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Abstract
Hurricane Katrina’s passage through south Mississippi on 
August 29, 2005, which damaged or destroyed thousands 
of hectares of forest land, was followed by massive salvage, 
cleanup, and assessment efforts. An initial assessment by 
the Mississippi Forestry Commission estimated that over $1 
billion in raw wood material was downed by the storm, with 
county-level damage percentages ranging from 50 percent 
to 60 percent across Mississippi’s three coastal counties. 
Remotely sensed data were used to provide a more complete 
picture of the damage inflicted by Katrina. Moderate (56- to 
29-m) and high (1- to 0.3-m)-resolution data were acquired 
from spaceborne and airborne platforms in natural color 
and MultiSpectral (MS) formats. Transformed data such 
as Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Moisture Index (NDMI), along with 
damage estimates obtained by interpreting aerial photog-
raphy, were also used as variables in a linear modeling 
process. This continuous damage prediction process demon-
strated the effect of incorporating forest condition thematic 
information, prestorm moderate-resolution imagery with 
transforms, and poststorm moderate-resolution imagery 
with transforms. The resulting models, all of which used a 
large number of regressors, had overall fit values of R2

adj = 
0.708 and RMSE = 0.130 with all variable types used, R2

adj 
= 0.492 and RMSE = 0.172 with all variables except the 
forest condition data, and R2

adj = 0.599 and RMSE = 0.153 
with all variables except the poststorm imagery data.

Using Remotely Sensed Data and Elementary Analytical  
Techniques in Post-Katrina Mississippi to Examine Storm  
Damage Modeling

Keywords: AWiFS, damage modeling, forest damage, 
hurricane damage, Katrina damage, timber damage.

Introduction
Overview
Hurricane Katrina made landfall in Mississippi near the 
outlet of the Pearl River on August 29, 2005, as a category 3 
storm on the Saffir-Simpson scale (Knabb and others 2005). 
Loss of life and damage to property were catastrophic, as 
New Orleans was flooded, and many towns and cities along 
the Louisiana and Mississippi Gulf Coasts were destroyed 
or severely affected. Rural areas whose economy depends 
on agriculture and forest industry were devastated also. 
Accordingly, preliminary damage estimates obtained 
through aerial surveys of the affected region by the Mis-
sissippi Forestry Commission (MFC) exceeded $1 billion 
in damaged wood and timber stumpage. These estimates 
underscore the need for more continuous damage estimates 
that can be developed when remotely sensed, storm, and 
pre-existing thematic data are employed in the modeling 
process.

Moderate-resolution remotely sensed data, from 
sources such as Landsat, have been used in modeling vari-
ous forest parameters related to timber harvesting (Healey 
and others 2005), canopy closure (Butera, 1986, Cohen 
and others 2001, Larsson 1993), and other forest attributes 
(Cohen and others 2001, 2003). Cohen and others (2001) 
modeled percentage green canopy cover in a predominantly 
evergreen softwood region of the Pacific Northwest, similar 
to south Mississippi, with a coefficient of determination 
(R2) of 0.74 and a root mean squared error (RMSE) of 12 
percent. Similarly, Healey and others (2005) used a series 
of transformations on independent variables as well as a 
natural logarithm transformation on percentage cover, the 
dependent variable, in a series of simple linear regressions 
to determine adequate univariate models. The results of 
their work were promising with regard to using single Short 
Wave InfraRed (SWIR) bands, as well as the Normalized 
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Difference Vegetation Index (NDVI) and Normalized Dif-
ference Moisture Index (NDMI) transformations described 
in the methods section of this work.

Damage assessments of past catastrophic tropical 
storms in the Southeast United States were not able to use 
the large number of image sources and processing tech-
niques that are presently available. The use of geographic 
information systems (GISs) and remote sensing techniques 
in these assessment activities were, for the most part, 
restricted to a minor role in the wake of Hurricane Hugo 
in South Carolina (Nix and others 1996) with an expanded 
role noted for Hurricane Andrew (Jacobs and Eggen-
McIntosh 1993, Ramsey and others 1997, 2001). With these 
two storms and the studies mentioned, a progression of 
technology and techniques can be noted. In Nix and others 
(1996), remote Hugo forest damage assessments were made 
in a GIS through aerial photointerpretation and digitiza-
tion. Jacobs and Eggen-McIntosh (1993) also used visual 
image interpretation to perform assessments of Hurricane 
Andrew-induced damage with the imagery taking the form 
of airborne digital video frames. The two works led by 
Ramsey (Ramsey and others 1997, 2001) show a final evolu-
tion to satellite acquired moderate (Landsat)- and coarse 
(Advanced Very High Resolution Radiometer or AVHRR)-  
resolution imagery, along with storm data, in identifying 
Andrew’s damage in a largely hardwood area in south 
Louisiana.

