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Abstract The emerald ash borer (EAB), Agrilus 
planipennis (Coleoptera: Buprestidae), a phloem-bor-
ing beetle native to Asia, was first discovered in 2002 
in the USA  and Canada, causing widespread mortal-
ity of ash trees (Fraxinus spp.). A classical biologi-
cal control program against EAB was implemented 
with the first regulatory approvals for environmen-
tal releases of three hymenopteran parasitoids from 

China in 2007: Tetrastichus planipennisi (Eulophi-
dae), Spathius agrili (Braconidae), and Oobius agrili 
(Encyrtidae), and a fourth parasitoid, Spathius gali-
nae (Braconidae) from the Russian Far East in 2015. 
We analyzed literature from the Scopus Database 
to examine the ecological premises of protection of 
North American ash trees with biocontrol, with a 
particular focus on the population dynamics of EAB 
and its biocontrol agents and implications for pro-
tecting and conserving native ash in the aftermath 
of EAB invasion. To date, the introduced parasitoids 
have been released in over 360 counties in 31 EAB-
infested states, Washington D.C., and three Canadian 
provinces. Three of the parasitoids, T. planipennisi, S. 
galinae, and O. agrili, have successfully established 
self-sustaining populations in many release areas in 
the northeastern and Midwestern USA. In several 
regions where releases were made early, these agents 
have now spread to nearby forests and resulted in sig-
nificant suppression of the target pest to low densities. 
Survival of regenerating ash due to suppression of 
EAB by parasitoids has also been observed in some 
sites with early parasitoid releases. The suppression 
of EAB is likely to expand geographically and thus 
contribute to North American ash recovery.
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Introduction

The emerald ash borer (EAB), Agrilus planipen-
nis Fairmaire (Coleoptera: Buprestidae), native to 
Asia, is a destructive pest of ash trees, Fraxinus spp. 
(Oleaceae). This beetle was first discovered in south-
ern Michigan, USA and nearby Ontario, Canada in 
2002 and has since become the most destructive pest 
of North American ash-dominated hardwood forests 
(Herms and McCullough 2014). Attempts to eradi-
cate EAB in North America by USA and Canadian 
regulatory agencies were abandoned a few years after 
its first detection because EAB became too wide-
spread (GAO 2006). Ongoing research, development, 
and implementation of EAB-management strategies 
were subsequently directed towards management via 
biological control, regulatory restriction of move-
ment of EAB-infested wood or plant materials, insec-
ticide treatment or physical destruction of infested 
trees, and EAB-resistant ash genotypes (e.g., Liu 
et al. 2003, 2007; Bauer et al. 2015; Koch et al. 2015; 
McCullough et al. 2015; Mercader et al. 2015).

In 2020, the USA federal regulatory effort to con-
tain the spread of EAB was discontinued because of 
high implementation costs, a lack of effective EAB-
surveillance tools, and the inability to prevent EAB 
from both short-distance natural dispersal or long-dis-
tance spread by human transport of infested ash mate-
rials (Federal Register 2020). Although highly effec-
tive systemic insecticides are available to protect high 
value, landscape ash (Herms et al. 2009; Sadof et al. 
2021), costs and environmental concerns prevent 
widespread use of chemical controls against EAB in 
natural forests. Therefore, classical biological control 
via the discovery, introduction, release, and establish-
ment of self-propagating and dispersing host-specific 
natural enemies is currently the most promising strat-
egy for sustainable management of EAB to conserve 
native Fraxinus spp. in the forests of North America. 
Previous reviews by Bauer et  al. (2015) and Duan 
et  al. (2018) reported the progress in earlier phases 
of the classical biocontrol program against EAB in 
North America, including foreign exploration for 
Asian parasitoids, host specificity testing and regula-
tory approval of discovered agents, as well as release 
and establishment recovery in the USA and Canada. 
Here, we examine the ecological premises of protect-
ing North American ash trees against EAB by the 
introduced natural enemies, with a particular focus on 

the population dynamics of the pest and introduced 
agents and implications for protecting and conserving 
native Fraxinus species in the aftermath of EAB inva-
sion. In addition, we review recent progress and chal-
lenges in the  implementation and evaluation of the 
biological control program against EAB as the target 
pest continues to spread throughout North America.

