
Remote Sensing of Environment 124 (2012) 479-491 

Contents lists availa.~le atSciVerse ScienceDirect 

. Tour.tia~E~omepa'ge.: 'www.elseliier. comllocate/rse 

Estimating forest biomass and identifying low-intensity logging areas using airborne 
scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon 

Marcus V.N. d'Oliveira a.\ Stephen E. Reutebuch b.*, Robert j. McGaughey b, Hans-Erik Andersen b 

' EMBRAPA-CPAF-ACRE. Caixa Postal 392, CEP 69900-180, Rio Branco, Brazil 
b USDA Forest Service. Pacific Northwest Research Station, PO Box 3.52100, Seattle, WA. USA 

ARTICLE INFO 

Article history: 
Received 14 March 2012 
Received in revised form 19 May 2012 
Accepted 19 May 2012 
Available online xxxx 

Keywords: 
Forest biomass 
Airborne laser scanning 
Selective logging 
Tropical forest monitoring 
Lidar 
Amazon forest monitoring 

l.lntroduction 

ABSTRACT 

The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by se­
lective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest (FEA) using airborne lidar 
data. The study area consisted of three management units, two of which were unlogged. while the third 
unit was selectively logged at a low intensity (approximately 10-15 m3 ha- 1 or 5-8% of total volume). A s~•s­
tematic random sample of fifty 0.25-ha ground plqts were measured and used to construct lidar-based re­
gression models for above ground biomass (AGB). A lidar model-assisted approach was used to estimate 
AGB for the logged and unlogged units (using both synthetic and model-assisted estimators). Two lidar ex­
planatory variables, computed at a spatial resolution of 50 m x 50 m, were used in these predictions: 1) the 
first quartile height of all above ground returns (P25); and, 2) variance of the height above ground of all 
returns (VAR). The model-assisted AGB estimator (total 231,589 Mg± 5.477 SE; mean 231.6 Mg ha- 1 ± S.S 
SE; ± 2.4%) was more precise than plot-only simple random sample estimator (total 230,872 Mg ± 10.477 
SE: mean 230.9 Mg ha- 1 ± 10.5 SE; ± 4.5%). The total and mean AGB estimates obtained using the synthetic 
estimator (total 231,694 Mg; mean 231.7 Mg ha- 1

) were nearly equal those obtained using the model­
assisted estimator. In a second component of the analysis lidar metrics were also computed at 1 m x 1 m res­
olution to identify areas impacted by logging activities within the selectively harvested management unit. A 
high-resolution canopy relative density model (RDM) was used in GIS to identify and delineate roads, 
skidtrails, landings and harvested tree gaps. The area impacted by selective logging determined from the 
RDM was 58.4 ha or 15.4% of the total management unit. Using these two spatial resolutions of lidar analyses 
it was possible to identify differences in AGB in selectively logged areas that had relatively high levels of re­
sidual overstory canopy cover. The mean AGB obtained from the synthetic estimator was significantly lower 
in impacted areas than in undisturbed areas of the selectively logged management unit (p = 0.01 ). 

Published by Elsevier Inc. 

Information describing forest structure and extent. along with accu­
rate topography, are necessary for development and execution of forest 
management plans (inventories and zoning) and for monitoring native 
forests in the Brazilian Amazon. High quality information is needed to 
improve estimates of biomass and carbon stocks associated with reduc­
ing emissions from deforestation and forest degradation (REDO). Exten­
sive, high quality forest structure information is very difficult and 
expensive to obtain in the natural forests of Acre State, Brazil. Most 
available databases are old, very limited in area sampled, and do not 
have the necessary ground resolution for robust forest operation plan­
ning and monitoring. Collection of sufficient field information is limited 

by the need to cover large, remote planning areas with difficult access 
and adverse seasonal factors (e.g., flooding during the rainy season). 
These conditions result in high field data collection costs, forcing com­
promises in the measurements collected or the number of locations 
sampled. For these reasons a study of airborne laser scanning or lidar 
(light detection and ranging) technology was undertaken in a managed 
natural forest in Acre State. 

Various lidar systems have been used in tropical, boreal, and tem­
perate forest studies since the 1980s. Lidar is a leading method for gen­
erating highly accurate bare earth digital elevation models (OEM) over 
heavily forested areas (Reutebuch et al., 2003). Previous studies under­
taken in tropical (e.g .. Asner et a!.. 2010. 2011: Drake f't al., 2002a, 
2002b. 2003; Dubayah et al., 2010; Kennaway eta!., 2008) and temper­
ate and boreal forests (e.g., Beets et a!., 2011 b; Lefsky et al., 2002; 
Magnussen et al., 2010; N~sset, 1997; N~sset et al., 2004; Nelson et 
al., 1988) have demonstrated strong relationships between lidar canopy 
metrics and forest structure and biomass. 
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Although the use of airborne lidar in forest management is not 
new in temperate and boreal forests (e.g., Hyyppa et al., 200R; 
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Reutebuch et aL. 2005; Rombouts et al., 2010). there is little reported 
use of lidar for forest planning and monitoring in natural tropical for­
ests. The objective of this study was to test lidar-augmented approaches 
for developing consistent information describing a managed natural 
forest in the western Amazon basin. Our goals were to study the rela­
tionship between lidar metrics and above ground biomass (AGB) in for­
est areas with high levels of canopy closure and to use lidar data to 
identify harvest areas and impacts (e.g .. roads. skid trails, landings, 
and associated reduction in biomass) related to logging operations in 
selectively logged areas. 

