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Abstract  Forest Service watershed-based Experimental Forests and Ranges 
(EFRs) have significantly advanced scientific knowledge on ecosystem structure 
and function through long-term monitoring and experimental research on hydro-
logic and biogeochemical cycling processes. Research conducted in the 1940s and 
1950s began as “classic” paired watershed studies. The emergence of the concept 
of ecosystem science in the 1950s and 1960s, the passage of the Clean Air Act and 
Clean Water Act in the 1970s, the nonpoint source pollution provision enacted in 
the Federal Water Pollution Control Act, and various other forces led to an increased 
interest in biogeochemical cycling processes. The ecosystem concept recognized 
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that water, nutrient, and carbon cycles were tightly linked, and interdisciplinary 
approaches that examined the roles of soil, vegetation, and associated biota, as well 
as the atmospheric environment, were needed to understand these linkages. In addi-
tion to providing a basic understanding, several watershed-based EFRs have been 
at the core of the development and application of watershed ecosystem analysis to 
ecosystem management, and they continue to provide science to land managers 
and policy makers. The relevance and usefulness of watershed-based EFRs will 
only increase in the coming years. Stressors such as climate change and increased 
climate variability, invasive and noninvasive insects and diseases, and the pressures 
of population growth and land-use change increase the value of long-term records 
for detecting resultant changes in ecosystem structure and function.

Keywords  Long-term data · Watersheds · Interdisciplinary · Nutrient cycling  · 
Ecosystem management

17.1 � Introduction

Forest Service watershed-based Experimental Forests and Ranges (EFRs) have 
been key for advancing knowledge on ecosystem structure and function through 
long-term monitoring and experimental research on hydrologic and biogeochemi-
cal cycling processes. Indeed, significant knowledge on the linkages among carbon, 
water, and nutrient cycling has been derived from EFRs whose original and primary 
mission was to understand the relationship between vegetation and hydrology. In 
most cases, the initial research conducted in the 1940s and 1950s began as “classic” 
paired watershed studies (Bosch and Hewlett 1982) where treatment watersheds 
(e.g., manipulating vegetation, fertilization, herbicide application) were compared 
to controls using streamflow measurements (amount and timing) as the primary 
response metric. Physically based water quality measurements (i.e., sediment, tem-
perature, etc.) were often also co-measured to quantify the impacts of forest man-
agement activities and to support research efforts on the development of improved 
management systems that eventually led to the best management practices (BMPs).
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EFRs have provided powerful empirical tools (i.e., regression models, numerical 
models, graphical analyses, etc.) that could be used to predict the impacts of for-
est vegetation changes on water yield and water quality in many areas of the USA. 
The value of these studies cannot be overstated; however, the watershed ecosystem 
was treated as a black box with little attention paid to the within watershed struc-
tural components and biological processes that regulate hydrologic and biological 
responses. Understanding hydrologic responses to forest management and natural 
disturbances remains highly relevant. Greater demand for drinking water and in-
creased frequency of both chronic and acute disturbances continue to increase the 
value of investments in long-term hydrologic monitoring and watershed manipula-
tion experiments. Many of these long-term watershed EFRs were, and continue to 
be, valued for more than understanding hydrologic responses.

