

Ligustrum L.

privet

Daniel A. Mikowski and William I. Stein

Mr. Mikowski is a general biologist and Dr. Stein is forest ecologist emeritus at the USDA Forest Service's Pacific Northwest Research Station, Corvallis Oregon.

Growth habit, occurrence, and uses. The genus *Ligustrum* C the privets C includes about 50 species native in eastern Asia and Malaysia to Australia, with 1 species occurring in Europe and North Africa (Bean 1978; Rehder 1940). Privets have been widely distributed and cultivated outside of their indigenous distributions, and many varieties and cultivars are recognized (Bailey 1947; Bean 1978; Ohwi 1965; Rehder 1940). At least 4 species have naturalized in the United States, several over broad geographic regions (table 1). European, or common, privet is widely naturalized in eastern North America. California privet has been planted from coast to coast in the southern United States and has naturalized extensively in the Southeast.

The privets are deciduous or evergreen shrubs or small trees ranging from 2 to 12 m in height (table 2). Maximum heights reported in the United States are 7.8, 24.9, and 12.8 m, respectively, for California, Chinese, and Japanese privets (AFA 1996). Growth form ranges from compact dense shrubs to small trees with slender spreading branches. Privets grow readily in many kinds of soil (Bailey 1947; Bean 1978; Meikle 1958) and in moisture regimes ranging from very dry to stream-side and floodplain (Lee and others 1991; Seymour 1982). They establish on roadsides, sand dunes, open and closed woodlands, tree borders, and other disturbed areas (Bailey 1947; Radford and others 1968; Seymour 1982; Wilson and Wood 1959).

The privets are valued for landscape shrubbery because of their handsome white flowers and dark green foliage; ready establishment; and resistance to insects, dust, and air pollution (Bailey 1947; Howe and Woltz 1981). California privet grows well even in the spray of salt water (Bailey 1947). Japanese privet is an excellent evergreen shrub for pruning into hedges, screens, or topiary (distinctive shapes such as globes or animals) (Vines 1983). Glossy privet is an evergreen tree suited for growing in narrow areas, making it a fine choice for a street or lawn tree. Several privets have been used as garden hedges, but their innumerable, fibrous roots are invasive and may impoverish adjacent flower beds (Meikle 1958).

Privets are also useful as wildlife habitat, windbreaks, and erosion-control plantings. Although the lengthy availability of fruits and seeds indicates that they are not generally relished by wildlife, some consumption by birds has been observed (Martin and others 1951; Van Dersal 1938; Vines 1983).

Flowering and fruiting. The terminal panicles bearing privet flowers range from 3 to 20 cm long and are usually somewhat narrower in width than length (Bean 1978). The flowers are

small, perfect, always a shade of white, and usually fragrant. However, the fragrance of some privet flowers may be objectionable at close quarters (Bean 1978). Summer is the main flowering period, but timing and duration varies by species (table 3). There is evidence that Japanese privet seedlings require winter chilling to stimulate blooming (Morita and others 1979).

The fruits are 1- to 4-seeded berrylike drupes with membranaceous to stony endocarps about 4 to 10 mm long (table 2). Fruits ripen from September to November (table 3) and those of some species often remain on the panicles into winter (Rehder 1940). Ripened fruits generally range in color from dark blue to black. The fruits in some varieties of European privet, however, are not black: *f. chlorocarpum* (Loud.) Schelle has green fruits; *f. leucocarpum* (Sweet) Schelle, white fruits; and *f. xanthocarpum* (G. Don) Schelle, yellow fruits (Bean 1978).

According to incidental observations, privet species produce seed crops almost annually, but systematic records of crop size and occurrence are not available (Dirr and Heuser 1987).

Collection, extraction, and storage. Ripe privet fruits may be stripped from panicles by hand in the fall or early winter. If the fruits are already dry, they can be stored uncleaned but prompt cleaning is generally better. Seeds can be separated from fresh or remoistened pulp by running the fruits with ample water through a macerator. For some privet species, particular care must be taken during cleaning to ensure that their soft-coated seeds are not damaged (figure 1).