2. Methods 

2. 1. Study site 

The FEA State Forest (FEA) is located between Rio Branco and Sena 
Madureira in Acre State, Western Brazilian Amazon (68" 01' to 68° 
23' W; 9' 13' to 9' 31'S). FEA covers an area of76,832 ha. The area 
is inhabited by approximately 380 individuals from 109 families 
who make their livings through extractivism (rubber tapping and 
Brazil-nut collection) and shift cultivation (Fig. 1 ). 

The climate is classified as Awi (Koppen) with an annual precipita­
tion of around 2000 mm and an average temperature of 25 'C. Wet 
and dry seasons can be recognized. The dry season occurs between 
the months of june and September. This season is used to prepare the 
land by slashing and burning for crops and for all operations related to 
forest management and logging. The rainy season lasts from October 
to May. 

In FEA there are three types of forest: dense tropical forests with uni­
form canopy and emergent trees, open tropical forests with frequent oc­
currence of lianas and palm trees, and open forests called Tabocal that are 
dominated by a bamboo species locally known as Tabocas (Guadua sp.). 
The area has gentle topography with a maximum elevation range of 
around 300 m. The predominant soils are dystrophic yellow latosols 

· with high clay content (Funtac, 1990). 
FEA is administered by the Acre State Government through a for­

est management plan for sustainable timber production. Forest man­
agement in FEA started in 1985 with the establishment of a large 
research program coordinated by Funtac (Acre State Technological 
Foundation). In the designated forest management areas, regular 

timber extraction has been ongoing since 1999 and recently a forest 
concession system was adopted to regulate the execution of forest 
operations by logging companies. The FEA inhabitants receive social 
and financial benefits from the timber concessions in the forest man­
agement areas. 

For this study three forest management compartments were selected. 
The compartments were named Modeflora-unlogged ( 1 ), Conventional­
unlogged (2). and Conventional-logged (3) according to the forest opera­
tions planning methods used in each compartment and their logged or 
unlogged status at the time of the lidar acquisition. Selective logging in 
the Modeflora compartment will use a planning methodology suggested 
by Figueiredo et al. (2007). In this planning method. permanent protec­
tion zones in which no harvesting is allowed are established around ripar­
ian areas and for areas with slopes greater than 20%. Individual trees 
(DBH ~35 em) that will be harvested are identified during the forest in­
ventory process. The locations of the protection zones and harvest trees 
are collected using global positioning system (GPS) receivers. The protec­
tion zone maps and GPS tree coordinates are then used in planning and 
execution of harvest operations. In the Conventional compartments selec­
tive logging is planned and conducted with individual harvest tree loca­
tions measured from parallel inventory lines laid out at 50 m intervals 
throughout the compartment; permanent protection zones are identified 
using existing maps. The target volume to be extracted from the 
Conventional management compartments is approximately 10-15 m3 

ha- 1 (approximately 12-18Mg ha- 1 AGB).I...ogging in the Modeflora 
compartment had not yet commenced at the time of the lidar acquisition. 
Only a small portion of the southeast comer of the Conventional­
unlogged compartment was harvested at the time of the lidar acquisition. 
For the purposes of this study, the Modeflora and Conventional-unlogged 
compartments were pooled into a single unlogged unit (based on their 
predominately unlogged condition) for comparison with the logged unit 
(Conventional-logged compartment). 

2.2. Field measurements and plot summaries 

A forest inventory was conducted in the area covered by the lidar 
flights in May 2010. The inventory used a systematic random sample 
with plots that were nominally SO m x 50 min size, evenly distribut­
ed along ten lines with a total of SO sample plots and a total sampled 
area of 12.5 ha or 1.25% of the total study area (Fig. 2 ). The plot 

Fig. 1. Anti mary State Forest location in Acre State Western Brazilian Amazon. The yellow grid areas represent the compartments of the FEA Forest Management project. {For in­
terpretation of the references to color m th1s figure legend. the reader is referred to the web version of this article.) 
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boundaries were established using a handheld compass for azimuths 
and a measuring tape for length. 

All plants greater than 10 em diameter at breast height (DBH) 
were labeled, measured and identified. The natural regeneration 
( DBH > 5 em and < 10 em) was sampled in 10 m x 10 m sub-plots lo­
cated at the centre of each plot. The species were identified by 
Embrapa Acre parabotanists (technicians with extensive experience 
identifying tree species) using vernacular names. 