17.2 � The Evolution from Hydrology to Ecosystem Science

The emergence of the concept of ecosystem science in the 1950s and 1960s, the 
passage of the Clean Air Act and Clean Water Act in the 1970s, the nonpoint source 
pollution provision enacted in the Federal Water Pollution Control Act, and various 
other forces led to an increased interest in water quality and the biogeochemical 
cycling processes that determine how ecosystems cycle carbon and nutrients, and 
ultimately influence water quality. Many EFRs were uniquely positioned to be ma-
jor players in ecosystem science and associated biogeochemical cycling research. 
Small watersheds provided convenient study units for defining ecosystems and test-
ing ecosystem concepts developed by E.P Odum and others in the 1950s and 1960s 
(Odum 1959; Bormann and Likens 1967; Odum 1969). Furthermore, the strength 
of watershed-based EFRs came from the long-term hydrologic, climatic, and veg-
etation records already collected, as well as the capacity to conduct experimental 
treatments that allowed for testing hypotheses related to the regulatory influences 
of vegetation on biogeochemical cycling processes. Development of nutrient bud-
gets and fluxes was an approach familiar to Forest Service researchers working at 
watershed-based EFRs who had been quantifying water fluxes using mass balance 
and classic paired watershed studies for decades. The transition to biogeochemical 
cycling required adding chemical analyses to the input and output variables and 
conducting within watershed process studies to determine linkages among carbon, 
water, and nutrient cycling processes. As of 2008, 15 EFRs (Table 17.1) are engaged 
in at least some aspect of both hydrology and biogeochemical cycling research, and 
their spatial distribution provides a wide coverage of climate, soils, and vegetation 
gradients (Fig. 17.1) in the continental USA and the islands of Hawaii and Puerto 
Rico (Adams et al. 2008). Some are relatively new EFRs (e.g., Baltimore, Hawaii), 
some began incorporating biogeochemical cycling components into their long-term 
research program within the past several years (e.g., Tenderfoot), while others have 
a history of using biogeochemical cycling approaches to address hypotheses related 
to ecosystem structure and function that extends back to the 1950s and 1970s (e.g., 
Hubbard Brook, Coweeta, Fernow, Marcell, H.J. Andrews, and Calhoun).
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The ecosystem concept recognized that water, nutrient, and carbon cycles were 
tightly linked, and interdisciplinary approaches that examined the roles of soil, veg-
etation, and associated biota, as well as the atmospheric environment, were needed 
to understand these linkages (Fig. 17.2). The complexity of the issue required non-
traditional research approaches; some of the earliest and best examples of interdisci-
plinary research come from watershed EFRs. For example, starting in the mid-1950s 
and early 1960s, several EFRs initiated biogeochemical research, usually in collabo-
ration with university partners and with external funding from the National Science 
Foundation (NSF) and other non-Forest Service-funding sources. The USDA Forest 
Service, NSF, and NSF International Biological Program (IBP) provided funding for 
some of the earliest EFR sites to initiate ecosystem studies. Examples include long-
term soil nutrient studies at the Calhoun Experimental Forest initiated in the mid-
1950s with a sample archive beginning in 1962, biogeochemical cycling research 
at Hubbard Brook (studies and long-term data collection began in 1963), and the 
Coweeta Hydrologic Laboratory (IBP-funded studies initiated in 1968; long-term 
data collection began in 1972). The primary focus of early research at the Calhoun, 
Hubbard Brook, and Coweeta was on understanding fundamental aspects of nu-
trient cycling patterns and process (Metz 1952, 1954; Bormann and Likens 1967; 
Johnson and Swank 1973; Wells and Jorgensen 1975), responses to natural and ex-
perimental disturbances, and responses to forest management, and forest growth and 
development (Wells and Jorgensen 1979; Swank et al. 1981; Swank 1988; Swank 

Fig. 17.1   Location of EFRs currently measuring streamflow, atmospheric deposition, and stream 
chemistry in relation to other monitoring sites in the USA
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and Johnson 1994; Swank and Vose 1994; Markewitz et al. 1998). H.J. Andrews 
(streamflow measurements began in 1953) examined logging impacts on streamflow 
and water quality in the late 1950s and early 1960s, and expanded into ecosystem 
studies of biogeochemical cycling in forests and streams in small watershed during 
IBP in the late 1960s (Sollins et al. 1980; Sollins et al. 1981; Sollins and McCorison 
1981;Triska et al. 1984). Research results from these early studies provide some of 
the best examples of the power of watershed analyses for understanding ecosystem 
structure and function (Franklin 1989). Building on this history, ecosystem research 
has continued and expanded at these sites to address contemporary issues using a 
combination of traditional measurement devices (e.g., weirs) and novel methods and 
approaches (e.g., stable isotopes, sensor networks, eddy covariance, etc.).