Objectives
Because the MFC assessment was performed rapidly 
through aerial viewing using expert approximation, a 
more definitive and continuous damage assessment model 
was sought. In our work here, we studied the viability 
and possible methods needed to develop predictive storm 
damage assessment models. The acquisition and analysis of 
remotely sensed data acquired before and after hurricane 
Katrina, along with various storm data and pre-existing 
thematic data created for the Mississippi Institute for Forest 
Inventory (MIFI), were used to determine the feasibility of 
mapping storm impacts in a more accurate and continuous 
form.

Beyond characterization of Katrina-induced forest 
resource damage, we explored model development to 
predict the likely scope and severity of damage from future 
hurricanes. This procedure involved use of MIFI forest 
thematic data, storm data, prestorm imagery (which can 
be simulated to note the effects from different size and 
intensity storms), and poststorm imagery to determine their 
relative importance in producing predictive damage models. 
The implications here involve two aspects: (1) model 
performance without poststorm data so that predictive 
equations can be used to forecast future hurricane damage, 
and (2) level of predictive model improvement afforded by 
use of forest type and age thematic layers that accompany 
inventory protocol employed by MIFI.

Methodology
Remotely Sensed Data
Acquiring Remotely Sensed Data—

Moderate-Resolution Data
Indian Remote Sensing (IRS) Advanced Wide Field Sensor 
(AWiFS) data were acquired for use in pre- versus post-
storm damage assessment as a moderate spatial resolution 
(56 m at nadir) data source. These data were selected for 
several reasons:
• Relatively high visibility, although minor cloud  

coverage was noted in both pre- and poststorm   
images.

• Compatibility of spatial resolution with Landsat   
Thematic Mapper (TM) data, which were used in 
the creation of thematic data also used in this study. 

• Acquisition dates of June 19 (prestorm) and  
September 4 (poststorm), less than one week after 
Katrina’s landfall in Mississippi.

Spectral attributes associated with the AWiFS sensor 
included four bands representing the following reflected 
energy wavelengths, respectively: green (520-590 nm), 
red (620-680 nm), near-infrared (NIR) (770-860 nm), and 
shortwave infrared (SWIR) (1550-1700 nm).

High-Resolution Data
We used prestorm digital imagery taken throughout the 
summer of 2004 (before Katrina’s landfall) that was 
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acquired through the United States Department of Agri-
culture’s (USDA) National Agriculture Inventory Program 
(NAIP) and made available via the internet by the Missis-
sippi Automated Resource Information System (MARIS). 
These data were acquired in natural color, sampled at 
a spatial resolution of 1 m, and presented as mosaiced 
county-level images. Within 2 months of Katrina’s landfall, 
a private contractor using a Leica ADS40 sensor provided 
post-Katrina digital imagery for the U.S. Army Corps of 
Engineers (USACE) over south Mississippi from 31° N to 
the Gulf Coast. These poststorm data were made avail-
able by the United States Geological Survey (USGS) via a 
disaster-support Web site. They were acquired in natural 
color with an approximate 0.3-m spatial resolution.

Preprocessing Remotely Sensed Data—
Using the existing thematic MIFI data as a georegistration 
base, the AWiFS data were georegistered in Leica’s ERDAS 
Imagine 8.7 using first- or second-order polynomial models 
(ERDAS 2003) in order to achieve subpixel spatial root 
mean squared (RMS) values. The resulting products were 
thus projected into the Mississippi Transverse Mercator 
(MSTM) (MARIS 2005), as this was the native projection 
of the MIFI base data. This procedure, as recommended 
by Lillesand and Kiefer (2000) and Lu and others (2004) to 
analyze multidate imagery, ensured highly aligned over-
lapping pixel registration so that data extraction for later 
modeling purposes would use correctly sampled reflectance 
and thematic values. In contrast to AWiFS data, visual 
inspection of the spatial orientation of high-resolution data 
sets appeared to match the MIFI base data, so no georegis-
tration was required.

