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Abstract. To determine thc influence of  fire and thermokarst  
in a boreal landscape, we investigated peat cores within
and adjacent to a permafrost collapse feature on the Tanana
River Floodplain   of Interior  Alaska. Radioisotope dating, di-
atom assemblages, plant macrofossils, charcoal fragments,
and carbon and nitrogen content of the peat profile indicate
~600 years of vegetation succession with a transition from
a terrestrial forest to a sedge-dominated wetland over 100
years ago, and to a Sphagnum-dominated peatland in approx-
imately 1970. The shift from sedge to Sphagnum, and a de-
crease in the detrended tree-ring width index of black spruce
trees adjacent to the collapse coincided with an increase in
the growing season temperature record from Fairbanks. This
concurrent wetland succession and reduced growth of black
spruce trees indicates a step-wise ecosystem-level response
to a change in regional climate. In 2001, fire was observed
coincident with permafrost collapse and resulted in lateral
expansion of the pcatland. These observations and the peat
profile suggest that future warming and/or inereased fire dis-
turbancc could promote permafrost degradation, peatland ex-
pansion, and increase carbon storage across this landscape;
however, the development of drought conditions could re-
duce the success of both black spruce and Sphagnum, and po-
tentially decrease the long-term ecosystem carbon storage.

Introduction

The spatial patterns of vegetation in the low lying flood plains
oflnterior Alaska are controlled by disturbances such as fire,
permafrost degradation, flooding, and drainage. In particular,
permafrost degradation is altering ecosystem structure and
therefore, the capacity of northern wetlands to store carbon
(Camill et al., 2001; Turetsky et al., 2002a). Because approx-
imately one-quarter of the world's soil carbon is currently
sequestered in boreal peatlands (Gorham, 1991; Apps et al.,
1993; Turunen et al., 2002), degradation of permafrost could
result in significant carbon emissions. Both carbon accumu-
lation and methane emissions have been shown to increase
in peatlands underlain by degrading permafrost as water ta-
bles increase and nutrients are released by the thawing soils
(Robinson and Moore, 2000; Turetsky et al., 2000; Vitt et al.,
2000; Camill et al., 2001; Turetsky  et al., 2007).     Permafrost
thaw can also result in water body drainage (Yoshikawa et al.,
2003; Jorgenson and Osterkamp, 2005; Riordan et al., 2006)
potentially exposing wetlands to aerobic decomposition and
carbon release, Different peatland communities store vary-
ing amounts of nutrients and maintain different soil  environ-
ments (Camill and Clark, 1998). For these reasons, future
carbon accumulation in permafrost peatlands will depend not
only on plant and microbial responses to a warming climate,
but on vegetation succession driven by fire and permafrost
thaw.

Permafrost degradation observed over the last half century
has altered ecosystem structure in boreal peatlands (Yilt et
al., 2000; Camill et al., 2001; Jorgenson et al., 2001; Turet-
sky et al., 2002b; Christensen et al., 2004). In upland ecosys-
tems permafrost thaw has resulted in patterned ground and
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thermokarst pits (Osterkamp et al., 2000). In lowland ecosys-
tems the loss of ice-rich permafrost has caused the conver-
sion of forests to wetlands (Osterkamp et al., 2000; Jorgen-
son et al., 2001; Jorgenson and Osterkamp, 2005). Though
air temperature influences the soil thermal regime, other fac-
tors such as ground ice content, soil texture, topography,
slope, aspect, hydrology, winter snow fall and fire interact
to determine rates of permafrost degradation (Osterkamp and
Rornanovsky, 1999; Jorgenson and Osterkamp, 2005). Dis-
continuous permafrost in Alaska is particularly sensitive to
climate warming (Swanson, 1996) and warming of ground-
ice has been observed at sites across the Interior (Osterkamp
and Rornanovsky, 1999). Since 1949, permafrost collapse
has increased by 21% on the Tanana Floodplain of Interior
Alaska (Jorgenson et al., 2001).   By the end of the next
century, permafrost could be eliminated from this landscape
(Jorgenson et al., 2001).

Climate models project that the western boreal forest will
experience significant warming over the next century (Stocks
et al., 1998). Historical data indicate that between 1950 and
2000 annual surface temperatures in Interior Alaska have
warmed by approximately 2oC (Keyser et al., 2000); how-
ever, during this period no clear trend in growing season pre-
cipitation has occurred (Keyser  et al., 2000; Serreze et  al.,
2000). Warmer temperatures will increase evaporation and
evapotranspiration; and therefore, peatlands are projected to

experience drier conditions in the future (Wrona et al., 2004).
Warmer and drier summers could result in an increase in the
frequency and severity of stand-replacing fires (Harden et al.,
2000), and therefore, the extent of permafrost degradation
(Jorgenson et al., 2001; Camill, 2005). These changes in the
disturbance regime could have an even larger effect on the
release of greenhouse gas emissions than direct physiologi-
cal responses of plants and microbes to a warming climate
(Chapin et al., 2000).