Other EFRs have incorporated biogeochemical cycling research into their re-
search programs and long-term monitoring networks as well. For example, the 
Fernow Experimental Forest began measuring stream chemistry in 1971 and con-
ducted watershed-scale fertilization studies beginning in 1989 to address issues re-
lated to acid deposition and nitrogen saturation (Adams et al. 2000; Edwards et al. 
2002; Adams et al. 2006). The Marcell Experimental Forest began measuring stream 
chemistry in 1967 (Verry 1975) and mercury and organic carbon in the 1990s to de-
termine the influence of forest management and peatlands on water quality and bio-
geochemical cycles (Kolka et al. 1999). Similarly, precipitation and stream water 
chemistry measurements at the Santee Experimental Forest (SEF) were initiated in 
early 1976. As a result, the impacts of prescribed burning on streamflow and water 

Fig. 17.2   Ecosystem components and processes regulating biogeochemical cycling in forest 
ecosystems
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chemistry of the first-order coastal forested watersheds and chemical composition 
of precipitation at the SEF were examined during the early 1980s (Richter et al. 
1982, 1983). Watershed research began in 1988 at the Luquillo Experimental Forest 
(Scatena 1989), 1 year before Hurricane Hugo passed over the Bisley Experimental 
Watersheds. This event led to detailed studies of how tropical forests respond to 
windstorms, an unprecedented record of biogeochemical, structural, compositional, 
and functional information for tropical forests (Scatena and Lugo 1995; Scatena 
et al. 1996; Heartsill-Scalley et al. 2007; Heartsill-Scalley et al. 2010; Fig. 8 in Lugo 
and Heartsill-Scalley, this volume) that is still continuing.

Forest Service EFRs also contribute to a worldwide network of long-term exper-
imental watersheds focused on biogeochemical cycling throughout North America 
and Europe. Many of these sites were established to examine the impacts of acid 
deposition on surface water chemistry. In North America, examples include the 
Walker Branch Watershed in Oak Ridge, TN (established in 1967 by the US Atomic 
Energy Commission), the Panola Mountain Research Watershed in Georgia (estab-
lished in1984 by the U.S. Geologic Survey), and The Turkey Lakes Watershed in 
Canada (established in 1980 by Environment Canada). In Europe, examples include 
the Plynlimon Watershed in Wales (established in 1968) and the Lake Gardsjon 
Watershed in Sweden (established in 1978).

Further details of the programmatic research history are available for Coweeta 
(Douglass and Hoover 1988; Swank et al. 2002), H.J. Andrews (Geier 2007), Cal-
houn (Metz 1958; Richter and Markewitz 2001), GLEES (Musselman 1994), Hub-
bard Brook (Likens and Bormann 1995; Groffman et al. 2004); Fernow (Adams 
et al. in preparation), Fraser (Stottlemyer and Troendle 1987), Marcell (Kolka et al. 
2011; Sebestyen and Kolka submitted), and the SEF (Amatya and Trettin 2007a).

17.3 � The Importance of Partnerships

A common theme among EFRs actively involved in ecosystem and biogeochemical 
cycling research is the importance of collaborative partnerships with universities, 
national programs and other federal agencies, private foundations, and other ex-
ternal funding sources. Several factors contribute to this commonality. Ecosystem 
science is complex and requires interdisciplinary approaches to understand the 
interactions among structural and functional components of carbon, nutrient, and 
water cycling processes. Although many Forest Service scientists have played ma-
jor roles in ecosystem-based research at EFRs, few EFRs have had the full range 
of scientific expertise required to address complex and comprehensive ecosystem 
studies. Hence, large teams of specialists (e.g., hydrologists, soil scientists, plant 
ecologists, etc.) are often involved to cover the topical diversity. As such, strong 
collaborative research with universities, other federal and state agencies, and other 
institutions has developed at many watershed EFR sites (Table 17.2).

The benefits of these partnerships go beyond the value of the science. Forest Ser-
vice watershed EFRs have played a major role in educating current and future gen-
erations of ecosystem and hydrologic scientists, both nationally and internationally. 