Cloud cover and corresponding shade, although 
minimal, was present in the AWiFS data sets and required 
removal to reduce the possibility of sampling erroneous 
reflectance data. To achieve this removal, both pre- and 
poststorm rectified AWiFS imagery was clustered using 
the Iterative Self-Organizing Data Analysis Techniques 
(ISODATA) algorithm in Imagine (ERDAS 2003) with 
250 clusters, 12 maximum iterations, and a convergence 
threshold of 0.95. The resulting two thematic layers were 
next interpreted, in a heads-up fashion, coded, and recoded 
in order to create two cloud and cloud shadow (code = 1) 

versus noncloud (code = 0) masks. These masks were then 
used to remove all cloud-tainted spectral information from 
the rectified AWiFS images by recoding the eight image 
layers to zero (four per pre- and poststorm imagery) in these 
problem areas.

Transforming Remotely Sensed Data—
In exploring various simple band differences, general 
trends were noted to be unique but subtle for the green and 
red, NIR, and SWIR bands across the anticipated storm-
damaged region. Visually, the red and green bands appeared 
highly correlated with each other. Because the red appeared 
more contrasting moving orthogonally from the anticipated 
center of damage just east of the eye’s track (Boose and 
others 1994), it was chosen for further examination along 
with NIR and SWIR bands.

Previous studies confirmed the choice in directly using 
the red, NIR, and SWIR bands (Hame 1991), along with 
their use in two transformations. These transformations 
employed two band ratios proven to work in forest change 
detection: Normalized Difference Vegetation Index (NDVI) 
(Healey and others 2005; Jin and Sader 2005; Mukai and 
Hasegawa 2000; Ramsey and others 1997, 2001; Sader and 
others 2003) and Normalized Difference Moisture Index 
(NDMI) (Healey and others 2005, Jin and Sader 2005, 
Sader and others 2003). These indices not only use the vis-
ible and infrared bands of interest through proven functions, 
they also serve to reduce the dimensionality of the data to 
be analyzed. The formulae for NDVI and NDMI are:
  NIR band – Red band
  NDVI =             (1)
  NIR band + Red band
and
  NIR band – SWIR band
  NDVI =             (2)
  NIR band + SWIR band

Land Cover and Type Thematic Data
In Collins and others (2005), the creation of thematic data 
for use by MIFI in a statewide forest inventory, per the 
inventory’s procedural pilot study (Parker and others 2005), 
was outlined and resulted in forest age and type thematic 
layers. The forest-age layer used an approximate 5-year 
temporal resolution back to the genesis of the Landsat 
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program in the early 1970s and covered the entire State. In 
other words, this data set attempted to identify the year of 
regeneration for areas harvested between 1972 and 2003 
in 5-year increments. The data were created using Landsat 
Multi-Spectral Scanner (MSS) and TM data with the 
finished products’ resolution taking on the finer TM resolu-
tion (29 m). The forest-type layer mapped the entire State 
into water, other nonforest, regenerating forest, softwood, 
mixed softwood-hardwood, and hardwood classes using 
2002–03 TM imagery. Data were georegistered to USGS 
Digital Ortho Quarter Quadrangles (DOQQs) county-level 
mosaics, making this the base resolution and orientation for 
all subsequent analyses involved in this study.

Ancillary Storm Data
Four data set types were obtained from the Internet for use 
in this study as storm attribute layers. The first two types 
were acquired from the Atlantic Oceanographic and Meteo-
rological Laboratory (AOML), a subunit of the National 
Oceanic and Atmospheric Administration’s (NOAA’s) 
Hurricane Research Division (HRD), in 14, 3-hour-interval 
gridded surface wind data sets depicting conditions from 
21:00 CDT, August 28, 2005, to 12:00 CDT, August 30, 
2005. The grid spacing of these data as the storm passed 
through south Mississippi was approximately 0.054 degrees 
in latitude and longitude resulting in a linear distance of 
approximately 5.25 km in easting and 6 km in northing near 
the city of Bay St. Louis, Mississippi. These data included 
sustained surface windspeed (mph) and direction (azimuth 
degrees), both of which are believed to be influential in 
structural (Powell and Houston 1996) and forest damage 
(Ramsey and others 2001) over time. The third data type 
also came from the AOML and was another gridded surface 
wind product demonstrating the maximum sustained 
windspeeds (mph) inflicted by Katrina as it moved through 
the entire State. The fourth and final storm attribute data 
obtained for this project included a storm surge extent 
vector layer acquired from Federal Emergency Manage-
ment Agency’s (FEMA’s) Katrina recovery GIS Web site 
(http://www.fema.gov/hazard/flood/recoverydata/katrina/
katrina_ms_gis.shtm).

