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abstract: Oaks (Quercus spp.) aremasting species exhibiting highly
variable and synchronized acorn production. We investigated the hy-
pothesis that periodical cicadas (Magicada spp.), well known to have
strong effects on the ecosystems in which they occur, affect acorn
production of oaks through their xylem feeding habits as nymphs, the
oviposition damage they inflict as adults during emergences, or the
nutrient pulse resulting from the decomposition of their bodies fol-
lowing breeding. We found negative effects on acorn production
during emergence years and the year following emergences and en-
hanced acorn production 2 years after emergence. We also found ev-
idence indicating a significant effect of cicada emergences on spatial
synchrony of acorn production by trees growing within the range
of the same cicada brood compared with different broods. These
results demonstrate that periodical cicadas act as a trophic environ-
mental “veto” depressing acorn production during and immediately
following emergences, after which the nutrient pulse associated with
the cicada’s demise enhances oak reproduction.

Keywords: acorn production, masting behavior, oak reproduction,
periodical cicadas, resource pulses, superimposed epoch analysis.

Introduction

The drivers of variable and synchronized seed production
by forest trees, known asmast-fruiting ormasting behavior,
have been of interest formore than 50 years (Kelly and Sork
2002; Koenig 2021). Evolutionarily, the ultimate factors in-
volved in masting are generally thought to be a combina-
tion of predator satiation and pollination efficiency (Janzen
1971; Isagi et al. 1997), with a smaller role for the possibility
that seed production tracks disturbances that enhance sub-
sequent seed survival (Vacchiano et al. 2021). Ecologically,
the proximate mechanisms driving masting primarily in-
clude environmental constraints on resources and pollina-
tion and weather cues (Pearse et al. 2016; Bogdziewicz et al.
2020). Notable among potential constraints affecting re-

sources are environmental “vetoes” that reduce reproduction
in some years, thereby synchronizing reproduction and
potentially driving masting behavior (Bogdziewicz et al.
2018b, 2019). Environmental vetoes are generally thought
to be weather related, but other external events can poten-
tially restrict reproduction and affect masting as well.
One such external factor that is sufficiently large-scale

and geographically broad, both as a potential environmen-
tal veto and in its effects on nutrients, is the emergences
of periodical cicadas (Magicicada spp.) in eastern and
midwestern North America. These insects exhibit a unique
life cycle lasting 13 or 17 years, nearly all of which is spent
underground as nymphs feeding on roots, often of oaks
(Quercus spp.). Following the final nymphal molt, adults
emerge from the soil to mate, feed, and oviposit on twigs
and then die after a period of 3–4 weeks (Lloyd and Dybas
1966a, 1966b; Simon et al. 2022). Several weeks later, first-
instar nymphs hatch, drop to the forest floor, and begin
their long period of root feeding underground until the next
emergence 13 or 17 years later.
Periodical cicadas are among the most abundant forest

insects, achieving densities up to 2:6#106 cicadas ha21

(Lloyd and Dybas 1966a, 1966b; Karban 1980), which, at
an average mass of ∼1.16 g (Karban 2014), is potentially
more than 3,000 kg ha21. Such tremendous productivity,
in conjunction with their synchrony, has been associated
with a significant decrease in radial growth of their host
trees during or shortly after emergence (Karban 1980,
1982; Koenig and Liebhold 2003; Speer et al. 2010). This ef-
fect could be due to either xylem feeding by last-instar
nymphs before emergence or damage inflicted on trees by
adults ovipositing during emergence. Emergences have also
been found to result in significant effects on avian predator
populations (Koenig and Liebhold 2005) and, because of
the pulse of nitrogen resulting from the decaying carcasses
of adult cicadas, have significant bottom-up effects on the* Corresponding author; email: wdkoenig@berkeley.edu.
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ecosystems in which they occur (Wheeler et al. 1992; Yang
2004).
Although periodical cicadas have been shown, both em-