For this review, we first searched online data bases 
of both Scopus and ISI Web of Science using the key 
words “emerald ash borer or Agrilus planipennis” and 
found that both databases produced similar number 
of documents (904–922). Then, we conducted fur-
ther searches of the Scopus online database using key 
words “emerald ash borer” or “Agrilus planipennis” 
in combination with “parasitoid”, “natural enemies”, 
“biological control” or “biocontrol”. A total of 228 
unique publications were found that focused on bio-
logical control or biocontrol of the emerald ash borer 
with parasitoids or other natural enemies from the 
Scopus records. All these publications were read and 
analyzed for data and content related to the objectives 
of this review, namely ecological data on ash pro-
tection and conservation, and/or data on population 
dynamics of EAB and natural enemies. Data from rel-
evant original research articles and significant reviews 
that addressed these objectives were used and cited in 
this review. In addition, we also contacted colleagues 
in China for any historical Chinese literatures that 
might be relevant to this review.

Ecological premise for protecting North American 
ash trees using classical biocontrol

Ash tree mortality risk from the EAB invasion

Ash, Fraxinus spp. (Oleaceae) trees were relatively 
free of serious diseases and insect pests in North 
America before the invasion of EAB (Pugh et  al. 
2011). Since it was first identified as the sole factor 
causing ash tree mortality in southeastern Michigan 
and nearby Ontario in 2002, however, the spread and 
establishment of EAB has killed hundreds of millions 
of North American ash trees in 36 states and Wash-
ington, D.C. in USA and five Canadian provinces 
(Canadian Food Inspection Agency 2022; Emerald 
Ash Borer Information 2022). The potential eco-
nomic costs associated with the EAB invasion were 
estimated to be $1 billion per year from 2009 to 2019 
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(Kovacs et  al. 2010), and the ecological impacts on 
North American forests are severe and widespread, 
including threats to vertebrate and invertebrate ash 
specialist herbivores (e.g., Wagner and Todd 2016); 
composition of arthropod communities associated 
with ash (Jennings et al. 2017); altered forest compo-
sition and structure (Morin et  al. 2017); impacts on 
soil microbial communities, understory vegetation, 
and invasive plants (Klooster et  al. 2018); altered 
riparian forest structure and function (Engelken and 
McCullough 2020; Engelken et. al. 2020); impacts 
on tidal swamps and coastal river habitat (Jacobsen 
2020); and facilitation of secondary invasions (Baron 
and Rubin 2021).

All ash species native to North America encoun-
tered by EAB to date appear to be susceptible (Anul-
ewicz et  al. 2008; Herms and McCullough 2014), 
including the most common species: green (Fraxinus 
pensylvanica Marsh.), white (F. americana L.), and 
black (F. nigra Marsh.) as well as the less common 
blue (F. quadrangulata Michx.) and pumpkin ash (F. 
profunda [Bush] Bush). However, the degree of ash 
susceptibility to EAB varies among ash species and 
may be related to differences in bark texture, host 
volatiles, and nutritional or defensive compounds 
(e.g., Chen et al. 2011a, 2011b; Cipollini et al. 2011; 
Whitehill et  al. 2011, 2012; Tanis and McCullough 
2012, 2015; Koch et  al. 2015; Rigsby et  al. 2015; 
Villari et  al. 2016; Qazi et  al. 2018). Other ecologi-
cal factors such as tree age, physiological condition, 
habitat type, and natural enemies may also play a role 
in ash susceptibility to EAB (Tluczek et  al. 2011; 
Knight et  al. 2014; Duan et  al. 2021). For example, 
blue ash appears to be much less susceptible to EAB 
infestation than other North American ash trees, pos-
sibly due to a combination of differences in volatile 
emissions (Pureswaran and Poland 2009) and defense 
compounds (Qazi et al. 2018), as well as its smooth 
bark, which makes the tree less suitable for EAB ovi-
position (Tanis and McCullough 2012, 2015; Spei 
and Kashian 2017).