To understand the interactions between fire and
thermokarst on wetland succession, we examined a
Sphagnum-dominated permafrost collapse in a fire-scarred
Picea mariana (black spruce) forest. We hypothesize that
fire initiated collapse expansion at this site. The loss of
transpiration, decrease in summer albedo, and decrease in
organic matter thickness after fire can trigger permafrost
degradation (Jorgenson et al., 2001; Yoshikawa et al., 2003).
Though, fire has been linked with permafrost degradation
in the peatlands of Western Canada, most studies identify
climate warming as the dominant trigger of collapse in the
boreal zone (Thie, 1974; Zoltai, 1993; Kuhry, 1994; Camill
and Clark, 2000; Jorgenson et al., 2001). Furthermore, the
connections between climate, fire, and fire induced thaw
have been little studied because wc are still developing
the best techniques to address these complex ecological
interactions.



2 Methods

2.1 Study area

In June 2001 an extensive fire, known as the Survey-Line fire
burned south-west of Fairbanks, Alaska. In July 2001, one
month following the fire, we established a transect from the
centre of a permafrost collapse scar (640 N 38.448', 1480 W
20.009', 132m elevation) into the surrounding burned black
spruce forest (Fig. 2) to monitor the ecological effects of this
fire on a wetland permafrost landscape. Between our initial
site survey and the summer of  2002,   the periphery   of the col-
lapse feature had undergone a 6 m lateral expansion.

The field site is located southwest of the Bonanza Creek
experimental forest in Interior Alaska, approximately 1km
south of the Tanana River (Fig. 1). Variable vegetation, hy-
drology, and topography from legacies of flooding, fire and
thcrmokarst have created a complex landscape mosaic (Jor-
genson et al., 2001). Approximately 5% of the area between
the active floodplain and the extensive fens to the south is
collapse. In a 16 km2   area around the study site we identified
91 similar collapse features from aerial photographs which
varied in size from 700-111   400 m2. Wc surveyed the site on
5 August 2004, using a Topcon GTS 220 Series All-Weather
Total Station (Topcon America Corporation, Paramus, NJ,
USA), and found the area of the collapse to be 175 m long
by 75 m  wide or approximately   15000 m2 with a surface de-
pression of up to 0.5 m  (Fig. 2), slightly larger than the mean
collapse size in the study region.

The study site is underlain by ice rich permafrost alluvial
deposits of the Tanana River, and is located in an area of the
floodplain that is not subject to groundwater upwelling (Jor-
genson   et al., 2001). Water level in wells (2 m screen depth)
did not correlate significantly with river stage (National Wa-
ter Information System, USGS) in the two years of  this study
(linear regression, inverse transformation, p-value = 0.540),
suggesting that this site is isolated from the active floodplain
of the Tanana River (Myers-Smith, 2005). The peatland is
best characterized as a poor fen, receiving the majority of its
water and nutrients from atmospheric sources (personal com-
munication Jill Bubier, August 2001, Mount Holyoke   Uni-
versity and Merritt Turetsky, Michigan State University).

In 2004, three ecological zones with distinct vegetation as-
scmblagcs were observed along the transect, and were char-
acterized as the peatland, moat and burn. The peatland was
considered to be the Sphagnum mat, the moat, the area ofre-
cent soil subsidence, and the burn, the adjacent burned forest.
The dominant vegetation types in the peatland were Sphag-
num spp. (primarily S. ripariutn with increased S. squarro-
sum towards the margins of the collapse), Carex spp. (primar-
ily C. canescens, C. aquatilis, and C. rostrata)  and Eriopho-
rum  angustifolium.   The vertical mean growth of the Sphag-
num  mat was 2.5  ± 1.2 cm per year (±SE,   11=19, measured
evcry 0.5 m along two transects   from the edge to the centre of
the permafrost collapse). The moat was dominated by Erio-

phorum vaginatum tussocks and Carex spp. Standing water
was present in the moat throughout both the growing seasons
of 2003 and 2004, allowing for the growth of aquatic vegeta-
tion. Prior to the Survey-Line Fire, the burn was a low-lying
open-canopy Picea mariana forest with an understory oftus-
sock vegetation. After the 2001 fire, the dominant vegetation
types were Eriophorum vaginatum tussocks, Grasses, Betula
spp., Salix spp., Potentilla palustris, Rhododendron groen-
landicum, Vaccinium uliginosum, Vaccinium vitis-idaea and
Chamaedaphne calyculata.