Model Creation
Independent Variable Assignment—

Remotely Sensed Data
Using the two described band transforms, NDVI and 
NDMI, and the four original bands from both pre- and 
poststorm imagery, 18 remotely sensed variables were 
defined. These variables were created using bands one 
through four for both pre- and poststorm data sets as well as 
a delta variable whereby the six prestorm layers, comprising 
bands and transforms, were subtracted by their poststorm 
counterparts.

Land Cover and Type Thematic Data
The MIFI thematic data demonstrating statewide age and 
forest types were used as continuous variables and model 
strata, respectively. In this construct, age, which could at 
best be determined back to 1972, was used as a continuous 
variable with detected year of regeneration being reduced 
by 2, to account for nearly half the temporal resolution of 
the age-creation process, and then subtracted from 2005, 
the year of Katrina’s landfall. If the year of regeneration 
was not found for a forested area, we assumed it was older 
than the timeframe afforded by the Landsat program, and it 
was coded with age 40 (2005 minus 1965). This represented 
a reduction of one temporal resolution interval of 5 minus 
the interval midpoint correction of 2 years for 1972, the last 
year of detection. Our assumption was that within the three 
forest types beyond this age, stand-stocking levels and size 
were probably more alike than not. As a discriminant, the 
types could or could not be used as classes for stratifying 
three different models for softwood, mixed, and hardwood 
areas.

Ancillary Storm Data 
Among the four data set types downloaded for use in this 
study as storm attributes, one was removed from consid-
eration, one was left alone, and two were compressed into 
a series of time- and location-dependent storm variables. 
The surge variable was removed owing to low sampling 
intensity because the data set indicated that 21 hardwood, 
4 mixed, and 0 softwood plots were located within the area 
of mapped surge inundation. Unlike the 3-hour intervals of 
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windspeed and direction data, the maximum sustained wind 
variable required no manipulation for use in the model, but 
it did require interpolation. Using Imagine 8.7, these grid-
ded data were surfaced to the same resolution and orienta-
tion as the MIFI base data by using a linear rubber sheeting 
method (ERDAS 2003).

The first step in transforming the direction and speed 
attributes from the gridded 3-hour-interval surface wind 
field data into more usable variables was to create a Micro-
soft Excel spreadsheet. This helped interpolate the wind 
data at each plot into more continuous values with regard to 
speed; direction, as azimuth drastically steps between 360° 
and 0°; and time, which, in this case, was interpreted into 
3-minute (0.05-hour) intervals. Azimuth values were con-
verted to sine and cosine trigonometric function values, and 
the plot nearest a respective grid point at that point’s desig-
nated time was allowed to assign its sine, cosine, and wind-
speed values to that plot at that time. Time intervals located 
between fixed 3-hour periods were next assigned weighted 
x- and y-coordinate locations away from a weighted location 

of the storm’s eye. Weighting was defined so that proximity 
to the upper or lower 3-hour time bound for an interpolation 
time was used to create proportional weights, with the two 
weights summing to one, for calculating the location and 
variable weighted averages at an interpolation point. These 
weights were next used in weighted variable averaging 
by taking an interpolation time point’s weighted location, 
with respect to storm eye, and calculating windspeed and 
directional values from the corresponding above and below 
bounding time points at the same relative weighted location. 
In Figure 1, a graph of the resulting 3-minute windspeeds 
for a plot located near Katrina’s eye track, illustrates an 
example of this process’s result.