Although at some sites nearly 100% of ash 
trees > 2.5 cm in diameter at breast height (DBH) in 
infested stands have been attacked and killed by EAB 
(Klooster et  al. 2014), invading EAB populations in 
North America appear to first kill mature (canopy) 
ash trees as compared to smaller understory ash 
trees, saplings, and seedlings (Cappeart et  al. 2005; 
Tanis and McCullough 2015). Moreover, smaller 

ash saplings with DBH < 2.5  cm are rarely attacked 
by EAB (Marshall et al. 2013). It is conceivable that 
younger ash trees have both physical (e.g., smooth-
bark surface) and chemical (secondary defense com-
pounds) characteristics that are less attractive to 
EAB oviposition than canopy ash trees (e.g., Mar-
shall et al. 2013). It is also possible that the smaller 
area of phloem in these young ash trees limits EAB 
colonization.

Klooster et  al. (2014) found that the three most 
common North American ash species, green, white, 
and black, are equally vulnerable to severe levels of 
mortality when EAB populations are high. To date, 
however, few studies have determined the threshold 
EAB density that kills an ash tree of a given spe-
cies at a given age in a specific habitat. A study in 
urban forests in Canada suggests that infested ash 
trees could recover from a density of 10 EAB lar-
vae per  m2 of phloem (MacQuarrie and Scharbach 
2015). A more recent study in Michigan reported on 
the abundance of surviving ash saplings and young 
trees (DBH ~ 2.5–5.8  cm) in natural forests, where 
EAB densities averaged 2–7 larvae per  m2 of phloem 
(Duan et  al. 2017). It is plausible that the threshold 
EAB density that kills an ash tree varies with levels 
of tree resistance or tolerance, which are themselves 
influenced by a whole host of factors such as tree 
species, age, climates, and forest habitat conditions 
(e.g., MacQuarrie and Sabarbach 2015; Tennis and 
McCullough 2015; Dang et al. 2021).

Rationale for classical biocontrol

In contrast to the enormous economic and ecological 
impacts of EAB in North America, early Chinese lit-
erature only reported occasional damage to stressed 
or weakened Asian ash trees or susceptible North 
American ash trees in China (CASIZ 1986). Although 
at the time little was known about the biology of EAB 
and factors regulating its populations in Asia, the 
ability of North American ash trees to survive with-
out significant mortality in China strongly suggested 
the possibility of effective top down EAB population 
control by specialized natural enemies. Subsequent 
discovery of a complex of hymenopteran parasitoids 
attacking EAB eggs and larvae in northern China 
and the Russian Far East further supports this prem-
ise of top-down suppression of EAB populations by 
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the co-evolved natural enemies in its native range (see 
next Section).

Shortly after detection of EAB in North Amer-
ica, field surveys for native North American natural 
enemies attacking EAB were conducted in Michigan 
and other newly infested regions. Parasitism by native 
North American parasitoids was minimal (< 5%) 
in these invaded regions (e.g., see reviews in Bauer 
et al. 2015 and Davidson and Rieske 2016; Jennings 
et al. 2016; Duan et al. 2018). Relatively high levels 
of larval parasitism by generalist North American 
native parasitoids were observed at some heavily 
infested sites in Michigan and Ontario, with up to 
71% parasitism by Atanycolus cappaerti Marsh and 
Strazanac (Hymenoptera: Braconidae) (Cappaert and 
McCullough 2009) and ~ 40% parasitism by Phasgo-
nophora sulcata Westwood (Hymenoptera: Chalcidi-
dae) (Roscoe et  al. 2016). Augmentative releases of 
the native natural enemy P. sulcata are also currently 
under investigation in Canada (Gaudon and Smith 
2020). To date, however, no studies have demon-
strated the effectiveness of these native North Ameri-
can parasitoids in regulating EAB population dynam-
ics at low densities. Furthermore, no native North 
American parasitoids have been found attacking EAB 
eggs (Bauer et al. 2015; Duan et al. 2018), justifying 
exploration for co-evolved Asian natural enemies for 
implementation of classical biocontrol.

Implementation of an emerald ash borer 
biocontrol program

Bauer et al. (2015) and Duan et al. (2018) reviewed 
the progress in earlier phases of the classical biocon-
trol program against EAB in North America. Briefly, 
foreign explorations in the pest’s native range were 
conducted from 2003 to 2012 and led to discovery 
of three major hymenopteran parasitoids, an egg 
parasitoid Oobius agrili Zhang and Huang (Encyrti-
dae) (Zhang et  al. 2005) and two larval parasitoids, 
Tetrastichus planipennisi Yang (Eulophidae) and 
Spathius agrili Yang (Braconidae) (Yang et al. 2005, 
2006; Liu et al. 2007) in northeast China. While sur-
veys for EAB natural enemies in Japan and Mongolia 
were unproductive because of the lack of detectable 
EAB populations, field work in the Russian Far East 
later resulted in discovery of an egg parasitoid Oobius 
primorskyensis Yao and Duan (Encyrtidae) and two 