pirically and experimentally, to have strong effects on the
vegetative growth of their host trees, previous experimental
work failed to detect an effect of introducing cicada eggs on
acorn production by scrub oak (Quercus ilicifolia; Karban
1985).Here, employing a different approach, we test the hy-
pothesis that periodical cicada emergences have significant
effects on acorn production of oaks, which are typical
masting species (Koenig et al. 1994; Koenig and Knops
2002; Bogdziewicz et al. 2018a) that often synchronize re-
production over large geographic areas (Koenig and Knops
2013; Koenig et al. 2017). We hypothesized that root xylem
feeding by nymphs, twig xylem feeding by adults, or the ovi-
position damage inflicted during their short emergence pe-
riodmight act as an environmental veto negatively affecting
the acorn crop just before, during, or immediately after emer-
gences (Smith and Linderman 1974; Cook et al. 2001). We
further hypothesized that the nutrient pulse resulting from
decomposing cicada carcasses might be sufficiently large to
enhance resource availability and result in a positive lagged
effect on acorn productionwithin several years following an
emergence (Yang 2004).
Spatial synchrony of some oak species can be on the scale

of hundreds of kilometers, driven largely by the environ-
mental effects of weather influencing the resources that the
trees can invest in acorn production (Koenig and Knops
2013; Koenig et al. 2017). With this in mind, we also inves-
tigated the hypothesis that cicada emergences affect spatial
synchrony of acorn production by altering the resources
available to the trees on which they feed as nymphs and
oviposit as adults. Specifically, we tested whether these ef-
fects enhanced synchrony between pairs of masting time se-
ries co-occurring within the range of the same cicada brood
(and thus where emergences occur in the same year) com-
pared with time series within the range of different cicada
broods (and thus where emergences occur in different years).

Material and Methods

Although periodical cicadas feed on a variety of broad-
leaved deciduous trees (Dybas and Lloyd 1974; White
1980), we focused on oaks (Quercus spp.), for which the
most data were available. Seed production (masting data)
was obtained from three sources: the recently compiled
MASTREE1 time series of plant reproduction (Hacket-
Pain et al. 2022), the time series of plant reproduction
compiled by Pearse et al. (2017, 2020), and a set of addi-
tional time series from Virginia andMaryland courtesy of
T. Fearer (personal communication). Duplicates were re-
moved, but otherwise, series were used as provided; that
is, we used both data that were attributable to a specific

species and data reported generally forQuercus spp., thus
potentially combining multiple oak species.
We compiled a total of 84 data sets within the range of a

cicada brood, each encompassing at least 6 years and with
data taken during at least one emergence year. Data in-
cluded 10 species of oaks (Q. alba, Q. borealis, Q. coccinea, Q.
marylandica, Q. montana, Q. palustris, Q. prinus, Q. rubra,
Q. stellata, and Q. velutina), 20 sites potentially involving
multiple species in the white oak subgenus Leucobalanus,
20 sites potentially including multiple species in the red
oak subgenus Erythrobalanus, and seven sites including
oak species not identified to species or subgenus. Of the
data with subgenus noted, 36 data sets were “1-year” spe-
cies that mature acorns in a single season (typically of the
subgenus Leucobalanus) and 41 were “2-year” species that
mature acorns in two seasons (typically of the subgenus
Erythrobalanus; Mohler 1990). The number of years of data
ranged from 6 to 28, with amean (5SD) of 15:157:5 years.
Overall, the range of years encompassed by the data was
from 1936 to 2009. All data were quantitative; that is, they
provided interval or ratio-level data on the number of
acorns counted or found in traps.
We standardized each time series between 0 (for the

least productive crop year in the series) and 100 (for the
most productive), following Koenig and Knops (2000).
We refer to these as the “scaled” acorn crop. Mean scaled
values can be considered the mean percentage of themax-
imum observed acorn crop. This procedure allowed time
series to be combined for analysis, regardless of the units
used in the survey.
Each time series was matched to the local cicada brood