For each tree, oven-dry AGB was estimated with Eq. ( 1) which was 
developed for a similar forest in the southern Amazon (Nogueira et 
al., 2008). In addition to AGB, basal area (BA) was computed using 
the traditional method (Eq. 2) and stem bole volume (VOL) was esti­
mated using Eq. (3) (Funtac, 1990). Ground measurement data were 
summarized to the plot level for further analysis (Table 1 ). 

AGB == exp(-1.716+ 2.413*Ln(DBH))/1000 (}) 

(2) 

VOL == 0.000308*(DBH)
21988 (3) 

Plot locations (corners) were mapped using survey-grade, dual 
frequency (L1 and L2), dual-constellation (GPS and GLONASS) 
global navigation satellite system (GNSS) receivers in two sepa­
rate field campaigns. One-second epoch GNSS data were collected 
for 10-15 minutes at each plot corner. The GNSS receivers used in 
this study (Javad Triumph- I) are capable of highly accurate posi­
tions in open areas, but like all GNSS receivers, have unknown 
and highly variable accuracy in heavily forested areas (Clarkin, 
2007). 

For the first GNSS field survey campaign rover receiver data were 
post-processed using the Rio Branco base station, located at the Acre 
Federal University, 90 km from the study site. Unfortunately, the Rio 
Branco base station did not track the Russian GLONASS satellite constel­
lation. Therefore, the rover GLONASS data could not be included in the 
post -processing. To determine if inclusion of additional GLONASS satel­
lites would improve the post-processed positions, we conducted a sec­
ond GNSS field campaign in which we established a temporary base 
station that tracked both GPS and GLONASS satellites. We resurveyed 
a subset of the plot corners that had the poorest calculated positional 
precision from the first GPS-only campaign. 

Modeflora (unlogged) Conventional (unlogged) 

Conventional (selectively logged) 

i .. ) 

Fig. 2. Forest management compartments and 50 ground plots covered by the lidar 
flight in the FEA State Forest. Each ground plot is approximately 2500 sq. m. in area 
(nominally 50 m x 50 m). The lower compartment was selectively logged a month 
prior to the lidar mission. 

Tablet 
Number of plots (n), minimum. maximum, mean and standard deviation of basal area 
(m2 ha- 1 ). tree bole volume (m-1 ha- 1). above ground biomass (Mg ha- 1) and means 
comparison among the management units and the selectively logged and unlogged 
units. 

Min Max 

Modeflora, unlogged ( n = 15) 
BA 13.7 29.8 
VOL 113.7 260.4 
AGB 128.9 312.1 

Conventional, unlogged (n == 15) 
BA 16.5 32.5 
VOL 134.8 353.2 
AGB 152.8 493.6 

Conventional, logged (n = 20) 
BA 11.4 35.9 
VOL 88.4 332.8 
AGB 96.9 414.6 

Unlogged units (n = 30) 
BA 13.7 32.5 
VOL 113.7 353.2 
AGB 128.9 493.6 

All Units (n =50) 
BA 11.4 35.9 
VOL 88.4 353.2 
AGB 96.9 493.6 

ANOVA of means between management units 

BA 
VOL 
AGB 

BA 
VOL 
AGB 

A NOVA of means between logged and unlogged units 

BA 
VOL 
AGB 

BA 
VOL 
AGB 

Mean St. dev. 

21.4 5.6 
185.4 53.1 
219.2 67.1 

23.9 4.4 
209.6 53.4 
252.0 81.4 

22.2 5.3 
189.9 55.2 
223.8 75.0 

22.7 5.1 
197.5 53.8 
235.G 75.1 

22.5 5.1 
194.5 53.9 
230.9 74.6 

Significance (p value) 

n.s. (039) 
n.s. (0.43) 
n.s. (0.42) 

Significance (p value) 

n.s. (0.73) 
n.s. (0.63) 
n.s. (0.59) 

To verifY whether the position and dimensions of the disturt•ed 
areas (roads, intersections, skid trails, landings and logged tree gaps) 
identified by lidar analysis were consistent with disturbed areas ob­
served in the field, 45 additional GNSS points were collected and post­
processed along roads and skid trails and on landings and dimensions 
of landings and harvest openings were measured with a tape in the 
field. 

Table 2 
FEA lidar data acquisition and product specifications. 