The resulting 3-minute windspeed, sine, and cosine 
values were next used to create wind duration and stabil-
ity variables per the anticipated applicability (Powell and 
Houston 1996, Ramsey and others 2001) of these variables 
in hurricane damage modeling. The duration variables  
were calculated over given windspeed thresholds in 10 mph  
intervals from 30 to 100 mph. For example, the variable for 

Figure 1—This is a plot-level graph of the resulting 3-minute-interval continuous wind- 
speeds over a 39-hour period from 21:00 CDT, August 28, 2005, to 12:00 CDT August 30, 
2005, for a plot located along Katrina’s eye track (note the drop to near zero in the graph’s 
middle), illustrating the converted data used in determining wind duration and stability 
variables.
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wind duration at or above 40 mph at a specific plot would 
count the number of 3-minute time intervals attributed to 
that plot that were at or above 40 mph and multiply that 
count by 0.05 hours to get duration in hours. The stabil-
ity values were also calculated over given windspeed 
thresholds in 10 mph intervals from 30 to 100 mph. They 
were done such that the sine and cosine values, isolated for 
interpolated time points that met the windspeed threshold 
criteria, were used to calculate two variances, one each for 
sine and cosine, and then combined into a pooled variance.

Dependent Variable Assignment—
To replace the lack of field data due to ongoing storm 
damage field sampling, we performed interpretations of 
high-resolution imagery, pre- and poststorm, with the 
expectation that aerial-viewed canopy damages were highly 
correlated with field-measured forest damage. The sample 
area included Mississippi’s six southernmost counties, 
corresponding to that portion of south Mississippi from 31° 
N to the Gulf Coast. The USACE imagery was acquired 
and stratified into 54 interaction classes based on combined 
forest type, maximum sustained wind (max mph windspeed 
of >93.5, 93.5-76.5, and <76.5), and age (year constraints 
of >1993, 1993-88, 1987-83, 1982-78, 1977-70, and <1970). 
Then we randomly allocated 5 plots into each interaction 
class, yielding 270 total plots.

Crown closure interpretations and resulting pre- and 
poststorm differences began with the creation of GIS-gener-
ated 0.084-ha rectangular plots (29 by 29 m). Interpretation 
of these plots involved use of GIS-generated plot boundar-
ies and regular dot grids to employ a systematic method 
for determining green canopy coverage. The grids were 
created in a 5 by 5 construct, allowing each dot to represent 
4 percent of plot canopy, with outer rows and columns 
being spaced 2.9 m from their immediate plot bounds and 
inner rows being spaced 5.8 m in sequence from each other 
(Figure 2). Using this grid, interpretation was reduced from 
estimating plot-level green canopy percentages to counting 
the dots in each plot that fell on interpreted green canopy 
pixels. The purpose in creating this data set was to develop 
a bank of prestorm, poststorm, delta (i.e., pre- minus post-
storm), or all, canopy data for use in model construction.

Resulting interpretation data were next edited to 
remove plots that fell within the cloud-classified areas in 
the AWiFS-derived cloud mask. This masking reduced the 
plot count from 270 to 252 with an additional 7 plots being 
removed in the photointerpretation phase owing to lack of 
forest canopy (this either indicated error in the MIFI forest 
type layer or canopy removal since acquisition of the 2003 
imagery used to generate the MIFI product). The resulting 
245 plots were situated across the mapped softwood, mixed, 
and hardwood forest types in counts of 82, 83, and 80, 
respectively.

Upon reviewing these edited prestorm, poststorm, and 
delta canopy measures, the intuitive dependent variable 
choice appeared to be the delta canopy variable (defined 
as pre- minus poststorm green canopy cover percentage). 
However, because these data were largely dependent on 
prestorm canopy data, this variable was added to the list 
of independent variables and incorporated into the list of 
prestorm variables. Also, we believe that prestorm canopy 
can be created for the study area with moderate to good 
success (Cohen and others 2001).

Model Definition and Fitting—
The model creation stage of this study was focused on 
creating multiple linear regression models using ordinary 
least squares. The sought-after final models were hoped to 
be parsimonious with optimistic fit values, which, in this 
case, were high adjusted coefficient of determination or 
R2

adj values and low RMSE values, for the variable types 
of interest in the study’s objectives. Initial attempts to use 
the 37 previously described variables (Table 1) in single 
linear terms produced unsatisfactory fit values. Immediate 
improvements, however, were noted with the introduction of 
interaction and quadratic terms (Rawlings and others 1998). 
The result of creating all these new variables from the above 
single variables increased the number of possible variables 
from 37 to 740.