larval parasitoids (Braconidae), Spathius galinae 
Belokobylskij & Strazanac and Atanycolus nigriven-
tris Vojnovskaja-Krieger (Belokobylskij et  al. 2012; 
Duan et al. 2012a; Yao et al. 2016). Additional explo-
ration work in South Korea in areas with low density 
EAB populations infesting species of Asiatic ash in 
Daejeon and in Yangsuri recovered three natural 
enemy species including S. galinae, Tetrastichus telon 
Graham (Eulophidae), and a beetle Teneroides macu-
licollis Lewis (Cleridae) (Gould et al. 2015).

After reviewing host range data generated from 
both quarantine testing in the USA and China 
(Table  1), USDA APHIS issued environmental 
release permits for O. agrili, S. agrili, and T. pla-
nipennisi in 2007 and later for S. galinae in 2015. 
To produce large number of these parasitoids for 
environmental releases throughout EAB-infested 
regions in the USA, a mass-rearing facility was sub-
sequently constructed by 2010 in Brighton, Michi-
gan and field release guidelines for the introduced 
biocontrol agents were published (Gould et al. 2015; 
Duan et al. 2018; USDA–APHIS/ARS/FS 2021). The 
Brighton EAB biocontrol rearing facility currently 
produces ~ 400,000 female T. planipennisi, ~ 170,000 
O. agrili, and ~ 100,000 female S. galinae annu-
ally. However, production of S. agrili was purposely 
reduced because releases were discontinued in north-
ern regions after 2012 due to its lack of establish-
ment at higher latitudes (USDA–APHIS/ARS/FS 
2021). To improve the likelihood of establishment 
for both T. planipennisi and S. galinae, high num-
bers are being released at more northerly sites and at 
higher elevations where their synchrony with EAB 
larval host stages is confirmed (Gould et  al. 2020; 
USDA–APHIS/ARS/FS 2021). By fall of 2022, one 
or more of these four biocontrol agents were released 
in > 360 counties in 31 EAB-infested states, Wash-
ington D.C., and three Canadian provinces (Mapbio-
control 2022; Supplementary figure S1, S2, and S3; 
Butler et al. 2022).

After parasitoid releases were made, establishment 
and spread of the released agents were evaluated with 
various sampling methods in the field, including ash 
tree-harvesting and rearing of parasitoids from large 
bolts (Butler et al. 2022), debarking of EAB-infested 
ash trees (Duan et  al. 2013; Jennings et  al. 2013), 
field deployment of sentinel EAB larvae and/or senti-
nel eggs as traps (Jennings et al. 2018; Rutledge et al. 
2021; Quinn et al. 2022a, b), and use of yellow pan 
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traps (Parisio et  al. 2017; Petrice et  al. 2021). Field 
recovery efforts revealed that all three of the biocon-
trol agents from China (O. agrili, T. planipennisi, 
and S. agrili) were recovered from EAB one year 
after release, indicating reproductive and overwin-
tering success. However, only O. agrili and T. plan-
ipennisi were consistently recovered for two or more 
years after their last release in an area, and these two 
species are now considered firmly established and 
spreading naturally beyond their initial release sites. 
Recent studies on S. galinae in Michigan, Connecti-
cut, Massachusetts, and New York, USA, where it 
was released from 2015 to 2017, have also shown that 
S. galinae is well established and spreading widely 
(Duan et al. 2019b, 2020; Rutledge et al. 2021; Quinn 
et  al. 2022a). The establishment of S. agrili (i.e., 
recovery two years after the final release) is currently 
unconfirmed in northern states and most of the mid-
Atlantic region. However, its reproduction in EAB 
larvae was confirmed one or two years after releases 
at a few sites south of the  40th parallel, where this 
species is still being released (Hooie et al. 2015; Jen-
nings et  al. 2016; Aker et  al. 2022). Spathius agrili 
has not yet established well at any locations.