Specification 

Lidar sensor 
Flying altitude 
Beam divergence 
Scan angle 
Scan rate 
Pulse rate 
Swath sidelap 
Approximate 

pulse density 
Datum 
Projection 
Lidar raw point 

cloud format 
Griclded bare 

earth model 

Description 

Optech AI:rM 31 OOEA 
500 m .1bove ground 
0.25 mrad ( 1 /~) 
± 5 degrees off nadir 
70Hz 
50 kHz 
60~: 

25m- 2 

SJRGAS 2000 
liTM. Zone 19S 
LAS format with classified 
ground points identified 
1 m resolution 
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2.3. Lidar data 

High density ( 25 pulses m- 2
) discrete return lidar data were collect­

ed 29 May-3 june 2010 using an Optech ALTM3100EA scanner mounted 
in a Seneca 11-EMBRAER 810 C aircraft, flying at 500 m above ground. 
Table 2 summarizes the acquisition specifications. The total area covered 
by the lidar flight was 1000 ha. When the data were acquired, only the 
"Conventional-logged" management compartment (380 ha) and a 
small portion of the southeast corner of the "Conventional-unlogged" 
compartment had been logged (Fig. 2). 

3. Data processing and analyses 

3.1. Udar processing 

The FUSION lidar processing package (McGaughey, 2010) was 
used for processing the lidar all-returns data (first, intermediates, 
and last returns per pulse). Lidar returns that occurred within each 
of the 50 ground plot polygons were extracted from the acquisition 
dataset to create an all-returns point cloud file for each plot. The gro­
und surface elevation (interpolated from the lidar bare earth digital 
elevation model) was then subtracted from each return to remove to­
pographic variation within the plot. Descriptive statistics of the lidar 
point cloud vertical structure, using all returns above 1 m, were com­
puted for each plot (Table 3). The 1 m minimum height above ground 
was used to reduce noise within the near-ground point cloud caused 
by low vegetation and imperfections in the ground point filtering. A 
canopy overs tory threshold height of 2 m was used to compute lidar 
canopy cover metrics. Plot-level lidar metrics were merged with the 
summarized field plot data for regression modeling with the R statis­
tical package (R Development Core Team, 2011 ). 

A variety of raster data products were produced from the entire 
extent of the lidar data. Basic products were developed by the lidar 
data provider and provided as contract deliverables. Raster layers of 
forest canopy metrics were created using FUSION. The following 
layers were produced: 

Table 3 
Summary of the lidar forest structure variables derived from the lidar point cloud for 
each ground plot and for each 50 m by 50 m grid cell in the study area. The height 
,1bove ground of each return was computed by subtracting the ground surface eleva­
tion below the lidar return from the lidar return elevation prior to computing these 
metrics. 

Minimum height above ground 
Maximum height above ground 
Mean height above ground 
Quadratic mean height above ground 
Median height above ground 
Mode height above ground 
Standard deviation of height a hove ground 
Variance of height above ground 
Coefficient of variation of height above ground 
lnterquartile distance of height above ground 
Skewness of height above ground 
Height kurtosis of height above ground 
AAD (average absolutt' deviation from the mean height) of height above ground 
Height L-moment.s (Ll, L2, L3, L4) 
Height L-moment skewness 
Height L-moment kurtosis 
Percentile height values (1st, 5th, 1Oth, 20th, 25th. 30th, 40th, 50th. 60th, 70th. 

75th. 80th, 90th, 95th, 99th percentiles) of height above ground 
Percentage of first returns above a specified height (canopy cover estimate) 
Percentage of first returns above the mean height 
Percentage of first returns above the mode height 
Percentage of all returns above a specified height (alternate canopy rover estimate) 
Percentage of all rewrns above the mean height 
Percentage of all returns above the mode height 
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Fig. 3. Illustration of RDM calculation method. In the above example, the ROM value of 
76.9 would indicate intact understory with little or no disturbance of vegetation in the 
1-5 m above the ground stratum. If there were no returns in the 1-5 m stratum and 3 
returns in the 0-1 m stratum, the RDM value would be 0, indicating that the understory 
had been crushed or removed by harvesting activities. If there were no returns in the 
0-1 m stratum and the 1-5 m stratum the ROM value would be undefined (assigned 
a "no data" value), indicating that the cell had very dense, intact overstory not impact· 
ed by harvesting. 

• Digital elevation model (DEM) with 1 m resolution: the lidar ven­
dor created the DEM model using the Terrasolid commercial soft­
ware package ( www.terrasolid.fi). 

• Canopy surface model (CSM) with 1 m resolution: the CSM was cre­
ated using the highest return in each cell. 

• Canopy height model (CHM) with 1m resolution: the CHM was 
created by subtracting the DEM from the CSM. 

• Relative density models (RDM) with 1 m resolution: The FUSION 
"Cover" algorithm was used to create raster layers of a relative per­
centage of lidar returns within a user-specified above ground 
height stratum. For each raster, the percentage was computed by 
dividing the number of all returns in a user-specified height stra­
tum by the sum of returns within and below the height stratum 
(Fig. 3 ). The ROMs were used as an indicator of vegetation density 
in the stratum. 

• Reference image with 1 m resolution: an image color was created 
by color coding lidar first return above ground heights to serve as 
background image for data exploration and display. The image res­
olution is sufficient to clearly recognize overstory tree crowns, facil­
itating visual interpretation of the height of the canopy. 