The peatland, moat and burn zones had unique soil profiles
(Figs. Zb, 3 and 4). The peatland organic layer was >0.5m
thick and the active layer was  >   2 m. The moat was the low-
est portion of the transect, with an above surface water table
for much of the growing season. The organic matter thick-
ness -was highly variable (2-40 cm) in the burn because   of



tussock-hollow microtopography, patchy fuel consumption,
and variable soil subsidence patterns. The maximum thaw
depth in the burn was ~80 cm.

2.2 Active layer depth

To monitor changes in thaw depth, we pushed a 120cm or
200 cm fiberglass frost probe into the soil until impenetrable
ground was reached. The length of the probe inserted into
the earth was considered to be the depth to frozen soil. We
conducted three replicate measurements of the active layer
every 3 m along both sides of the transect at each visit to the
site (everyone to two weeks throughout the growing season).

2.3 Soil coring

In March of 2003 we drilled 7.7 cm diameter-cores using
a gasoline-powered permafrost corer from the centre of the
peatland (peatland core, P26, 0 m along the transect, 64 cm
long), the edge of the Sphagnum mat (moat core, M27, 12 m
along the transect, 54 cm long) and within the burn (burn
core, B22, 27 m along the transect, 45 cm long). We sampled
three additional cores from the centre of the peatland (P 1,
P2, PS6, and PS5) for radio isotope dating (see Table 1 and
Myers-Smith (2007) for further descriptions of cores at this
site). Minimal rotation or deformation of soil layers and sed-
iments occurred, because coring was conducted during win-
ter when ambient temperatures were below freezing. Cores
were stored frozen, until each were sectioned into 2 cm depth

increments using a radial saw. Samples were sub-divided:
half of the sample was preserved frozen, one quarter was air
dried, used to calculate bulk density and then prepared for di-
atom analysis, the final quarter was used for physical descrip-
tions, plant macrofossil identification, dating, and chemical
analysis. We oven-dried the chemical analysis soil samples
at 50-65°C and ground them in a tumbling ball mill for 2-
5 min, until a homogeneous powder was formed. These soil
samples were analyzed for '%C and %N using a Carlo Erba
EA1108 CHNS analyzer (CE Instruments, Milan, Italy) and
a COSTECH ECS 4010 CHNS-O analyzer (Costech Ana-
lytical Technologies Inc., Valencia, CA, USA). Sample stan-
dard errors were ±0.01%) for nitrogen, ±0.45% for carbon.
We conducted gross-stratigraphic descriptions of plant mi-
crofossils and soils for each depth section of the three cores.
We determined the dominant vegetation in the peat and moat
core substrate, and sorted out peat fruiting bodies and leaves
for isotopic analysis. We counted charcoal layers in the cores
and estimated charcoal deposition by emptying dried sam-
pies of a known volume and depth (on mean 4.5 cm - 3 ) over a
10 cm x 10 cm grid and counting macroscopic charcoal frag-
ments (greater than 0.05 mm in diameter) in each cm grid
cell. Due to the limited size of the sample, we did not mea-
sure total charcoal abundance in the core.



2.4 Diatoms

Diatoms have been shown to be a useful indicator of peatland
succession, local hydrology, and fire disturbance (Kienel et
al., 1999; Moser et al., 2000; Ruhland et al., 2000) and can be
more sensitive to changes in water chemistry than the Com-

monly used peat indicators such as pollen and macrofossils
(Ruhland et al., 2000). In this study, we employed diatom
analysis to indicate changes in pH and nutrients in the aquatic
environment. To survey the diatom community, we pro-
cessed the three cores from the peatland, moat and burn that
were sampled every 2 cm by depth using methods described



by the Queen's University Paleoecological Environmental
Assessment and Research Laboratory (PEARL) and personal
communications (K. Ruhland, J. P. Smol, J. Barron, and
M. Peterson). We digested the dried material, consisting of
organic matter with varying amounts of sediment, in Kjeldahl
digestion tubes in a heating block. We used 50:50 solution
by molecular weight of concentrated H2SO4 and HNO3 and
digested for 3 days at 95°C or until the disappearance of all
organic matter. We diluted the resulting solution with deion-
ized water to a neutral pH. We mounted the samples using the
Pleurax high refractive index mounting medium (prepared by
W. Dailey, University of Pennsylvania). To determine the
prevalence of the different diatoms, we counted 400 valves
(or for one sparse sample, four slides) for each sample. Par-
tial diatoms were only counted when more than half of the
valve remained and the genus was clearly distinguishable.
We identified samples according to Foged (1981), Krammer
and Lange-Bertalot (1986-1991), and personal communica-
tions with K, Ruhland and M. Peterson. All diatom valves
were keyed out to genus, and when we were able we iden-
tified species, we refer to these taxa together (genus and
species) as diatom categories (see Fig. 8).