With 740 possible variables available for use in this 
modeling exercise, a two-step process was organized to 
reduce the possible number of variables to 40 or fewer, 
which represented about half (or fewer) the number of  
plots in each forest type. The first reduction took place 
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Figure 2—A plot-level view of a photointerpretation plot bound and grid. This image illustrates a highly storm-damaged plot from Pearl 
River County, Mississippi (note the southeast to northwest oriented downed stems). In the inset, the 5- by 5-point grid used in determin-
ing green canopy percentages along with the plot’s boundary can be seen.

using stepwise regression methods in SAS’s PROC REG 
procedure (SAS 1999). Using this method, eight model 
types were reduced using some or all available variables: an 
overall (regardless of forest type) pre- (including ancillary 
storm variables) and poststorm data model; an overall 
prestorm data model; three (for each forest type) prestorm, 
poststorm, and MIFI variable (forest age) models; and three 
prestorm and MIFI variable models. In order to regulate 
that the output stepwise models identify 40 or fewer inde-
pendent variables for phase two reduction, the significance 
entry level (SLENTRY in SAS) was set at 0.5, whereas the 

significance stay level (SLSTAY in SAS) was accordingly 
and incrementally adjusted up or down from an initial 
setting of 0.25 in 0.01 increments until 40 or fewer variables 
were isolated in the final step.

After isolating eight reduced but still cumbersome 
models, the leaps-and-bounds algorithm (Furnival and 
Wilson 1974) in PROC REG (SAS 1999) was employed to 
hone in on the eight best remaining variables from the field 
of 40 or fewer with respect to R2

adj and RMSE. The use of 
R2

adj was deemed advantageous at this point because this 
value tends to be more comparable than R2 over models 
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involving different numbers of parameters (Rawlings 
and others 1998). This best-eight rule followed the rule of 
thumb to have 10 observations for each variable while being 
mindful that the hardwood strata had only 80 observations. 
To make a more theoretically sound set of model decisions, 
we also used Hocking’s (1976) prediction criteria of using 
the smallest model, with regard to variable count, that had a 
Mallow’s Cp (Rawlings and others 1998) value of less than 
or equal to 1 plus the particular model’s variable count.

Results
In Table 2, the best eight variable models illustrate moder-
ate fits with RMSE values below 0.15 in only one model 
and R2

adj values above 0.55 in two models. Between the 
no MIFI variables pre- and poststorm models, there was 
a dramatic increase in R2

adj from 0.176 in the prestorm 
model to 0.439 in the pre- and poststorm situation along 

with a matching magnitude reduction in RMSE from 0.219 
to 0.181, respectively. In order to compare these no MIFI 
models to MIFI models, which were created in multiples 
of three matching the three MIFI forest type designations, 
a set of pooled RMSE and R2

adj values were created. This 
creation occurred by combining the three models’ error sum 
of squares, in the case of RMSE values, and by combining 
the three error and total corrected mean sum of squares  
considering all three models’ degrees of freedom, in the 
case of the R2

adj values. Comparing these fit values for 
the eight variable models again demonstrated the drastic 
improvement in model fit. With the use of poststorm 
imagery, we observed R2

adj values increasing from 0.381 
to 0.506 and RMSE decreasing from 0.190 to 0.170. Addi-
tional gains were made in using the MIFI data in models 
by increasing prestorm no MIFI versus pooled R2

adj values 
from 0.176 to 0.381 and reducing RMSE from 0.219 to 

Table 1—Individual (main effects) model variables and their types 

  Pre- Post-   Pre- Post-
Variable MIFI storm storm Variable MIFI storm storm
Forest age X   Delta AWiFS NDVI   X
Prestorm green canopy  X  Delta AWiFS NDMI   X
Max sustained wind  X  Wind duration > 30 mph  X 
Prestorm AWiFS band 1  X  Wind duration > 40 mph  X 
Prestorm AWiFS band 2  X  Wind duration > 50 mph  X 
Prestorm AWiFS band 3  X  Wind duration > 60 mph  X 
Prestorm AWiFS band 4  X  Wind duration > 70 mph  X 
Prestorm AWiFS NDVI  X  Wind duration > 80 mph  X 
Prestorm AWiFS NDMI  X  Wind duration > 90 mph  X 
Poststorm AWiFS band 1   X Wind duration > 100 mph  X 
Poststorm AWiFS band 2   X Wind stability > 30 mph  X 
Poststorm AWiFS band 3   X Wind stability > 40 mph  X 
Poststorm AWiFS band 4   X Wind stability > 50 mph  X 
Poststorm AWiFS NDVI   X Wind stability > 60 mph  X 
Poststorm AWiFS NDMI   X Wind stability > 70 mph  X 
Delta AWiFS band 1   X Wind stability > 80 mph  X 
Delta AWiFS band 2   X Wind stability > 90 mph  X 
Delta AWiFS band 3   X Wind stability > 100 mph  X 
Delta AWiFS band 4   X
Note: A listing of all 37 single variable or main effects used in the study’s modeling exercise along with pertinent variable type classifications used 
in model comparisons. Even though MIFI forest type data were used, they were employed defining strata, not as a model variable.
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Table 2—Model fit results by variable types and variable selection criteria 