Several parasitoid recovery studies in the northern 
USA have documented rapid long-distance spread of 
T. planipennis and S. galinae following releases. For 
example, Jones et al. (2019) captured T. planipennisi 
in yellow pan traps deployed along the entirety of a 
20 km transect in New York for three years following 
parasitoid release in a localized EAB outbreak. As 
EAB spread south along the ash corridor, T. planipen-
nisi populations followed. Tetrastichus planipennisi in 
Michigan was found to have spread up to 3 km from 
release sites one year after its field releases (Duan 
et  al. 2013). Using sentinel green ash logs infested 
with EAB larvae, Quinn et al. (2022a) detected both 
T. planipennisi and S. galinae 14 km away from the 
release sites 3–4  years after their last field releases 
in New York and Connecticut. Most recently, Aker 
et  al. (2022) detected multiple established popula-
tions of S. galinae in Maryland at sites up to 90 km 
from the nearest release point approximately three 
year after release, indicating rapid, long-distance 
spread. In contrast to T. planipennisi and S. galinae, 
the egg parasitoid O. agrili appears to spread much 
more slowly in forests possibly because of its smaller 
size (~ 1  mm) and lower reproduction potential. For 

Table 1  Non-target insect taxa tested with the Asian parasitoids petitioned for environmental release in North America as biocontrol 
agents against emerald ash borer, Agrilus planipennis (adapted from Duan et al. 2018)

1 Data are compiled from Federal Register (2007, 2015), Yang et al. (2008), Bauer et al. (2015), and Duan et al. (2015a, 2019a). The 
orders of the parasitoid species presented in the table are based on the time when the species names were first published
2 Except two beneficial species (Pentatomidae and Coccinellidae), all the remaining test species are wood-boring beetles (Bupresti-
dae, Cerambycidae, Curculionidae), wood wasps (Cephidae) or plant borers (Sesiidae, Pyralidae, Carposinidae, and Cossidae)
3 ,4NA Not applicable (i.e., no Agrilus species in the taxa)
4 Out of all the tested taxa, only some species in the genus Agrilus were attacked by the emerald ash borer parasitoids

Parasitoid  species1 Orders tested No. Families 
tested

No. Species 
 tested2

No. Non-target Agrilus 
spp.  tested3

No. Non-target species 
attacked (Agrilus spp.)4

O. agrili Coleoptera 2 8 6 3
Lepidoptera 4 4 NA NA

T. planipennisi Coleoptera 3 14 5 NA
Lepidoptera 2 2 NA NA
Hymenoptera 1 1 NA NA

S. agrili Coleoptera 2 11 8 5
Lepidoptera 3 6 NA NA

S. galinae Coleoptera 5 13 5 1
Lepidoptera 1 1 NA NA
Hymenoptera 1 1 NA NA

O. primorskyensis Coleoptera 6 28 9 6
Lepidoptera 1 1 NA NA
Hymenoptera 1 1 NA NA
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example, Abell et  al. (2014) did not detect O. agrili 
at the non-release (control) sites 1.5–3 km away from 
the closest release sites until three years after the par-
asitoid’s release. Most recently, Quinn et al. (2022b) 
studied the dispersal ability of O. agrili by attaching 
freshly laid EAB eggs (sentinel hosts) on both green 
ash and white fringe trees located at various distances 
from the release point. Adult O. agrili were recovered 
at least 45 m from the release point within 4–5 days, 
and the dispersal distance was affected only by the 
time after initial release and not by hosts’ food plant 
species.

Evaluation of impacts of biocontrol on emerald 
ash borer and ash regeneration

Impact of introduced parasitoids on EAB population 
dynamics

Following environmental releases of T. planipen-
nisi, O. agrili, and S. agrili, six long-term study sites, 
each comprised of a release and non-release con-
trol plot, were established in either 2007 or 2010 in 
southern Michigan, USA to monitor EAB popula-
tion dynamics and mortality factors. At each release 
plot, ~ 1000–3000 female adults each of O. agrili, S. 
agrili, and T. planipennisi were released, and, in sub-
sequent years, infested ash trees were sampled to esti-
mate EAB egg and larval parasitism, and other causes 
of larval mortality (for details see Duan et al. 2013; 
Abell et  al. 2014). Starting in 2015 after APHIS 
issued environmental release permits, S. galinae was 
also released for two consecutive years at each of 
these Michigan sites (Mapbiocontrol 2022).