2.5 Treerings

We used dendrochronology to link the below ground data to
above ground observations of the response of this system to
collapse. Tree-ring analysis provides a record of the response
of the black spruce trees to changing climate and ongo-
ing thermokarst, allowing for speculation about the response
of this landscape to future climate change. We harvested
twenty-one fire-killed tree cross-sections from the margin of
the collapse and in the surrounding burn in the growing sea-
son of 2004 (Wilmking and Myers-Smith, 2008). We mea-
sured ring width (sliding stage, Velmex Inc., Bloomfield, NY,
USA, resolution: 0.001 mm) for two radial transects of the
tree cross-sections, which showed the least amount of com-
pression wood. To build site chronologies, we first cross-
dated tree ring series with the program Cofecha (R. Holmes,
Laboratory of Tree Ring Research, University of Arizona)
and adjusted possible dating errors and then standardized
ring-widths with the program ARSTAN using traditional
negative exponential or straight line fits (R. Holmes, Labora-
tory of Tree Ring Research, University of Arizona) to remove
the age-related variation in growth rate. These site chronolo-
gies were used for climate-growth correlations with temper-
ature and precipitation data from a composite of climate data
from the University Experiment Station (1906-1947) and
Fairbanks International Airport (1948-2000; Wilmking et
al., 2004). In addition, we recorded the presence and amount
of compression-wood for each year in the disk, an indicator
of leaning which is interpreted to be related to frost-heaving
and permafrost collapse (Camill and Clark, 1998).

2.6 Core dating

To estimate the age of peat deposits we utilized AMS ra-
diocarbon, 210Pb and 137Cs isotopic dating techniques (Old-
field et al., 1995; Turetsky et al., 2004, ; Table 1). We used
the 210Pband 137Cs  data to develop three age estimate mod-
els. Two mass accumulation rates (MAR, g cm-2 yr-1) de-
rived from unsupported 210Pb arc the constant flux-constant
accumulation rate (CF-CS) and the constant rate of supply
(CRS) methods (Appleby and Oldfield, 1992). The CF-CS
MAR is derived from the slope of  the In (unsupported 2I0Pb)
versus cumulative dry mass. The CRS method (CRS) as-
sumes a constant rate of supply of unsupported 210Pb and
calculates the MAR of each successive layer by creating a
ratio of the unsupported 210Pb activity (decays per minute
(dpm) x cm -2) below the layer to the total integrated activ-
ity to derive the age of the layer. The 137 CS-MAR is de-
rived by assigning dates of 1964 to the peak activity in 137 Cs
(34 cm) and 1952 to the depth of first occurrence of mcasur-
able 137 Cs 1952 assuming a constant mass accumulation rate
at this depth range (Fuller et al., 1999). In Table 2, we report
the mean and range (minimum and maximum) of these three
age models. The 137Csand 210Pb ages agree to within 10 to
15 years, with the divergence likely due to differing mobility
in the deposit.

Sphagnum fruiting bodies, charcoal and bulk peat sam-
pIes from the core collected from centre ofthe pcatland were
analyzed for 14C using accelerator mass spectrometry (Ta-
ble 1; AMS, 1.5 SDH.1 Pelletron Accelerator, National Elec-
trostatics Corporation, Middleton, Wisconsin, USA) at the
Lawrence Livermore National Laboratory Centre for AMS
and the UC Irvine W. M. Keck Carbon Cycle AMS facility.
Peat samples from 2, 8, 20, and 24-54 cm-depths were an-
alyzed for   137Cs, total 210Pb and 226Ra   activity by gamma
spectrornetery at the USGS Sediment Radioisotope Labora-
tory in Menlo Park (Fuller et al., 1999).