   Best eight  
   variable   Hocking’s   Other models 
   models  criteria models   of interest

Variables Forest
type(s) used type(s) R2

adj RMSE No. of var. R2
adj RMSE No. of var. R2

adj RMSE

Prestorm, post- All 0.4392 0.1805 23 0.4923 0.1717
   storma

Prestorm, post-  Softwood 0.6796 0.1168 24 0.7893 0.0947
   storm, MIFI
Prestorm, post-  Mixed 0.5701 0.1800 25 0.8588 0.0860
   storm, MIFI
Prestorm, post-  Hardwood 0.4897 0.2009 15 0.5881 0.1805
   storm, MIFI
Prestorm, post-  Pooled 0.5058 0.1694  0.7081 0.1302
   storm, MIFIa

Prestorma All 0.1758 0.2188 21 0.2765 0.2050
Prestorm, MIFI Softwood 0.3366 0.1680 26 0.6405 0.1237
Prestorm, MIFI Mixed 0.4300 0.1727 37 0.7735 0.1088 25 0.7142 0.1223
Prestorm, MIFI Hardwood 0.3647 0.2242 37 0.7542 0.1394 15 0.5258 0.1937
Prestorm, MIFIa Pooled 0.3812 0.1896  0.7345 0.1242  0.5994 0.1525
Note: The modeling exercise results indicating variable types used and MIFI forest type usage along with fit values (adjusted R2 or R2

adj and RMSE) and 
number of variables used, when not fixed by the variable selection method.
a All types or pooled model rows used in numerical data type comparisons.

0.190. Similarly, by incorporating MIFI thematic data, 
poststorm models were affected with an R2

adj increase from 
0.439 to 0.506 and an RMSE reduction from 0.181 to 0.170.

The models derived using Hocking’s (1976) method 
(Table 2) illustrate the same general trend as the eight 
variable models. Again, improvements with the addition 
of MIFI and poststorm data were noted in overall (with no 
MIFI data) and pooled (with MIFI data) R2

adj and RMSE 
values, except in cases where the application of Hocking’s 
method yielded models with very large variable counts 
(2 instances used 37 variables). In an attempt to rectify 
this problem, the other models in Table 2 were created for 
models that still used a large number of variables. These 
further reduced models corresponded to the Hocking’s 
identified MIFI, prestorm, and poststorm variable models in 
the number of employed variables for mixed and hardwood, 
MIFI, and prestorm models. Examination of these modified 
models indicates one difference from the eight variable 
comparisons. The pooled fit values for the prestorm and 
MIFI models (R2

adj = 0.599 and RMSE = 0.153), in tandem 

with the prestorm, poststorm, and MIFI models (R2
adj = 

0.708 and RMSE = 0.130), when compared to the pre- and 
poststorm model (R2

adj = 0.492 and RMSE = 0.172) and 
prestorm model (R2

adj = 0.277 and RMSE = 0.205) indicate 
an increased advantage from the eight variable models with 
regard to using MIFI data as opposed to poststorm image 
data.

Discussion
Model and Variable Characteristics
The prediction-minded evaluation of data/variable types 
reported in the previous section states the obvious—that 
more independent variables tend to improve model predict-
ability of dependent variables. This situation says nothing 
about the direct applicability of all the work involved with 
this study and the possible creation of predicted damage 
values across or outside of the study area, or both, with the 
various models produced. What is of importance in this 
work, however, is where, with respect to the variables and 
variable types used, the gains in model fit occur, although 
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no statistical inference can be associated with these gains.
We expect that similar models can yield predicted canopy 
changes with RMSE values at or near 0.13 (13 percent) 
for situations like the passage of a strong hurricane over 
a mostly undisturbed Southern forested area, such as 
south Mississippi before Katrina. These estimates can be 
improved from the forest industry perspective. Industry is 
often focused on the softwood resource in the South, which 
is where the best of the stratified models we developed 
demonstrated a RMSE 0.09 (9 percent). Model fit was 
comparable in mixed and softwood stands but was poor in 
hardwoods. This could be the result of a variety of issues 
from some unknown data bias that was unintentionally 
introduced into the modeling process or some natural 
occurrence unknown and unaccounted for in these analyses. 
These poor results could also illustrate the inherent dif-
ficulty and complexity in modeling conditions in hardwood 
areas.