Privet seeds are relatively small and vary in size and weight by species (table 4). In one sampling, seeds of European privet constituted 54% of fruit biomass on a dry-weight basis (Lee and others 1991).

Storage of cleaned European privet seeds in ordinary dry conditions was recommended long ago (Chadwick 1935), but little has been reported on the success of this practice. It seems likely that their longevity could be prolonged by closed storage at cool temperatures or even at -18 °C, which has proven satisfactory for many tree species that tolerate low moisture content.

Pregermination treatments and germination tests. Fresh privet seeds that have been cleaned will germinate in 60 days without stratification (Heit 1968; Dirr and Heuser 1987). Stored seeds, however, require 30 to 60 days of cold stratification at 0 to 5 °C to induce prompt germination (Chadwick 1935; Dirr and Heuser 1987; Heit 1968; Shumilina 1967). Fifteen days of warm stratification at 18 to 20 °C or alternating warm and cold stratification were successful treatments on some seed lots in Russia (Shumilina 1967). Some germination may occur in lengthy stratification.

Best germination results have been obtained by running tests for 60 days at 10 °C for 16 hours/day and 30 °C for 8 hours (Heit 1968). In Australian tests, optimum constant germination temperature for fresh seeds of glossy privet was 15 °C and for Chinese privet, 20 to 25 °C (Burrows and Kohen 1983). Germination of European privet seeds ranged from 88 to 92% in tests conducted in New York (Heit 1968). Germination is epigeal (figure 2), and light is not needed for germination.

Viability of seeds can also be determined by a tetrazolium (TZ) staining test as recommended by the International Seed Testing Association (ISTA 1996). Privet seeds should be soaked in water for 18 hours at 20 °C, then cut transversely at the distal end and longitudinally with a scalpel or razor blade to expose the embryo, followed by immersion in a 1% TZ solution for 20 to 24 hours at 30 °C. Those seeds with the embryo and all nutritive tissue stained red are considered viable.

Nursery practice. Fall sowing is advisable for best seedling production, maximum growth the first year, and less early seedling losses (Heit 1968). Fresh, cleaned privet seeds germinate readily when sown in the fall. In spring sowings, seeds from storage may require 1 or 2 months of stratification to ensure uniform germination with minimum hold-over (Bailey 1947; Dirr and Heuser 1987). One- or two-year seedlings are used for outplanting (Chadwick 1935).

Vegetative propagation is the preferred method for producing privet species or varieties and ensuring continuation of the same characteristics in successive generations. All species are easy to root from vegetative stem cuttings and many growers root them in outside beds (Bailey 1947; Dirr and Heuser 1987; Keever and others 1989; Regulski 1984). Non-dormant cuttings should be rooted under a mist system to prevent them from drying out during summer months. Dormant cuttings can be set in rows outdoors during the fall, winter, or early spring. Shoot and root initiation and growth of dormant and non-dormant privet cuttings can be accelerated, even doubled, by appropriate applications of growth regulators, bleach, and wetting agents (Dirr and Heuser 1987; Yang and Read 1991, 1992; Rauscherova and Tesfa 1993). Pre-emergence herbicides did not affect stock plants of glossy privet or the rooting of cuttings taken from them (Cantanzaro and others 1993).

Literature cited

AFA [American Forestry Association]. 1996. 1996B97 National register of big trees. American Forests 102(1): 20B51.

Bailey LH. 1947. The standard encyclopedia of horticulture. Volume 2. New York: MacMillan: 1201B2421.

Bean WJ. 1978. Trees and shrubs hardy in the British Isles. Volume 2, 8th ed., rev. London: John Murray Ltd. 784 p.

Burrows FJ, Kohen J. 1983. Germination of *Ligustrum lucidum* W.T. Ait. and *L. sinense* Lour. at different temperatures. Australian Weeds 2(4): 130B132.