2.7 Statistical analysis and data reporting

We determined diatom-delineated zones using constrained
cluster analysis by information content (CONIIC) by the pro-
gram Psimpoll 3.01 (K. D. Bennett, Uppsala University),
We performed regressions in JMP IN 5.1.2 (SAS Institute
Inc., Cary, NC, USA). Field and analytical data arc reported
for all sites and samples at the Bonanza Creek LTER web-
site http://www.Iter.uaf.edu listed under the investigator Isla
Myers-Smith, Archive samples arc stored at US Geological
Survey at Menlo Parle

3 Results

3.1 Age estimates

Ages as a function of depth were estimated for the top
54 cm of the peatland core from radioisotope profiles with
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correction for compaction within the core (Table 2). The
radiocarbon age estimates for the sylvic (tree derived)
peat samples in the peatland core are 335 yr BP at 56 cm,
475 yr BP at 58cm, and 585 yr BP   for a piece of charcoal
at 56 cm depth. The age estimate for a sedge peat sample
from 54 cm in the peatland core is 245 years before present
(yr BP).

3.2 Core stratigraphy

Stratigraphic analyses of the sediment cores from the centre
of  the peatland and moat, include records of carbon, nitrogen,
charcoal, soil density, and vegetation assemblage (Figs. 3 and
4). Soil bulk density and the percent nitrogen were variable
with depth through both cores; however, following peaks
in charcoal deposits, greater bulk density corresponded with
lower CN.

We found three distinct organic matter substrates in the
core from the centre of the peatland: sylvic peat from 53-
59 cm, sedge-dominated  peat from 27-53 cm, and Sphag-
num-dominated  peat from 0-27 cm (Fig. 3). We identi-
fied four organic matter substrates in the moat core: sylvic
peat from 33-41 cm, sedge-dominated peat from 25-33 cm,

Sphagnum-dominated peat from 9-25 cm and a return to
sedge-dominated peat from 0-8 cm (Fig. 4). Diatom assem-
blages were very well preserved in the peat sediments in the
top 48 cm of the peatland core, and the top 44 cm of the moat
core; however, at the base of both cores diatoms were sparse,
many of the valves were broken and sediment obscured the
slides. The diatom assemblages for the peatland core delin-
eated with CONIIC into three zones that agreed loosely with
the three substrates: sylvic, sedge-dominated, and Sphag-
num-dominated peat (Fig. 5); however, in the moat core the
patterns arc less clear (Fig. 6).

3.3 Peatland core zone I

Zone 1 (53-59 cm) consisted of charred sylvic peat and well
decomposed sedges. Bulk density in this region of the core
was high (0.1-1.1 g cm-3) and C:N ratios were low (11-28).
The diatom species Pinnularia spp., Hantzschia amphioxys
Var: major, Eunotia praerupta, Navicula amphibola, Stau-
roneis phoenicentreon were present in low densities at the
bottom of the sedge-dominated portion of the core. The
diatom assemblages in zone 1 were similar to that at 4 cm
depth in the terrestrial soil core from the adjacent burned



forest (Fig. 7), with high densities of Pinnularia spp., Eu-
notia Faba, Navicula cryptocephala, Fragilaria spp., and the
aerophilic species Hantzschia amphioxys Var major.  Con-
spicuous (~0.5 mm in diameter) charcoal pieces were found
in the sylvic peat deposits, and a peak of charcoal was found
at 46 cm depth just prior to the transition   to the second diatom
zone.

3.4 Peatland core zone 2

Zonc 2 (27-53 cm was composed   of sedge  -  dominated   peat.
Bulk densities were less in this portion of the core (0.06-
0.09 g cm-3); however, C:N ratios remained low (22-29).
The diatom species Gomphonema spp., Cymbella ventricosa
var    groenlandica,   Navicula    tripunctata   var.    arctica, and
Nitzchia spp, were common in this middle portion of the
peatland core. A peak of E. rho mho idea, Tabellaria floc-
culosa (girdle bands), and E. faha at 42 cm coincided  with a
peak in % nitrogen. A peak of E. tenella, C. ventricose, N.

tripunctata, Pinnularia spp., and E. fiexuosa at 36 cm corrc-
sponded to another peak in bulk density and % nitrogen. Es-
timated carbon accumulation averaged 171 ±42 gC m-2 y-1

(or 6±2 mmy-I, ±range) for this sedge-dominated zone.

3.5 Peatland core zone 3

Zone 3 (0-27 cm) was made up of primarily Sphagnum-
dominated peat. In this portion of the transect bulk den-
sities were lowest (0.02-0.06 g cm-3) and C:N ratios were
highest (27-84). Three peaks in charcoal abundance were
found during this zone of the core (Fig. 3). A shift in
the diatom assemblage was initiated 6 cm beneath    the shift
to Sphagnum  -  domination  at 33 cm (Fig.  5) in the macro-
       fossil record.  In the uppermost Sphagnum-dominated  por-
tion of the core (zone 3), Eunotia rhomboidea, E. nyman-
niana, E. glacialis, and Navicula subtilissima were preva-
lent. Peaks in specific diatom abundance (Fig. 5) often cor-
related with specific physical and chemical characteristics of



the core. For example, the abundance of E. nymanniana
responded positively to charcoal deposits and tracked bulk
density (cross correlation, r=0.62, p-value<0.003, d =  -l;
Figs. 3 and 5). Estimated carbon accumulation averaged
172±154gCm-2y-1 (or 11±7mmy-1, ±range) for the
Sphagnum dominated portion of the core.