using a geographical information system (ArcGIS, Red-
lands, CA) to overlay crop series coordinates onto county-
level maps of brood distributions (Marlatt 1907; Simon
and Lloyd 1982; fig. 1). Counties with apparent sympatry
of more than one brood or with low-density emergences
were eliminated from the analyses. Acorn crop time series
were spread across six different 17-year cicada broods and
one 13-year brood.
We tested for the effects of periodical cicada emergences

on acorn production using superimposed epoch analysis, a
technique used previously to examine the effects of period-
ical cicada emergences on radial tree growth and bird pop-
ulations (Koenig and Liebhold 2003, 2005) and commonly
used in the geophysical sciences (Linblad 1978; Kelly and
Sear 1984). On the basis of our hypotheses, we limited discus-
sion to the period from 2 years before emergence (year22)
to 4 years after emergence (years 1–4). Results for all years
are provided in figure A1.
We first matched years to the life cycle of the co-

occurring cicada brood. Then we calculated the mean
(595% confidence interval) scaled acorn crop from sites
within the range of each cicada brood for the emergence
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year of the brood. For each emergence (i.e., epoch) year i, we
also compiled the mean acorn crops for the other six (i.e.,
non-i) emergence years and tested for differences from the
mean acorn crop of all 7 years included in the analysis using
nonparametric Wilcoxon paired signed rank tests. We also
tested for different effects depending on developmental
time of the oaks by conducting analyses that included 1-
and 2-year species of oaks separately under the assumption
that the effects on acorn production would potentially be
delayed in the latter given the longer developmental period
of their acorns.
Tests for the effects of periodical cicada emergences on

spatial synchrony of acorn production weremade by calcu-
lating Pearson correlation coefficients between each pair of
masting series for which at least 6 years overlapped (Koenig
1999; Liebhold et al. 2004). Correlation coefficients were
then divided into those for which the two series were within
the range of the same cicada brood (within brood) and
those within the range of different cicada broods (between
brood) and were further divided into categories depending
on the geographic distance between sites. Five distance cat-
egories were used: sites!100, 100–250, 250–500, 500–750, and
750–1,000 km apart. No within-brood data were available for

either the 250–500-km category or the 750–1,000-km cate-
gory. Wilcoxon signed rank tests were used to compare the
difference between within- and between-brood correlation
coefficients. All analyses were conducted in R (ver. 4.1.2;
R Core Team 2021).

Results

Data for acorn production included between 55 and
71 time series, depending on the emergence year. (Few data
sets included data for all of the years of a cicada cycle,
and thus not all data sets were included in the analysis
of any given cycle year.) Results indicated that acorn
crops in the emergence year (year 0) and immediately
after emergence (year 1) were significantly smaller than
the mean acorn crop, while crops in year 2 were signif-
icantly larger than the mean (fig. 2). There was no signif-
icant difference between the overall mean acorn crop
and crops in the 2 years before emergence or in years 3
and 4 after emergence. This was also true for most subse-
quent postemergence years, with the exceptions of years 5,
8, and 12, each of which was smaller than the overall mean
(fig. A1).

Figure 1: Geographic distribution of periodical cicada broods used or referred to here. Sites for which acorn production was available are marked
with plus signs. Broods I–XIV are 17-year broods, and brood XIX is a 13-year brood. Adapted from Marlatt (1907) and Simon and Lloyd (1982).
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One hypothesis for the negative effect on acorn pro-
duction lasting 2 years is that the effect in year 0 is pri-
marily on the 1-year species that mature acorns the same
year while the effect in year 1 is primarily on oaks that
mature their acorns in 2 years. We tested this by con-
ducting parallel analyses comparing acorn production
in years 22 to 4 for 1- and 2-year species of oaks sepa-
rately. Contrary to the prediction, the main negative ef-
fect on 1-year species was in year 1, while the main neg-
ative effect on the 2-year species was in year 0 (fig. 3).
There was no significant difference between within- and

between-brood pairwise correlations for sites !100 km
apart or for sites 100–250 km apart in the spatial syn-
chrony analyses. There was, however, a significant differ-
ence between the within- and between-brood correlations
at sites 500–750 km apart (fig. 4). All within-brood values
in this distance class came from the geographically exten-
sive brood II (fig. 1). Restricting the analysis to pairwise
comparisons that involved brood II, the difference was
still substantial but not statistically significant (mean 5
SE; within-brood correlation coefficient p 0:4750:10;
between-brood correlation coefficientp 0.2050.11; Wil-
coxon test, P p :09).