• Lidar raster layers of forest canopy structure with 50 m resolution: 
the same forest structure metrics (Table 3) that were computed 
from each ground plot point cloud were also computed at a raster 
cell resolution equal to the nominal ground plot size over the entire 
study area. 

3.2. Regression modeling of above ground biomass 

Multiple linear regression techniques were used to develop relation­
ships between plot-level lidar metrics (Table 3) and field-measured 
AGB, VOL and BA. Lidar predictor variables were selected using the 
best subsets approach (R Package 'leaps', Lumley, 2009) in the R statis­
tical package (R Development Core Team, 2011 ). The variance inflation 
factor (VIF) statistic was used to eliminate highly collinear predictor 
variables (Fox & Monette, 1992). lfVIF exceeded 5.0 for a candidate 
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predictor variable, it was dropped from the regression model. The Box­
Cox method in the R MASS package (Venables & Ripley, 2002) was used 
to explore possible power transformations of AGB and VOL to reduce 
non-constant variance and satisJY the assumption of constant variance 
implicit in linear regression techniques. The square-root transformation 
of AGB and VOL was used to reduce non-constant variance. The method 
outlined by Miller ( 1984) was used to correct for bias introduced during 
the back-transformation of the final lidar regression models into their 
original units. 

3.3. GIS processing 

3.3.1. Mapping of predicted above ground biomass, volume, and basal 
area 

The lidar regression models (with back-transformed bias correc­
tion) and the FUSION raster layers of the lidar predictor variables 
were used in ArcGIS Spatial Analyst Raster Calculator (ESRI. 2011) 
to map forest structure (AGB, VOL, and BA) across the study area at 
50 m resolution (Fig. 4). 

3.3.2. Mapping of areas impacted by harvesting 
As shown in Fig. 5, areas impacted by harvesting were not readily 

evident in the 1-m resolution lidar CHM; therefore, the ROMs were 
displayed in GIS to identify and quantiJY the areas impacted by log­
ging operations in the managed areas. Several ROMs were examined 
to determine which height stratum limits would best identify im­
pacted areas. By visual inspection, the ROM that included lidar 
returns above 1 m and below 5 m was chosen to identify the areas 
with impacts associated with the network of roads, skid trails and 
landings, and to locate and characterize canopy gaps created when 
trees were removed. Each cell in the ROM raster layer contains the 
percentage of returns below the upper limit of the height stratum 
that fall between the stratum's upper and lower limit (Fig. 3 ). In 
GIS a gray scale representation of the ROM was visually interpreted 
(Fig. 5). Dark cells correspond to areas with a low percentage of 
returns in the ROM height stratum. Light cells correspond to areas 
with a high percentage of returns in the stratum. Cells where no 
returns occurred below the upper height stratum limit (no lidar 
data) were assigned a light color. These "no data" cells occurred 
where the canopy cover above the ROM upper height limit was 
very dense. effectively blocking sufficient lidar energy from 
reflecting off lower canopy elements or the ground. By visual inspec­
tion of the three-dimensional structure of the lidar point cloud, it 
was determined that these "no data" areas were intact forest canopy 
that had not been thinned by harvest activities. 

By examining the ROM for the 1 m to 5 m height stratum, the 
areas impacted by forest operations (roads, landings, skidder trails 

and canopy gaps due to tree removal) were visually distinguished 
from the undisturbed areas. The impacted areas were manually dig­
itized in GIS. A 6-m buffer was added to the digitized centerlines of 
main roads and a 4-m buffer to skidtrails. A 20-m buffer was added 
to the digitized center point of landings and a 25-m buffer to 
harvested tree gaps to account for typical widths of these features 
(Fig. 6). The polygons of buffered impacted areas were converted 
to a 5-m resolution raster. This impact raster was intersected with 
the lidar-predicted AGB raster (50 m resolution). Those cells in the 
AGB raster that contained impacted cells were classified as impacted 
by harvesting (Fig. 6). A similar visual assessment of the ROM was 
used to assign a classification of either "impacted" or "non-impacted" 
to each ground plot. GNSS points collected in the field in tree gaps and 
along roads and skidtrails were overlaid on the ROM to determine if 
these field verification points were within the impacted area. 

3.4. Lidar-based AGB estimation procedure 

Both lidar model-assisted and synthetic estimation approaches 
were used to estimate total AGB and mean AGB within the manage­
ment units. These approaches utilize correlated information collected 
on a larger number of sampling units (N), and at a lower cost, (e.g. 
lidar metrics for each 50-m grid cell) to improve the estimation of a 
parameter of interest (e.g., AGB). From a statistical standpoint, the 
model-assisted estimator for total AGB can be expressed in the fol­
lowing form (Sarndal et al., 1992, p. 231 ): 

(4) 