3.6 Treerings

For the period from 1930 to 2000, we found a negative re-
lationship between growing season air temperature and the
dctrcndcd tree-ring width index for black spruce in the terres-
trial portion of the landscape (Fig. 8; Wilmking and Myers-
Smith, 2008) The tree ring width index for trees growing in
the wetter environment at the margins of the collapse feature
showed weaker relationship with temperature (linear regres-
sion, R2=0.04, P=O.11). Compression-wood was observed
in 14 of the 21 trees sampled.

4 Discussion and conclusions

Diatom assemblages, plant macrofossils and soil chemistry
in the sylvic soil layers from both peatland and moat cores
indicate that a terrestrial forest pre-dated the initiation of the
collapse, The  %C, %,N, C:N, and density in the organic mat-

ter above the mineral horizon was similar in all of the cores
from the transect, and woody peat and charcoal were found
at the base of both the peatland and moat cores. The diatom
assemblage above the sylvic peat layer in the peatland and
moat cores were analogous to assemblages observed in mod-
ern soils from the terrestrial black spruce forest adjacent to
the peatland. This assemblage of alkaliphilous to pH neu-
tral, salt tolerant, and mesotraphentic to eutraphentic (tol-
erant of nutrient enrichment) taxa of diatoms (Pinnularia
spp., Navicula amphibola, Stauroneis phoenicentreoni and
the aerophilic diatom taxon Hantzschia amphioxys var. ma-

jor indicate less acidic, nutrient rich soil (Van Dam et al.,
1994).

Radio isotope dating ofthc transition from (burned) sylvic
organic matter to sedge-dominated peat layers in the peatland
and moat cores help to reveal the history of this permafrost
collapse. Though uncertain, the radio isotope age estimates
suggests that the collapse likely formed over 100 years ago
(Figs. 3 and 5), from a landscape similar to the present-day
black spruce forest. The charcoal date of 585yr BP in the
sylvic peat may not represent the age at the time of the col-
lapse, because this soil likely underwent cryoturbation, or-
ganic matter loss from fire, and mixing from root growth,
combining older soil layers with younger. There are no dates.
for the older sedge dominated peat just above the sylvic peat;



however, this portion of the peatland core has a lower CN
ratio and likely a much slower peat accumulation rate. The
dating estimate for the youngest portion of the core is also
imprecise because there is uncertainty and error associated
with 210Pb and 137Cs dating technique.

During the initial collapse, the sedge-dominated zone
(zone 2) was colonized by circum-neutral, mesotraphentic
(indifferent to trophic conditions) and epiphytic (growing on
plants, rather than planktonic) diatom species. This is con-
sistent with a nutrient rich peatland environment found in
sedge-dominated ecosystems today (Ruhland et al., 2000).
The dominant vegetation, diatom assemblage, and peat
chemistry changed at the beginning of zone 3 (between 26
and 32 cm depth in the core). The shift in the diatom assem-
blage occurred around 1969± 15 yrs and predated the shift
from sedge to Sphagnum peat and CN ratio that occurred
around 1978± 13yrs. Diatoms in Siberia have previously

been shown to respond first to changes in peatland chem-
istry and then secondarily to changes in bryophytes (Ruhland
et al., 2000). 1n our study, the shift in diatom assemblage
may be in response to the shift in temperature in the Fair-
banks region (Fig. 8), which seemed to be part of a synoptic
scale shift to warm and dry conditions since 1974 (Barber
et al., 2004). Since a sedge-dominated wetland is consistent
with wetter, more nutrient rich conditions (Zoltai, 1995). the
change to Sphagnum-domination suggests that conditions be-
came drier, more acidic and/or more nutrient poor in the col-
lapse perhaps as a result of consecutive warm growing sea-
sons in the late 1970s.