Potential model flexibility to create comparable predic-
tive models, regardless of the use of poststorm imagery, 
was a much sought-after finding in this study with mixed 
results. The reason for this exploration was to display the 
applicability of modeling anticipated storm damage prior to 
a weather event. This focus was best explored in compar-
ing the other models (or adjusted) pooled fit values for the 
MIFI and prestorm variables models and Hocking method 
pooled MIFI, prestorm, and poststorm variables models 
where RMSE values were 0.153 versus 0.130, respectively. 
This comparison is somewhat indecisive as MIFI, prestorm, 
poststorm variables models outperformed the MIFI and 
prestorm variables models but only by a small amount (dif-
ference in RMSE of < 0.03). Similarly, in the corresponding 
eight variable models, there was a difference of 0.02 with 
respect to RMSE. This difference is of a smaller magnitude, 
however, than the lack of MIFI data comparisons of overall 
pre- and poststorm variables (R2

adj = 0.492 and RMSE 
= 0.172) versus prestorm only variables (R2

adj = 0.277 
and RMSE = 0.205). In comparing the Hocking pre- and 
poststorm model (RMSE = 0.172) versus the adjusted 
pooled MIFI and prestorm model (RMSE = 0.153) and the 
corresponding eight variable models (RMSE = 0.181 versus 

RMSE = 0.190), it does appear that use of the MIFI data in 
model development at least offsets, maybe even improves, 
model performance in using prestorm data with the absence 
of poststorm data.

Possible Model/Variable Improvements
Actual field damage values are being collected in MIFI’s 
Southeast region, which includes Jefferson Davis, Coving-
ton, Jones, Wayne, Marion, Lamar, Forrest, Perry, Greene, 
Pearl River, Stone, George, Hancock, Harrison, and Jackson 
Counties. These data are the direct metric of interest in this 
series of work, as opposed to the photointerpreted canopy 
metric used here. Incorporation of these data is expected to 
improve development, although model fits may worsen, of 
any hurricane damage assessment model subsequently cre-
ated owing to the dependent variable’s added meaning. The 
data could also help address a noted problem of hardwood 
defoliation versus damage. Poststorm high-resolution 
imagery indicated that many hardwood areas, particularly 
in the Pearl River bottom, were defoliated with only minor 
damage to tree crowns and boles. Differences in this defo-
liation versus damage aspect of hardwood areas may also be 
more sensitive to individual hardwood species, which is one 
of the field metrics, as opposed to the whole hardwood type.

Along with the analysis of field data, future work will 
also incorporate statistically inferential results, such as vari-
able significance, as opposed to the simple fit comparisons 
made in this work. These analyses will provide more mean-
ingful results with potential adaptations for collinearity and 
validation of model assumptions. Model development for 
repeated application may also be achieved in order to create 
a more robust and possibly automated product.

Conclusions
Clutter and others (1983) defined risk in the statement: “the 
inability to estimate future cash flows with certainty is the 
basic cause of risk in an investment.” At play in this analysis 
are other issues that effect the probability of acquiring an 
expected return. Examples include rotation lengths (with 
which MIFI type information may be of further use), 
intermediate weather conditions (i.e., droughts, floods, etc.), 
and market fluctuations. Whereas this study is not a risk 
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assessment in totality, it does place a foundation, albeit not a 
large one, for development in this direction.

The implications developed in this work with regard 
to variable creation and the data types utilized are promis-
ing for future meaningful region-level continuous damage 
assessment model creation. The thrust will continue to 
locate additional ancillary data that may serve to further 
supplant the advantages of poststorm imagery incorporation 
in the development of these models. Field data will soon 
replace the photointerpreted data so heavily relied upon 
here, and with it a new set of obstacles are expected. In  
all, however, it does appear possible to create a meaningful 
damage model that will aid in both economic recovery  
and assessment of risk associated with storms similar to 
Hurricane Katrina, possibly before said storms occur.
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