The model-assisted estimator has two components: the sum of the 
lidar-predicted values (f:uh) for the complete sample ( U) of lidar 
grid cells, and a correction term based on the mean residual of the 

plot sample (s): ({1; Ls(Yk-Yki· The synthetic estimator of total AGB 

is obtained by using only the predicted'values (f:uh) without the 
residual correction term (Sarndal et al., 1992, p. 399). The effect of 
the residual correction term is to remove bias from the model and, 
as a result, the model-assisted estimator is approximately design­
unbiased (i.e. bias goes to zero at large sample sizes), while the syn­
thetic estimator is not design-unbiased. In the case where the esti­
mation is within subsets of the population (i.e. management units 
in our case, or impacted vs. non-impacted forest classes), the 
model-assisted estimator is modified such that the first term repre­
sents a sum over the subset and only residuals within that subset 
are used in the calculation of the second (residual correction) term 
(Sarndal et al., 1992, p. 399). Model-assisted estimators for smaller 
subsets are also approximately design-unbiased. In model-assisted 

Above Ground 
Biomaaa 
(Mg/ha) ·-· II eo 

Fig. 4. Lidar model predinions of above ground biomass for the FEA study site by management area (50 m cells). 
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estimation, the reduction in the variance due to use of the model is 
directly related to the strength of the linear relationship between 
the predictor variables and inventory parameter. Not surprisingly, 
the variance of model-assisted estimators is always higher than 
that of the synthetic estimator, since variability due to model bias 
is accounted for in the model-assisted estimator. The variance of 
the field plot-based estimates with simple random sampling (SRS) 
is given by Sarndal et a!. ( 1992, p. 68): 

v,,., (5) 

The variance of the model-assisted estimator is given by Sarndal et 
a!. (1992. p. 402): 

vrna rl (6) 

It should be noted that in the case where the domain of interest is the 
entire area, this variance estimator can also be expressed as ( Sarndal et al., 
1992, p. 276): 

(7) 

where n, is the number of 0.25 ha sample plots, N js the population 
size (e.g. 4000 in the 1000 ha study area), V srs is the variance of the 

plot SRS, and R2 is the coefficient of determination of the multiple re­
gression model. It is clear from these formulae that the reduction in 
variance gained by using the model-assisted approach compared to 
the SRS approach is a direct function of the strength of the regression 
relationship (R2 ); and, in the case of estimation within domains, the 
variance is a direct function of the variability of the residuals about 
their mean within the domains (rightmost term in Eq. 6). 

3.4.1. Hypothesis testing via bootstrapping 
A bootstrap algorithm was used to determine if mean AGB was signif~ 

icantly different between identified impacted and non-impacted areas. 
The bootstrap approach to hypothesis testing was based on the algorithm 
presented in Efron and Tibshirani (1994), and in the case of the model­
assisted estimator, incorporated the bootstrap variance estimation tech­
nique for the regression estimator in two-phase sampling developed by 
Sitter ( 1997). In this approach, at each iteration, a sample of size n, was 
randomly drawn with replacement from the field plots; then, a regres­
sion model was developed using this sample and applied to the lidar 
grid cells within a given domain (i.e., area of the logged unit that were ei­
ther impacted or non-impacted). These lidar predictions are used to cal­
culate a model-assisted estimate of biomass within a given domain. The 
correction term is developed using the residuals for a random selection 
of plots equal in number to the actual number of plots located in the do­
main. This procedure is carried out many times (n = 5000), resulting in a 
bootstrap distribution of the difference between means under the null 
hypothesis. The percentage of bootstrap samples that are more extreme 
than the observed value (i.e., mean AGB) from the domain of interest 

C1nopy Height 
Model 

(m) 

Fig. S. High-resolution ( 1 m) canopy height model (top). Note that roads and skidtrails are not evident. Relative density model (RDM) for FEA study area using alllidar points above 
1 m and belo:-" 5 m above ground (bottom). The gray scale represents the lidar return density (black low, light high) in the RDM height stratum. Main and secondary roads land-
mgs. sk1d tra1ls and logged tree gaps are black. ·' 
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Fig. 6. Areas impacted by harvesting (top) were digitized from the RDM and buffered in GIS. Bottom panel illustrates the Jidar model predictions of AGB for 50 m cells identified as 
impacted by harvesting. 

(e.g., impacted plots) represents the Achieved Significance Level (ASL), a 
bootstrap analogue to the p-value for a traditional hypothesis test. It 
should be noted that for the synthetic and plot-based SRS estimates, the 
ASL obtained from this bootstrapping approach could be directly com­
pared to the p-values obtained from traditional ANOVA testing of the 
equality of means for AGB in impacted vs. non-impacted areas. 

Table4 

4. Results 

4.1. Regression modeling and biomass estimation 

Table 4 summarizes the models evaluated for AGB, VOL, and BA. 
Lidar return quadratic mean height above ground (QElevMean) and 

Lidar-based above ground biomass, volume, and basal area regression models developed using the FEA ground plots (n = 501. Square root transformation of response variables ;md 
back transformed equation with bias correction factors (CF) are included for biomass and volume regressions. 