Diatom assemblages and plant macrofossils comprise the
most recent zone of the peatland core (zone 3) and indi-
cate that the peatland collapse has become an acidic poor
fcn within the past 3 decades (Fig. 6). This Sphagnum-
dominated portion of the core contained predominantly aci-
dophilous (mainly occurring below pH 7) Eunotia spp., and
a peak in the acidobiontic (optimal occurrence at pH 5.5; Van
Dam et al., 1994) species Navicula subtilissima at 14 cm,
suggesting a period of low pH during thc recent history of
the peatland environment.

The shorter organic profile ill the edge of the peat mat
(Myers-Smith, 2007) and the single charcoal peak in the
moat core may indicate that the sylvic organic matter in the
moat core is younger than in the pcatland core, suggest-
ing a lateral, outward expansion of the permafrost collapse.
The moat core also showed less clear changes in diatom as-
scmblagcs with depth. Acidophilious diatoms were found
throughout the core. The cutraphentic Stauroneis phoenicen-
teron and acrophilic Hautzschia amphioxys Var. major  were
counted at 8 cm depth in the core, coincident with a return of
sedge-dominated substrate in the moat core.

The charcoal peaks and remains observed in the peatland
and moat cores indicate that fire is a frequent disturbance in
this region. Though we have only measured the peaks in
macroscopic charcoal deposition, we can use these visible
charcoal remains to piece together the fire history of this re-
gion. Peat accumulation rates were variable across the peat-
land surface (range = 1-7 cm growth per year), we therefore
attribute the most recent charcoal peaks in the peatland core
(at 12  cm and moat core (at 20 cm) to ash deposits from the
Survey-line fire of  2001. The ages inferred from the radioiso-
tope profiles indicate that the two charcoal peaks at 20-22 cm
and 28--30 cm depth in the peatland   core are likely fallout
from historic regional fires that did not directly affect the for-
est stand adjacent to the permafrost collapse. The charcoal
peak at 46 cm depth could indicate a localized fire; however,
the dating is uncertain. The maximum ages of the trees (182,
172 and 169 years old) in the adjacent black spruce stand in-
dicate that the last stand-replacing fire would have been prior
to 1821.

Subtle changes in the diatom assemblages following char-
coal peaks suggest that the algal community is sensitive to
charcoal deposition and changes in pH. For example, when
thc change in diatom species abundance arc plotted with
charcoal with depth in the pcatland core, the greatest shift in
both charcoal and E. nymannlana arc nearly coincident (data
not shown). The increase in Eunotia nymanniana (optimal
occurrence at pH of 6.1; Weckstrom et al., 1997) after char-
coal peaks may indicate a response to increasing pH caused
by the flush of nutrients from charcoal deposition. Ash re-
maining after the fire and leaching of ammonia can increase
thc soil pH (Smithwick et al., 2005). This change to soil
solution chemistry can persist for multiple growing seasons
after fire (Certini, 2005). Diatom responses to fire were docu-
mented in a core from Siberia in which Ruhland et al. (2000)

attributed the assemblage shifts to changes in silt influx from
the recently denuded' catchment. In this study, decreases in
bulk density and increases in C:N in the peatland core may
also indicate a response of the wetland vegetation in addition
to diatoms to nutrient flux from charcoal deposits (Figs. 3
and 4).

4. I Triggers of collapse

At our study site in the three growing seasons following the
2001 fire, we observed a 6 m lateral expansion of the col-
lapse. We also observed compression-wood in the growth
rings of trees at the margin of the collapse feature, this sug-
gests ground movement which could be evidence of subsi-
dence since the last stand-replacing fire. We cannot gauge the
rate of permafrost degradation that occurred prior to the 2001
fire; however, the extensive permafrost degradation post-fire
indicates that fire is an important driver of ecological change
in this ecosystem. Given a black spruce forest with a thin
active layer growing over ice-rich permafrost, we hypothe-
size the following sequence for collapse development. After
burning of the forest, permafrost thaw due to darker surface
albedo, decreased evapotransipration, and loss of insulating
organic soils results in the formation of an initial collapse.
The lowered landscape, now partially submerged in thaw wa-
ter, is then colonized by wetland vegetation such as sedges
and Sphagnum. Subsequent fire events in the adjacent forest
lead to lateral expansion of the collapse. As the collapse ex-
pands, wetland vegetation colonizes the newly subsided mar-
gins.

While results from this study supports the hypothesis that
fire is an important driver of collapse in this ecosystem after
isolation from the active floodplain, permafrost degradation
and wetland succession likely proceed in the recovery peri-
ods between fires. Approximately 5% of the area between
the active floodplain and the extensive fens to the south is
collapse, and 80% of these collapse features are smaller than
the bog investigated in this study. If collapses exhibit radial
growth in response to fire and climate disturbance, smaller
features were likely initiated more recently. The high propor-
tion of small collapse features in this landscape corroborate
the findings of (Jorgenson et al., 2001), and suggest acceler-
ated permafrost degradation on the Tanana Floodplain.