Catanzaro CJ, Skroch WA, Henry PH. 1993. Rooting performance of hardwood stem cuttings from herbicide-treated nursery stock plants. Journal of Environmental Horticulture 11(3): 128B130.

Chadwick LC. 1935. Practices in propagation by seed. American Nurseryman 62(12): 3B9.

Dirr MA, Heuser CW Jr. 1987. The reference manual of woody plant propagation: from seed to tissue culture. Athens, GA: Varsity Press: 146B147.

Heit CE. 1968. Propagation from seed: 15. Fall planting of shrub seeds for successful seedling production. American Nurseryman 128(4): 8B10, 70B80.

Howe TK, Woltz SS. 1981. Symptomology and relative susceptibility of various ornamental plants to acute airborne sulfur dioxide exposure. Proceedings of the Florida State Horticultural Society 94:121B123.

ISTA [International Seed Testing Association]. 1996. International rules for seed testing: 1996. Seed Science and Technology 24 (Suppl.): 1B335.

Keever GJ, Cobb GS, Mills DR. 1989. Effects of floral buds, flowers, and fruit on the propagation of four woody ornamentals from stem cuttings. Applied Agricultural Research 4(4): 285B287.

Lee WG, Grubb PJ, Wilson JB. 1991. Patterns of resource allocation in fleshy fruits of nine European tall-shrub species. *Oikos* 61: 307B315.

Little EL Jr. 1979. Checklist of United States trees, native and naturalized. *Agric. Handbk.* 541. Washington, DC: USDA Forest Service. 375 p.

Martin AC, Zim HS, Nelson AL. 1951. American wildlife and plants. New York: McGraw-Hill. 500 p.

McMinn HE, Maino E. 1937. An illustrated manual of Pacific Coast trees. Berkeley: University of California Press. 409 p.

Meikle RD. 1958. British trees and shrubs. London: Eyre and Spottiswoode. 132B133.

Morita M, Iwamoto S, Higuchi H. 1979. Interrelated effects of thermo- and photo-periodism on growth and development of ornamental woody plants: 4. The effects of chilling in winter and photoperiod on growth and development of several ornamental woody plants. *Journal of the Japanese Society for Horticultural Science* 48(2): 205B212.

Ohwi J. 1965. Flora of Japan. Washington, DC: Smithsonian Institution. 1067 p.

Radford AE, Ahles HE, Bell CR. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill: The University of North Carolina Press. 1183 p.

Rauscherova L, Tesfa L. 1993. Interaction of paclobutrazol and other growth regulators in the process of rhizogenesis in *Ligustrum vulgare* L. *Scientia Horticulturae* 53: 167B173.

Regulski FJ Jr. 1984. Rooting of three landscape species in gasifier residueBbased propagation media. *Journal of Environmental Horticulture* 2(3): 88B90.

Rehder A. 1940. Manual of cultivated trees and shrubs hardy in North America. 2nd ed. New York: Macmillan. 996 p.

Rudolf PO. 1974. *Ligustrum* L. Privet. In: Schopmeyer CS, tech. coord. Seeds of woody plants in the United States. *Agric. Handbk.* 450. Washington, DC: USDA Forest Service: 500B502.

Seymour FC. 1982. The flora of New England. 2nd ed. Plainfield, NJ: Phytologia Memoirs V. 611 p.

Shumilina ZK. 1949. Podgotovka posevu semyan drevesnykh I kustarnikovykh porod. Vsesoyuznyi Nauchno-issledovatel'skii Institut Agrolesomelioratsii, Moskva-Leningrad, Goslesbumizdat. [Preparation of tree and shrub seed for sowing. 1967 Translation TT 67-51300. Springfield, VA: U.S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information. 36 p.]

Swingle CF, comp. 1939. Seed propagation of trees, shrubs, and forbs for conservation planting. SCS-TP-27. Washington, DC: USDA Soil Conservation Service. 198 p.