EAB egg parasitism by O. agrili increased over the 
first five years after release at these Michigan sites, 
averaging ~ 1 to 4% from 2008 to 2011 and ~ 28% by 
2014 in release plots. The natural spread of O. agrili 
from the release plots to the control plots occurred 
but was generally slow (Abell et al. 2014). The over-
all spread of O. agrili and its impact in suppressing 
EAB population growth have yet to be determined 
because sampling EAB eggs from ash bark layers and 
crevices is labor intensive and difficult to standard-
ize (Abell et al. 2014; Petrice et al. 2021). Moreover, 
parasitism of EAB eggs by O. agrili is patchy. There-
fore, more intensive sampling is needed to recover it 

and quantify its impact on EAB population dynamics 
(Petrice et al. 2021).

EAB larval parasitism by T. planipennisi in the 
Michigan plots was also low at first, averaging 1 to 
6% from 2008 to 2011, but then increased to ~ 30% 
by 2014 in both the release and control plots (Duan 
et  al. 2012b, 2013, 2015b). Life table analyses of 
seven years of data from the six Michigan study sites 
revealed that T. planipennisi contributed significantly 
to reducing net EAB population growth rates in 
smaller diameter trees in the aftermath of the initial 
EAB outbreak (Duan et  al. 2015b). During the ini-
tial outbreak phase, native generalist natural enemies 
including parasitoids (Atanycolus spp.) and wood-
peckers (such as Dryobates pubescens L., Leucono-
topicus villosus L. and/or Melanerpes carolinus L.) 
contributed to declines in invasive EAB populations 
(Duan et  al. 2014; Jennings et  al. 2016). However, 
it was the introduced specialist T. planipennisi that 
became the dominant source of EAB larval mortality 
in small ash trees in the aftermath of the EAB inva-
sion in Michigan (Duan et al. 2015b; 2017). A similar 
study in white ash forests of New York showed that 
the combination of woodpecker predation and para-
sitism by T. planipennisi significantly reduced the net 
reproductive rate of EAB in regenerating ash trees. 
At six sites in western New York the net reproductive 
rate was reduced to zero (Gould et al. 2022).

EAB larval parasitism by T. planipennisi was 
found to be concentrated in smaller diameter ash trees 
in field surveys in China, the Russian Far East, and the 
USA (Liu et al. 2007; Abell et al. 2012; Duan et al. 
2012a; Jennings et  al. 2016). The ability of T. plan-
ipennisi to parasitize EAB in larger ash trees is con-
strained by its short ovipositor (average 2 to 2.5 mm 
long), which cannot reach EAB larvae feeding under 
the thick bark (> 3.2  mm) found on the lower boles 
of ash trees that are > 12 cm DBH (Abell et al. 2012). 
Thus, T. planipennisi has a greater impact on EAB 
larval mortality in small diameter trees.

While releases of T. planipennisi and O. agrili are 
continuing, efforts are now increasingly focused on 
establishing S. agrili and S. galinae in North America 
to control EAB more successfully in larger ash trees, 
where their longer ovipositors allow them to reach 
EAB larvae under thicker bark. For example, the ovi-
positor of S. galinae averages 4 to 6 mm long, more 
than twice that of T. planipennisi. Consequently, S. 
galinae can attack EAB larvae feeding in ash trees 
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up to 30 cm DBH (Duan et al. 2012a; Murphy et al. 
2017). Based on their native distributions, S. agrili 
is presumed to be more adapted to southern climates 
and S. galinae to more northern climates (Jones et al. 
2020). However, the lack of persistent recoveries of 
S. agrili from many of the previous release sites in 
Michigan (Duan et  al. 2013, 2015b), New York and 
Maryland (Jennings et  al. 2016), Tennessee (Hooie 
et  al. 2015), and Kentucky (Davidson and Rieske 
2016) suggests that this parasitoid may not be well 
adapted to North American hardwood forests for 
EAB biocontrol. In contrast, releases of S. galinae 
that began in the summer of 2015, primarily in Michi-
gan and several Northeastern and Mid-Atlantic states, 
have resulted in successful establishment. Recent field 
studies from both Michigan and several northeastern 
USA states showed that S. galinae has established 
self-sustaining populations in release areas where T. 
planipennis had already been released or established 
(Duan et  al. 2021, 2022). Based on recent life-table 
analyses, S. galinae alone caused a 31–57% reduction 
in the net population growth rates of EAB during the 
outbreak phase (Duan et  al. 2022). Spathius galinae 
has now become the dominant parasitoid species, 
and, along with local generalist natural enemies and 
T. planipennisi, it reduced average EAB larval densi-
ties from 30 live EAB larvae per  m2 of tree phloem 
in 2015 to less than seven in 2020 (Duan et al. 2022). 
This level of reduction has contributed to ash recov-
ery and regeneration in the aftermath of EAB inva-
sion waves (Duan et al. 2022). Life table analysis of 
EAB population dynamics at these biocontrol study 
sites indicates that the net population growth rate of 
EAB was at or below replacement levels (Figs. 1 and 
2) (Duan et al. 2017, 2022).