4.2 Future trajectories

Since carbon accumulation is greater in permafrost collapse
scars than in other peat features, future climate warming
could lead to increased collapse and peat expansion and
greater carbon storage (Carnill and Clark, 1998; Robinson
and Moore, 2000). If, however, pervasive drying of wet-
lands occurs, increased storage may be offset by greater
aerobic decomposition (Hilbert et al., 2000) or vegetation
shifts (Payette and Delwaide, 2004). Carbon accumula-
tion rates estimated in this study, 172± 154 gC m-2 y-1



(or 11 ± 7 mmy -1  +=range) for the Sphagnum  dominated
portion of the core, though based on uncertain age esti-
mates, are significantly higher than that reported for a sim-
ilar Sphagnum riparium collapse feature in Western Canada
of 25.6 gCm

-2 y -1 or 1.56 mm y-1     Robinson and Moore,
2000), and for boreal peatlands in general of 21 gC m-2 y-1

(Clymo et al., 1998); however, they are similar to those re-
ported for a permafrost inception in peatland in the European
Russian Arctic of 181 gC m-2 y-1 (Oksanen et al., 2001).
This young collapse should continue to accumulate carbon
unless future warming or permafrost degradation results in
drainage of the wetland.

We attribute the negative relationship between growing
season air temperature and the detrended tree-ring width in-
dex for black spruce growing in the terrestrial portion of
the study site (Fig. 8; Wilmking and Myers-Smith, 2008)
to drought-inhibited growth. Although this poorly drained
forest seems an unlikely candidate to experience significant
plant drought stress, the combination of root systems limited
by a shallow active layer and rapid fluctuations in the wa-
ter table may lead to periods of reduced water availability
(Dang and Lieffers, 1989). Annual growth in Western Cana-
dian black spruce stands has previously be shown to be neg-
atively correlated with temperature and positively correlated
with precipitation (Dang and Lieffers, 1989; Brooks et al.,
1998). In Interior Alaskan white spruce (Picea glauca) tree-
ring width, 13C and maximum latewood density was shown
to be an indicator of tree growth response to temperature-
induced drought stress (Barber et al., 2000). In our study, the
observed decreased black spruce growth in warmer growing
seasons may indicate reduced success of this forest type with
climate warming.

The spatial mosaic of the Tanana Floodplain landscape is
formed by fire, permafrost degradation and vegetation suc-
cession. If drought conditions do not increase in Interior
Alaska, this system will likely continue on a trajectory of
fire mediated collapse and peatland expansion. An expan-
sion of wetland could increase carbon storage and methane
emissions in this landscape (Turetsky et al., 2000; Vitt et al.,
2000; Camill et al., 2001; Myers-Smith, 2005). Results from
this study indicate that both the succession from a sedge- to
a Sphagnum-dominated wetland and the decrease in the de-
trended tree-ring width index of black spruce trees surround-
ing the collapse were coincident with a non-linear climate
shift (Fig. 8). This stepwise increase in summer tempera-
ture in Interior Alaska in the late 1970s has been attributed
to a regime change in the Pacific Decadal Oscillation (?).
A significantly drier future climate or the initiation of sub-
surface drainage could trigger a return to terrestrial vegeta-
tion in the collapse and potentially prevent the regeneration
of black spruce in the forest after fire, resulting in the de-
velopment of a novel ecological state such as a steppe-like
community (Chapin et al., 2004). Since it is suspected that
carbon accumulation is more strongly controlled by vegeta-
tion succession than responding directly to climate (Camill

et al., 2001), future vegetation succession away from Sphag-
num and sedge species could lead to reduced carbon storage
in this ecosystem, particularly if decomposition is not nitro-
gen limited (Mack et al., 2004).

In this study, we combine paleo-ecological tools including
soil chemical analysis, diatom and plant macrofossil analy-
sis, and tree ring data. By combining these different tech-
niques we can begin to piece together the mechanisms driv-
ing succession and project future scenarios in this permafrost
landscape. Paleo-ecological records arc powerful techniques
for inferring past climate (Blackford, 2000). With uncertain
future climate scenarios, we must continue to expand paleo-
ecological studies utilizing all tools available including di-
atoms, testate amoeba, plant macrofossils, stable and radio
isotopes. By refining our understanding of the influence of
the disturbance regime over succession and spatial pattern-
ing, we can continue to improve projections of ecological
feedbacks to climate change in boreal wetlands.
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