Discussion

Periodical cicada emergences have previously been found
to have significant effects on radial growth of the cicadas’
tree hosts in several studies (Karban 1980, 1982; Koenig
and Liebhold 2003; Speer et al. 2010), although two other

studies reported no significant effects (Cook et al. 2001;
Clay et al. 2009) and a recent experimental study adding ci-
cada carcasses to the soil found no effect on leaf nutrients or
growth of young sycamores (Platanus occidentalis; Setälä
et al. 2022). Our results extend the effects of cicada emer-
gences to acorn production of oaks. Like the effects on
growth, however, such effects may be variable, as suggested
by the earlier unsuccessful attempt to detect an effect of pe-
riodical cicada emergences on acorn production by young
scrub oaks (Karban 1985).
Our results supported the hypothesis that periodical ci-

cada emergences have strong effects on masting behavior,
both as a trophic veto negatively affecting seed production
during and just after emergence years and by enhancing re-
source availability and acorn production several years fol-
lowing emergences. Regarding the environmental veto, re-
source depletion potentially caused by twig xylem feeding
by the cicada brood during emergences and the girdling
and killing of twigs in tree crowns by cicada adults while
ovipositing (Smith and Linderman 1974; Rodenhouse
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Figure 2: Histogram of mean percentage (595% confidence inter-
val) of the maximum scaled acorn crop as a function of years since
emergence (years 22 to 4) of the local periodical cicada brood.
P values from Wilcoxon paired signed rank tests are in parenthe-
ses above the bars; sample size (n p number of data sets) for each
emergence year is listed inside each bar. The dotted line is the
mean acorn crop across the 7 years included in the analysis.
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Figure 3: Histogram of mean percentage (595% confidence inter-
val) of the maximum scaled acorn crop as a function of years since
emergence (years 22 to 4) of the local periodical cicada brood. a,
Oaks that mature acorns in 1 year only (1-year species). b, Oaks that
mature acorns in 2 years only (2-year species). P values from Wil-
coxon paired signed rank tests are in parentheses above the bars;
sample size (n p number of data sets) for each emergence year is
listed inside each bar. The dotted line is the mean acorn crop across
the 7 years included in the analysis.
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et al. 1997; Cook et al. 2001) was associated with decreased
acorn production both during emergence years and the fol-
lowing year (years 0 and 1). This 2-year effect could be a
consequence of cicadas having a sufficiently negative effect
on the oaks that it takes 2 years for their productivity to re-
cover. Alternatively, it could be that the effect lasts only
1 year, affecting 1-year oak species during emergence years
and 2-year oak species the subsequent year. Analyses sep-
arating 1- and 2-year species failed to support this latter
hypothesis.
Our results do not discriminate between the effects of

twig xylem feeding by adults and the oviposition damage
inflicted by adults. They do, however, fail to support a sig-
nificant effect of belowground xylem feeding by nymphs,
as this would be likely to depress resources in the years
immediately before emergence. However, given the poor
nutritional value of xylem sap (McCutcheon et al. 2009)
and the well-documented effects of oviposition damage
(Williams and Simon 1995), it is reasonable to conclude
that xylem feeding has only a minor effect on the energy
budget of the trees and that our results are primarily due
to oviposition damage by adults, despite this effect not al-
ways having been found to be significant (Cook and Holt
2002; Flory and Mattingly 2008).
As for the effect of emergences on nutrients, the re-

