T; R̂CÞ ¼ EðŶ T � R̂CÞ � EðŶ TÞEðR̂CÞ
¼ EðŶ T � R̂CÞ � f ðbT;XÞgðbC;XÞ

ðA8Þ ) f ðbT;XÞgðbC;XÞ ¼ EðŶ T � R̂CÞ � covðŶ T; R̂CÞ

Substituting eq. A8 into eq. A6 leads to

ðA9Þ EðYCÞ ¼ EðŶ T � R̂CÞ � covðŶ T; R̂CÞ þ covð«T; «CÞ

Thus, whenmultiplying the estimatedmeanmodels to estimated
expected E(YC) there is a bias of

ðA10Þ Bias ¼ covðŶ T; R̂CÞ � covð«T; «CÞ

Superficially we may think the two covariances above would
tend to cancel each other, but these covariances are conditional on
a level of the independent variable vector X, and so covðŶ T; R̂CÞ
may not be large. This covariance arises from estimation of the
parameter vectors b̂T and b̂C and the fact that these parameter
estimates are correlated assuming that they are based on the
same sample trees. On the other hand, cov(«T, «C) is usually
assumed to be constant for all levels of X because the variance–
covariance matrix for regression problems is usually assumed to
be constant. Further there is no guarantee that the two
covariances in the equation above have the same sign so instead
of tending to cancel each other the opposite situationmay hold.

Appendix B
All biomass component equations were defined as power

functions of DBH and HT. These equations were fitted using
weighted nonlinear least squares estimation (WNLSE), with the
same weighted functions used in SUR2 (Zhao et al. 2019). The
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estimated cross-correlation matrix among biomass component
equations was

ðB1Þ

Wood Bark Branch Foliage
Wood
Bark

Branch
Foliage

1 0:322
1

0:205
�0:032

1

0:208
0:023
0:421
1

0
BB@

1
CCA

The system of biomass component equations proposed in
the current study (Models 1–4) included endogenous right-
hand-side variables. When these equations were fitted using
WNLSE with the same weighted functions used in 2SLS, the
estimated cross-correlation matrix among biomass component
equations was

ðB2Þ

Wood Bark Branch Foliage
Wood
Bark

Branch
Foliage

1 0:079
1

0:208
�0:102

1

0:041
0:064
�0:212

1

0
BB@

1
CCA

Given a system of biomass component equations (Models 1–4),
three fitting methods (2SLS, 3SLS, and FIML) were ranked based
on E, E%, MABE, MABE%, RMSE, RMSE%, and R2 for each biomass
component and total biomass in Table 2 for the fit statistics and
in Table 3 for the LOO cross-validation statistics. The attributes
were equally weighted. Rank one was used for the best method
and three for the poorest. Appendix Tables B1 and B2 show the
sum of the ranks of the fitting methods.

Table B2. Sum of the ranks, and ranks based on the rank sum (in brackets) of the three fitting methods, based on the
leave-one-out (LOO) cross-validation statistics in Table 3.

Criteria used for ranking
Fitting
method

Biomass component and total biomass

Rank
sumWood Bark Branch Foliage

Total
biomass

R2 2SLS 1 1 3 3 2 10 (3)
3SLS 1 1 2 2 1 7 (1)
FIML 2 2 1 1 2 8 (2)

E, MABE, RMSE, R2 2SLS 5 4 11 12 11 43 (2)
3SLS 6 8 9 8 5 36 (1)
FIML 11 10 4 4 7 36 (1)

E%, MABE%, RMSE%, R2 2SLS 7 9 6 11 7 40 (2)
3SLS 9 8 8 9 8 42 (3)
FIML 5 6 10 4 8 33 (1)

All criteria 2SLS 11 12 14 20 16 73 (3)
3SLS 15 15 15 15 12 72 (2)
FIML 14 14 13 7 13 61 (1)

Table B1. Sum of the ranks, and ranks based on the rank sum (in brackets) of the three fitting methods, based on the
fit statistics in Table 2.

Criteria used for ranking
Fitting
method

Biomass component and total biomass

Rank
sumWood Bark Branch Foliage

Total
biomass

R2 2SLS 2 1 3 2 3 11 (3)
3SLS 2 1 2 2 2 9 (2)
FIML 1 1 1 1 1 5 (1)

E, MABE, RMSE, R2 2SLS 10 6 9 8 12 45 (3)
3SLS 9 7 7 8 8 39 (2)
FIML 4 8 8 4 4 28 (1)

E%, MABE%, RMSE%, R2 2SLS 6 7 9 11 7 40 (2)
3SLS 9 4 8 8 7 36 (1)
FIML 8 10 10 4 10 42 (3)

All criteria 2SLS 14 12 12 17 16 71 (3)
3SLS 16 10 13 14 13 66 (2)
FIML 11 17 17 7 13 65 (1)
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Fig. B1. Residual plots (left: A1–D1) for each biomass component fitted using 2SLS without weight functions, showing significant
heteroscedasticity; Pearson residual plots (right: A2–D2) for each biomass component fitted using 2SLS with weight functions.
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Fig. B2. Residual plots (left: A1–D1) for each biomass component fitted using 3SLS without weight functions, showing significant
heteroscedasticity; Pearson residual plots (right: A2–D2) for each biomass component fitted using 3SLS with weight functions.
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Fig. B3. Residual plots (left: A1–D1) for each biomass component fitted using FIML without weight functions, showing significant
heteroscedasticity; Pearson residual plots (right: A2–D2) for each biomass component fitted using FIML with weight functions.
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Fig. B4. Comparisons of stem wood, stem bark, branch, foliage, and total tree aboveground biomass predictions from the currently
developed system with FIML and a previously developed aggregative system fitted with SUR2 (Zhao et al. 2019). [Colour online.]
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