Van Dersal WR. 1938. Native woody plants of the United States: their erosion-control and wildlife values. *Misc. Publ.* 303. Washington, DC: U.S. Department of Agriculture. 362 p.

Vines RA. 1983. Trees of north Texas. Austin: University of Texas Press. 466 p.

Wilson KA, Wood CE Jr. 1959. The genera of Oleaceae in the southeastern United States. *Journal of the Arnold Arboretum* 40: 369B384.

Yang G, Read PE. 1991. Influence of plant growth regulators and season on growth responses of

forced woody stems. *Acta Horticulturae* 300: 173B175.
Yang G, Read PE. 1992. Pre-forcing treatments influence bud break and shoot elongation in forced woody species. *Journal of Environmental Horticulture* 10(2): 101B103.

Figure 1 *C**Ligustrum sinense*, Chinese privet: the oblong seed, exterior view (A); longitudinal section (B); cross section (C), $\times 14$.

Figure 2 *C**Ligustrum vulgare*, European privet: seedling development 1, 5, 50, and 132 days after germination.

Table 1C *Ligustrum*, privet: nomenclature and occurrence

Scientific name	Common name	Occurrence
<i>L.ovalifolium</i> Hassk.	California privet	Planted across S US from Virginia to California; extensively naturalized from Virginia to Florida
<i>L. japonicum</i> Thunb.	Japanese privet	Planted in SE US from North Carolina to Alabama, to Louisiana & Texas; naturalized locally
<i>L. lucidum</i> Ait. f.	glossy privet	Scattered from Pennsylvania S to Texas
<i>L. sinense</i> Lour.	Chinese privet, trueno de seto	Planted in SE US from Virginia to Georgia, Oklahoma, & Texas; widely naturalized
<i>L. vulgare</i> L.	European privet, common privet	Widely naturalized in E North America

Sources: Little (1979), Rehder (1940), Wilson and Wood (1959), Vines (1983).

Table 2C *Ligustrum*, privet: height, leaf habit, color, and size of mature fruit

Species	Height at maturity (m)	Leaf habit	Fruit color	Fruit size (mm)
<i>L. ovalifolium</i>	5	Deciduous or half-evergreen	Purple-black, black	5B8
<i>L. japonicum</i>	2B12	Evergreen	Purple-black, blue	6B10
<i>L. lucidum</i>	3B10	Evergreen	Purple-black, blue-black	8B10
<i>L. sinense</i>	4B10	Deciduous or half-evergreen	Purple-black, blue-black	4B7
<i>L. vulgare</i>	5	Deciduous or half-evergreen	Lustrous black	6B8

Sources: Bean (1978), McMinn and Maino (1937), Ohwi (1965), Radford and others (1968), Rehder (1940), Vines (1983).

Table 3C *Ligustrum*, privet: phenology of flowering and fruiting

Species	Flowering	Fruit ripening
<i>L. ovalifolium</i>	June–July	Sept–Nov
<i>L. japonicum</i>	June–Sept	Sept–Nov
<i>L. lucidum</i>	July–Sept	Sept–Oct*
<i>L. sinense</i>	Mar–July	Sept–Nov*
<i>L. vulgare</i>	June–July	Sept–Oct*

Sources: Radford and others (1968), Rehder (1940), Vines (1983).

* Fruits persist into winter.

Table 4C *Ligustrum*, privet: seed yield data

Species	Dried fruits		Average no. cleaned seeds/wt		Samples
	/kg	/lb	/kg	/lb	
<i>L. japonicum</i>	7,950	3,600	C	C	C
<i>L. lucidum</i>	15,000	6,800	27,600	12,500	1
<i>L. vulgare</i>	C	C	44,100*	20,000*	8

Sources: Rudolf (1974), Swingle (1939).

* Ranges of cleaned seed among samples: 28,700 to 81,600/kg; 13,000 to 37,000/lb.