Recent studies suggest that the success or effec-
tiveness of the current EAB biocontrol program in 
North America may be influenced by the interaction 
of EAB and parasitoid lifecycles. Jones et al. (2020) 
found that S. galinae and T. planipennisi are well 
synchronized with a lifecycle where some EAB take 
two years to develop as is the case in the northern 
USA. However, in more southern states, where most 
EAB overwinter as mature larvae in pupation cham-
bers out of reach of parasitoids emerging in early 
spring, parasitoid populations are less likely to per-
sist. In fact, Gould et al. (2020) modeled the likeli-
hood of establishment of T. planipennisi and found 

that as summer temperatures increased, the percent-
age of EAB overwintering under the bark and thus 
available to spring emerging parasitoids decreased, 
and the likelihood of establishment by T. planipen-
nisi also declined. Spathius galinae, unlike S. agrili 
which emerges in mid-summer (Yang et  al. 2010), 
also emerges early in the spring (Jones et al. 2020) 
and is likely to establish more poorly in southern 
states. Oobius agrili has two generations per year. 
The first generation emerges from diapause and 
produces the second generation progenies that are 
able to reproduce without requiring diapause. Non-
diapause adults of the second generation reproduces 
and their offspring enters winter diapause. Petrice 
et al. (2019) found that O. agrili has a critical day-
length threshold for entering diapause, and that pre-
dicted synchrony with EAB egg laying is affected 
by latitude and thus daylength throughout the sum-
mer. Oobius primorskyensis, which has different 
diapause requirements than O. agrili, might be able 
to survive and thrive where O. agrili does not estab-
lish (Larson and Duan 2016; Duan et al. 2019a).

Fig. 1  Net population growth rates  (R0) of emerald ash borer 
(Agrilus planipennis) infesting ash saplings (diameter at breast 
height or DBH = 2.5–5.8  cm), averaged from six different 
study sites in southern Michigan where the introduced larval 
parasitoids are well established since their releases from 2007 
to 2010. Solid line represents  R0 estimated using life table 
analysis by including all sources of the observed larval mor-
talities. Dashed line represents  R0 estimated by the same lifeta-
ble analysis after excluding T. planipennisi from the life table, 
assuming mortality rates from other factors would not change 
due to increases in EAB densities (Duan et al. 2017)
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Ash recovery and regeneration in the aftermath of 
EAB invasion with biocontrol

Because the high abundance of susceptible North 
American ash species facilitates rapid EAB popula-
tion growth rates, it would be extremely difficult to 
rapidly protect susceptible overstory ash trees against 
EAB in newly invaded-areas solely through the intro-
duction and establishment of limited numbers of 
specialized natural enemies from Asia. In post-EAB 
invaded hardwood forests of North America, how-
ever, where EAB populations are lower and ash den-
sities have been dramatically reduced, establishment 
of the introduced EAB parasitoids may effectively 
conserve surviving ash by moderating the frequency 
and amplitude of future EAB outbreaks, as occurs in 
EAB’s native range (see previous section). This in 
turn should allow these surviving trees to increase in 
age and their reproduction should lead to higher ash 
densities over time.