Forest structure variable Regression model CF MultipleR" Root-mean-square error 

Sqrt(Biomass) (Mg ha- 1
) vAGB= 3.119* +0.564*** X P25 + 0.062*** xVAR 0.70 1.28 

Biomass ( Mg ha- 1 J AGB = (3.119 +0.564 x P25 + 0.062 x VAR) 2 + CF 1.74 0.72 40.20 

Sqrt(Biomass) (Mg ha- 1
) /.iiGB = -1.583 + 0.796"** x. QE!evMean 0.71 1.37 

Biomass (Mg ha- 1
) AGB= ( -1.583 +0.796xQElevMean) 2 +CF 1.95 0.67 43.25 

Sqrt(Biomass) (Mg ha- 1
) ,1/iGB =- 0.834 + 0.837*** x ElevMean 0.63 1.43 

Biomass ( Mg ha- 1) AGB = (- 0.834 + 0.837 x ElevMean )2 -t- CF 2.12 0.63 46.12 

Sqrt(Volume) ( m3 ha- 1) vVOI = 4.062 ... + 0.496*** X P25 + 0.046*** X VAR 0.68 1.10 

Volume (m3 ha- 1
) VOL= ( 4.062 -t- 0.49f:ix P25 + 0.046x VAR)' + CF 1.21 0.69 30.48 

Sqrt(Volume) (m 3 ha- 1) ,/VOl.= 0.562 -t- 0.636*** x. QEievMean 0.65 1.15 

Volume (m3 ha- 1
) VOL= (0.562 + 0.636x QEievMean) 2 + CF 1.32 0.66 31.9G 

Sqrt(Volume) (m3 ha-') ,/VOl.= 1.000 + 0.677*'" x ElevMean 0.63 1.17 

Volume (1113 ha- 1) VOL= ( 1.000 + 0.677 x ElevMean )' + CF 1.38 0.fj3 :no4 

BA (m2 ha- 1) BA =- 3.503 + 1.447"* x P25 + 0.101*'* x VAR 0.63 :us 

BA (m2 ha- 1) BA = -11.512** -t-1.631~*• x QE!evMean 0.59 3.32 

BA (m2 ha ') BA =- 11.011"·* -t- 1.770"* x ElevMean 0.60 3.29 

'denotes p<0.05 significance; •*' denotes p<0.001 significance. 
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Fig. 7. Predicted versus observed ground plot values for basal area (top), above ground biomass (middle). and tree bole volume (bottom) for models that use P25 and VAR lidar 
explanatory variables. 

mean height (ElevMean) provided univariate regression models with 
the best overall fit based on proportion of explained variance and 
root-mean-square error. The 25th percentile height above ground of 
all lidar returns (P25) and the variance of all lidar return heights 
above ground (VAR) provided robust, parsimonious multivariate 

Table 5 
Summary of SRS plot-based inventory estimates (total and mean above ground bio-
mass and standard error), FEA State Forest. 

Total biomass (Mg) Mean biomass ( Mg ha- 1 J 

n Estimate SE Estimate SE RSE 

Unlogged compartments 30 146081.8 9237.2 235.6 13.6 6.3% 
Modcflora 15 67958.8 6796.4 219.2 17.2 7.9% 
Conventional unlogged 15 78123.0 6431.2 252.0 20.9 8.3% 

Logged compartment 
Conventional logged 20 85027.0 5361.6 223.8 16.7 7.4% 
Impacted 10 38961.6 3743.4 219.5 16.8 7.7% 
Non-impacted 10 46171.7 4027.3 228.0 29.9 13.1% 

Total 50 230871.6 10477.4 230.9 10.5 4.5% 

models. Inclusion of more lidar variables produced models with mar .. 
ginally higher R2 statistics; however, such models tended to over fit 
the observed data (often resulting in high VIF values between similar 
lidar explanatory metrics, e.g .. 80th percentile height and 90th per-· 
centile height). Including highly collinear lidar metrics would limit 
their usefulness as predictive models over the wide range of forest 
structure conditions in the FEA study site. Fig. 7 displays the predicted 
and observed BA, VOL, AGB values for each plot for the models that 
use P25 and VAR lidar explanatory variables. The multivariate 
model was used for further comparisons of AGB estimates. 

Table 5 summarizes AGB inventory estimates (unit total, mean 
and standard error of the mean) from the ground plots for the logged 
and unlogged management units, as well as impacted and non­
impacted areas. Table 6 summarizes the AGB estimates (unit total. 
mean and standard error of the mean) for the units developed from 
the lidar synthetic and model-assisted estimators. The AGB means 
from the plots alone are similar to those obtained using the lidar 
synthetic- and model-assisted estimators (Table 6); however the 
model-assisted standard errors are improved (standard errors were 
not calculated for the synthetic estimator because there was no ac­
counting for bias). 



M.V.N. d'Oiiveira er al. 1 Remote Sensing of Environment 124 (2012) 479-491 487 

Table 6 
Summary of lidar model-assisted inventory estimates (total and mean above ground biomass and model-assisted standard error; SE), FEA State Forest. 