17  The Role of Experimental Forests and Ranges …
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For example, nearly 1,000 students have received graduate degrees from work con-
ducted at Coweeta (~ 270), Hubbard Brook (~ 190), Fernow (~ 50), Fraser (~ 50), 
H.J. Andrews (~ 240), Marcell (~ 30), Luquillo (~ 100), and the Calhoun and Santee 
(~ 20). National monitoring programs such as the National Atmospheric Deposi-
tion Program (NADP), the Mercury Deposition Network (MDN), National Dry 
Deposition Network (NDDN, CASTnet), and other federal agencies such as the 
US Geological Survey (USGS) have collaborated or provided data on precipitation 
chemistry, water quality, and streamflow at several of the sites (Table 17.2). For ex-
ample, USGS and National Park researcher Bob Stottlemyer added complementary 
biogeochemical research to ongoing Forest Service hydrologic studies at the Fraser 
Experimental Forest and supported this partnership for two decades.

Success in leveraging funding in addition to that provided by the USDA Forest 
Service has also been an important key to the success of many of these programs. 
Most notably, the NSF recognized that long-term approaches were required for un-
derstanding ecosystem processes, and the Coweeta Hydrologic Laboratory and the 
H.J. Andrews Experimental Forests were among the original eight NSF Long-Term 
Ecological Research (LTER) Sites established in 1980; they were followed by Bo-
nanza Creek in 1987, Hubbard Brook in 1988, Luquillo in 1988, and Baltimore in 
1997. Current and future relevance of the long-term data records is evidenced by in-
volvement of several EFRs in the formation of two emerging national networks: (1) 
National Ecological Observation Network (NEON) and (2) Urban Long-Term Re-
search Area (ULTRA). The LTER program is not the only additional funding source 
that helps sustain EFR research; however, most of these other funding sources are 
typically shorter term. Other sources of funding include the Environmental Protec-
tion Agency, the NSF, private foundations, various state agencies, USDA National 
Research Initiative, NASA, Department of Defense, Electric Power Research Insti-
tute, National Council for Air and Stream Improvement, Department of Energy, and 
various others. Another recent example of a partnership involving the SEF is the 
Turkey Creek Watershed initiative, a multiagency eco-hydrological research col-
laboration to address the critical issues of sustainable water management for the 
low-gradient coastal landscape (Amatya and Trettin 2007b). 

17.4 � Applying Ecosystem Science to Forest Management

Long-term partnerships with USDA Forest Service managers, resource specialists, 
and decision makers ensure that research conducted at the EFRs is responsive to the 
resource management challenges on National Forests. EFR scientists and staff pro-
vide a ready outlet for science delivery to land managers, and most EFRs contribute 
frequently to technical tours and educational field trips for the public. Demonstra-
tion areas and self-guided tours are also active outlets for sharing research findings.

Several watershed-based EFRs have been at the core of the development and 
application of watershed ecosystem analysis to ecosystem management (Kes-
sler et al. 1992). For example, researchers at Hubbard Brook (Likens 1989; Horn-
beck and Swank 1992), Coweeta (Swank and Johnson 1994; Meyer and Swank 
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1996), H.J. Andrews (Franklin et al. 1981), and Luquillo (Lugo and Scatena 1995; 
Lugo et  al. 1999) were leaders in providing the conceptual basis for ecosystem 
management. The combination of an ecosystem-based research approach with wa-
tershed scale experimental treatments that included forest management practices 
(e.g., logging, road construction, etc.) provided data and real-world examples to test 
the often “fuzzy” concepts of ecosystem management (Christensen et al. 1996). For 
example, research at Hubbard Brook and Coweeta provided watershed ecosystem 
analysis methods to evaluate effects of harvesting practices, acidic deposition, and 
past land use (Hornbeck and Swank 1992). Studies at Marcell and Coweeta have 
been critical to developing BMPs for forestry in the midwest (Verry 1976; Verry 
et al. 1983) and southeast regions of the USA (Phillips et al. 2000; Riedel et al. 
2007). Results from research at EFRs have had a significant impact on many forest 
management and environmental policy issues in the USA. For example, watershed 
research and studies of old-growth forest ecosystems at H.J. Andrews contributed 
substantially to the development and early implementation of the Northwest Forest 
Plan (Cissel et al. 1994).