source pulse provided by the decaying carcasses of cicadas
after emergence (Wheeler et al. 1992; Yang 2004) was as-
sociated with a positive lagged effect on acorn production
in year 2. Although the absolute degree of enhancement of
resources is unknown, the pulse plausibly affected stored

resources and could potentially affect subsequent seed pro-
duction of the trees, as predicted by the resource budget
model of masting behavior (Isagi et al. 1997; Satake and
Iwasa 2000; Crone and Rapp 2014). Significant negative
effects observed in three subsequent postemergence years
(years 5, 8, and 12; fig. A1) were not predicted and remain
unexplained.
Because of cicadas’ potential effects on resources, we

anticipated that spatial synchrony of acorn production
by trees growing within the range of the same cicada
brood would be greater than between trees subject to dif-
ferent cicada broods (and thus experiencing the effects
of emergences in different years). Results supported this
prediction but only among trees 500–750 km apart. Given
that within-brood values for this comparison were due en-
tirely to sites within the range of a single brood (brood II),
this result should be interpreted cautiously.
Koenig and Liebhold (2003) found significant coherence

of periodical cicada life cycles (for both 13- and 17-year
broods) with periodicities of radial tree ring growth of oaks.
Interestingly, the effects on radial growth matched those
found here for acorn production both in year 0 (both effects
negative) and in year 2 (both effects positive; table 1), con-
sistent with a lack of a trade-off between these life history
traits (Knops et al. 2007). Furthermore, Koenig and Lieb-
hold (2005) found significantly greater spatial synchrony
among populations of potential avian predators of cica-
das living within the range of the same cicada brood com-
pared with different broods separated by distances up to
250 km. Along with the results reported here, these
findings indicate that the life cycle of periodical cicadas
affects spatial synchrony of multiple components of the
ecosystem, including, possibly, reproduction of oaks.
Trees require resources to produce seeds. Our results

indicate that periodical cicada emergences are an exoge-
nous factor that affects the resources available to oaks in
ways that influence acorn production, both negatively dur-
ing and immediately following emergences—a trophic
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Table 1: Comparison of the effects of periodical cicada emer-
gence year on acorn production and the radial growth of oaks

Emergence
year

Effect on acorn
production

Effect on radial
growth

22 NS Negative
21 NS NS
0 Negative Negative
1 Negative NS
2 Positive Positive
3 NS NS
4 NS NS

Note: Effect on acorn production from this study; effect on radial growth
of oaks from Koenig and Liebhold (2003). The significant effects on radial
growth are based on trees within the range of 13-year broods only.
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veto—and positively 2 years following emergences. These
effects confirm the essential role of resources in masting
but do not discriminate among the various ways that re-
sources may affect such behavior (Pearse et al. 2016).
One notable aspect of these data is that seed produc-

tion was almost certainly measured independently of, and
most likely without knowledge of, the life cycle of the co-
occurring periodical cicada brood. There is therefore no
reason to expect bias in the data.On the contrary, periodical
cicada populations are typically highest in forest edges and
sparse in continuous closed-canopy forests (Lloyd and
White 1976). To the extent that some of the acorn crop time
series used here may have been collected in areas without
large populations of cicadas, the effects reported here are
likely conservative.
The life cycle of periodical cicadas involves many per-

plexing evolutionary and ecological problems that will
no doubt continue to elicit interest for at least another
350 years (Oldenburg 1666; Hayes 2004). That emergences
of these insects have significant, and in some cases long-
lasting, ecological consequences on the ecosystems inwhich
they occur is clear, however. Our results add reproduction
of oaks to the previously detected long-lasting effects of
emergences on other ecosystem functions, including avian
populations, tree growth, and nutrient cycling, and support
an essential role of resources, in this case influenced by an
insect in the food chain, inmasting behavior. Future studies
will no doubt continue to add to the ecological consequences
of these extraordinary insects.
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APPENDIX
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