In southeastern Michigan, where establishment 
and spread of T. planipennisi and O. agrili have been 
confirmed since 2012, densities of ash and other 
native saplings were higher in forests closer to para-
sitoid release sites (Margulies et al. 2017). In another 
study of ash health in long-term EAB biocontrol 
study sites in 2012 and 2015, lower tree mortality and 
greater diameter growth were observed in large diam-
eter ash trees growing in release plots vs. those in con-
trol plots (Kashian et al. 2018). Moreover, researchers 
found that many relatively healthy ash saplings (4–16 
per 100  m2) and pole-size young trees (2–9 per 100 
 m2) have persisted, despite formerly high EAB densi-
ties that resulted in loss of most overstory ash trees 
by 2010 (Duan et  al. 2017; Gould et  al. 2022; JJD, 
TRP unpublished data). However, recovery of North 
American ash in the post-EAB invasion forests will 
take time even after EAB densities are successfully 
reduced by the introduced agents. This is because tree 
regrowth and regeneration are very slow processes, 
normally taking more than two decades for these ash 
trees to reach the overstory.

Concluding remarks

Since its first detection in the USA in 2002, EAB has 
continued to spread and cause economic damage to 
ash nursery stock and the lumber industry, degrada-
tion of ash forests, and reduction in ecosystem func-
tions in ash forests in North America. The classical 
biocontrol program against EAB, which started over 
a decade ago with the introduction and establishment 
of co-evolved natural enemies from the pest’s native 
range, has shown the ability to suppress EAB to lower 
densities, which is allowing North American ash 
species in northern hardwood forests to recover and 
regenerate in the aftermath of the EAB invasion. This 
program has now documented successful establish-
ment of the egg parasitoid O. agrili and the two lar-
val parasitoid T. planipennisi and S. galinae in EAB-
infested forests at most release sites in the northern 
USA, in areas where surveys to document parasitoid 
establishment have been conducted. While the role 
of O. agrili in suppressing EAB population growth 
requires continued evaluation, the larval parasitoids 
T. planipennisi (from China) and S. galinae (from the 
Russian Far East) have become the dominant biotic 
factors suppressing EAB population growth rates 

Fig. 2  Net population growth rates  (R0) of emerald ash borer 
(Agrilus planipennis) infesting pole-size ash trees (diameter 
at breast height or DBH = 8–27  cm), averaged across differ-
ent study sites in northeastern states (Connecticut, New York, 
and Massachusetts), where the introduced larval parasitoid 
Spathius galinae is well established since its release in 2016 
and 2017. Arrows indicate the timing of S. galinae releases: 
the small arrow represents low release numbers and the large 
arrow high release numbers. Solid line represents  R0 estimated 
using life table analysis of the observed EAB larval survival 
and mortalities caused by S. galinae and other mortality fac-
tors (e.g., woodpeckers, other native parasitoids). Dashed line 
represents  R0 estimated by the same lifetable analysis after 
removing parasitism by S. galinae from the life table, assum-
ing mortality rates from other factors would not change due to 
increases in EAB densities (Duan et al. 2022)
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and significantly reducing EAB densities in the after-
math forests in Michigan and several northeastern 
states, where these parasitoids were released between 
2007 and 2017 (Duan et al. 2015b, 2017; 2021; Mar-
gulies et al. 2017; Kashian et al. 2018). EAB densi-
ties at these biocontrol study sites are now sufficiently 
low (< 10 larvae per  m2 phloem area) to allow the 
surviving trees and saplings to recover and grow to 
canopy trees, reaching the overstory (Duan et  al. 
2015b, 2017, 2021). We expect that the suppression 
of EAB densities is likely to expand geographically 
as established populations of O. agrili, T. planipen-
nisi, and S. galinae increase and spread to new areas 
and parasitoids are released as part of the ongoing 
biocontrol release effort. However, tree regrowth and 
regeneration are very slow processes, normally taking 
decades. Even after EAB densities are successfully 
reduced and the frequency of EAB outbreaks moder-
ated by the introduced agents, long-term monitoring 
studies will be needed to fully assess the contribution 
of EAB biocontrol to the recovery and regeneration 
of North American ash in the post-EAB invasion for-
ests. We recommend expanding the current EAB bio-
control research to (1) quantify the long-term impact 
of EAB biocontrol on ash community and forest 
recovery in the aftermath of EAB as ash trees grow to 
canopy size, (2) determine parasitoid establishment in 
EAB populations in warmer regions (southern United 
States), (3) explore different regions of Asia for 
EAB natural enemies adapted to climate zones simi-
lar to those in the southern and western USA where 
EAB is now invading, and (4) evaluate the potential 
of area-wide EAB control with integration of host 
plant resistance and/or selective insecticide use (e.g., 
Davidson and Rieske 2016; Koch et al. 2021).
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