A few EFRs expanded their research beyond the EFR boundary to demonstrate 
and test the application of ecosystem management concepts in partnership with 
natural resource managers. For example, Coweeta initiated the Wine Spring Creek 
Ecosystem Management Project (WSC) with the objective of using ecosystem-
based concepts, principles, and technology to achieve desired resource conditions 
(Swank and Van Lear 1992). Participants in the project included an interdisciplin-
ary team of over 55 scientists and managers in five research units in the Southern 
Research Station; the National Forest Systems and seven universities; state agen-
cies; environmental conservation groups; and the public. A consensus-building pro-
cess comprising of workshops attended by all stakeholders was conducted over an 
18-month period. From this consensus-fielding process, 35 desired future resource 
conditions were identified for the project area. Management prescriptions were ap-
plied to achieve desired future conditions, and then monitored for response, fol-
lowed by application of adaptive management if needed. Findings from individual 
studies proved useful in making management decisions and an EMERGY-based en-
vironmental systems assessment to integrate and quantify the balance of ecological, 
economic, and social demands placed on land resources (Tilley and Swank 2003). 
Watershed ecosystem principles were at the core of the research–management in-
terface since water transports materials within and from the forested landscape, and 
water cycles are tightly linked with carbon and nutrient cycling processes. Other ex-
amples include research synthesis products that have been developed based on work 
in northeastern (Hubbard Brook) and midwestern (Marcell) experimental forests to 
inform forest managers of ecosystem impacts of management (Verry et al. 2000). 
More recent work has integrated research results from Marcell to help understand 
the effects of land use and fragmentation on stream systems and biologic communi-
ties in midwestern landscapes (Verry 2004). At the Luquillo Experimental Forest, 
watershed research led to a new design for water extraction, which prevented the 
damming of the river and allows for water extraction without affecting the two-way 
migration of critical stream fauna (March et al. 2003). Like many EFRs, the ecosys-
tem studies at the Fraser Experimental Forest were designed to quantify the effects 
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of vegetation manipulation associated with forest management activities on soil 
nutrient cycling and stream water nutrient export (Reuss et al. 1997; Stottlemyer 
and Troendle 1999). Extensive overstory mortality caused by mountain pine beetle 
outbreak throughout much of the interior west has taken Fraser’s watershed studies 
in a new direction. Historic studies now will allow comparison of the response of 
paired basins with varying management history and stand structure (e.g., regenerat-
ing vs. old-growth forest) to a natural forest disturbance. For example, in the years 
immediately following beetle infestation resulting in the loss of 40 % of total over-
story basal area, nitrate concentrations increased in old-growth basins compared to 
the pre-infestation stream water record (Rhoades et al. 2008).

17.5 � Challenges and Opportunities

EFRs have been critical for addressing fundamental questions related to ecosystem 
structure and function and for applying ecosystem concepts to the management of 
forest and range ecosystems. This national network of long-term climate, hydro-
logic, biogeochemical, vegetation, and land-use records that address fundamental 
resource management and ecosystem concepts provides a unique niche that facili-
tates collaboration with academic institutions and other federal and state agencies. 
Despite their important historic contributions and their current role in development 
of continental-scale ecological networks aimed at addressing climate and land-use 
change, EFRs face significant challenges maintaining long-term data collection 
and research facilities management. These challenges are consistent with those dis-
cussed in recent reviews by Ice and Stednick (2004) and Stednick et al. (2004) who 
compiled lessons learned from watershed research throughout the country, with 
most information derived from Forest Service EFRs. Most EFRs struggle with the 
substantial (and growing) fixed costs associated with the collection, analyses, and 
data management (QA/QC, storage, and access systems) required for monitoring 
precipitation volume and chemistry, streamflow volume and chemistry, ground wa-
ter levels, and all other associated measurements (e.g., climate, soils, vegetation, 
etc.) required to understand ecosystem structure and function.

The value of long-term ecosystem measurements is substantial and the return 
on investment will continue to grow. As an example, stream NO3 concentration 
has been measured for more than 30 years after clearcutting a hardwood forest at 
Coweeta (Fig. 17.3). The three time trends noted on the graph represent patterns 
observed over a ~ 5-year period. If the monitoring had been stopped with the as-
sumption that the response trajectory observed over the previous 5-year period was 
going to continue into the future, the assumption (and associated interpretations of 
physical and biological factors regulating the response) would have been wrong 
in every case. While this example is based on measurements from a manipulated 
watershed, long-term baseline measurements from reference watersheds are also 
critical for detecting responses to forcings such as climate change, vegetation devel-
opment, atmospheric deposition, insects and disease, and whatever else the future 
holds. These data also provide important reference data for evaluating restoration 
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success on degraded watersheds. Second, the relevancy of EFRs will require look-
ing beyond the EFR boundary. For example, many contemporary issues are global 
(i.e., climate change, invasive) or regional (e.g., land-use change, drought) in scale, 
yet EFRs have been traditionally inward-looking with the majority of research 
activities focused on the site. To continue to be relevant, EFRs will be challenged to 
scale site-based research to larger spatial scales and expand experimental and obser-
vational approaches beyond EFR boundaries, while at the same time, maintaining 
the in-depth, long-term research within the EFR. Expanding beyond the watershed 
boundary will require that the human dimension of ecosystem science be directly 
addressed—humans are both a part of ecosystems and depend upon them for the ser-
vices they provide. Despite the importance of the human dimension, few EFRs have 
the scientific expertise or experience in integrating social and ecological sciences. 
Finally, it has become increasingly difficult to conduct manipulative experiments 
at EFRs due to the challenges associated with meeting National Environmental 
Policy Act (NEPA) requirements. Novel experiments are at the very core of testing 
complex ecosystem hypotheses, yet the “experimental” component of the EFR has 
been considerably restricted in recent years. Indeed, historical whole watershed ma-
nipulations such as preventing regrowth after cutting, species conversions, grazing, 

Fig. 17.3   Nitrate nitrogen concentration in stream water from a reference ( solid line, WS2) and 
clearcut watershed ( dashed line, WS7) at Coweeta. Three distinct tends in stream NO3 were 
observed: 1 = an increase in response to cutting and road bank fertilization, 2 = a decrease in 
response to vegetation regrowth and N uptake, and 3 = an increase in response to unknown factors 
(e.g., black locust mortality, enhanced decomposition) that are currently being examined.
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herbicides, acidification, long-term prescribed burning have yielded (and continue 
to yield) considerable insight into ecosystem processes. The ability of EFRs to ef-
ficiently conduct manipulations required to address contemporary issues will be a 
critical determinant of their value in the twenty-first century.

Despite these challenges, the relevance and usefulness of watershed-based EFRs 
will increase in the coming years. Stressors such as climate change and increased 
climate variability, invasive and noninvasive insects and diseases, and the pressures 
of population growth, and land-use change increase the value of long-term records 
for detecting resultant changes in ecosystem structure and function. Much of these 
long-term records are high quality, and improvements in networking and accessibil-
ity via electronic data bases such as HydroDB and ClimDB (http://www.fsl.orst.
edu/climdb/harvest.htm) make them available to the greater scientific community.

17.6 � Conclusions

Forest Service EFRs have played an important role in the development of ecosystem 
science. Early approaches focused heavily on biogeochemical and hydrologic cy-
cling processes as key metrics for testing ecosystem hypotheses, but have expanded 
to include understanding linkages between climate change and carbon cycling as 
well. EFRs will continue to play an important role in ecosystem science and will be 
critical for measuring and predicting impacts of an altered atmospheric environment 
and other forest health threats in the future. Long-term data and experiments are 
available from watershed-based EFRs spanning across wide geographic, vegeta-
tion, and climate gradients to test and develop models required to predict ecosystem 
responses to contemporary and future forcing variables such as climate change, 
invasive species, and other pressures associated with increased human population 
growth and growing demand for ecosystem services.
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