Total Biomass ( MgJ Mean Biomass (Mg ha··l J 

N n Synthetic Model-assisted SE Synthetic Model-assisted SE RSE 

Unlogged compartments 2480 
Modefiora 1240 
Conventional unlogged 1240 

Logged compartment 
Conventional logged 1520 
Impacted 710 
Non-impacted 810 

Total 4000 

4.2. Logging impact assessment 

30 
15 
15 

20 
10 
10 
50 

144520.7 
71475.7 
73045.0 

87172.8 
39993.8 
47179.0 
231693.5 

142806.3 
68824.1 
73982.2 

88649.6 
40899.2 
47720.0 
231589.0 

Despite the relatively high resolution (1 m) ofthe lidar CHM. it was 
not sufficient to visually identify harvest impacted and non-impacted 
areas in the study site (Fig. 5 ). Manipulation of the RDM in GIS produced 
a raster image where the areas with low numbers of lidar returns above 
1 m and below 5 m could be visually distinguished from areas with high 
numbers of returns in this height stratum. Ground data points collected 
to validate the impacted areas identified in the RDM align vel}' well 
with areas with low RDM values. All of the 45 GNSS points collected 
along roads, skidtrails, on landings, and in tree gaps associated with se­
lective logging were within the lidar-predicted impacted raster cells. 
Thus, we infer that dark areas connected by linear features in Fig. 5 rep­
resent areas where vegetation was removed or crushed during the con­
struction of roads. skid trails, landings or removal of trees. resulting in 
understory canopy gaps. The impacted area was estimated to be 
58.4 ha or 15.4% of the logged unit. Half of the ground plots ( 1 0/20) 
within the unit were classified as impacted. 

The bootstrap distribution corresponding to the null hypothesis of 
no difference between means in impacted and non-impacted areas, 
and the observed difference, is shown in Fig. 8. Using the bootstrap 
hypothesis testing approach, neither the mean AGB within impacted 
forest areas calculated from the ground plots (ASL = 0.80) nor the 
mean AGB within impacted areas calculated using the lidar model­
assisted approach (ASL=0.75) were found to be significantly differ­
ent from the mean AGB within non-impacted areas. However, the 
AGB means computed using the lidar synthetic estimator were 
significantly different between impacted and non-impacted areas 
(ASL = O.Ql ). The lidar estimate of mean AGB obtained from synthetic 
estimator (225.3 Mg ha- 1

) of the 50-m cells impacted by Jogging 
(Fig. 6) was 7.7 Mg ha- 1 lower than the mean AGB (233.0 Mg 
ha- 1

) for the non-impacted cells. The difference of means for the 
P25 Jidar explanatory variable between the impacted and non­
impacted areas was highly significant (p<0.0016); whereas, there 
was no significant difference for VAR (p<0.59), indicating that 
changes in lower canopy structure as measured by the P25 variable 
(and identified in the RDM) caused the majority of the difference in 
the lidar AGB regression model. The corresponding difference in the 
lidar model-assisted estimate of mean AGB between impacted 
( 230.0 Mg ha - 1

) and non-impacted ( 236.0 Mg ha- 1
) areas was 

6.0 Mg ha- 1
• However, the relatively high variances associated with 

the model-assisted estimators (Table 6) did not provide adequate sta­
tistical power to detect a significant difference between these means. 

5. Discussion 

5.1. Regression model selection for above ground biomass 

In this study, our R2 values (0.63-0.72) of the AGB regression 
models were lower than those reported in similar studies in predom­
inately coniferous temperate and boreal forests (e.g., Li et al., 2008; 
Lim & Treitz, 2004; Means et al., 1999; Ncesset eta!., 2004) but similar 
to studies conducted in mixed conifer and hardwood forest types 

4611.7 23:!.1 230.3 7.4 3.2~S 

2813.1 230.6 222.0 9.1 4.1 ~~ 
3756.8 235.6 238.7 12.0 5.1% 

3104.6 229.4 233.3 8.2 3.5~~ 

1880.4 225.3 230.0 11.0 4.6~; 

2636.3 233.0 236.0 12.0 s.s~; 

5477.1 231.7 231.6 5.5 2.4~~ 

(e.g., Lefsl<y et al., 1999; Popescu et al., 2003) and tropical forests 
(e.g., Asner eta!., 2009; Drake eta!., 2002a, 2002b; Kennaway et al., 
2008). This is not surprising given that we were limited to a single 
AGB allometric equation based solely on diameter for all species. 

Selection of P25 and VARas lidar explanatory variables provided a 
predictive model for AGB that is logically related to canopy height, var­
iation and transparency expected in highly diverse native tropical can­
opies. Steinhilb and Erickson (1972) found that center of mass (CM) 
of the above ground tree material (bole, limbs, and foliage) of three co­
nifer and two deciduous species (Steinhilb & Erickson, 1970; Steinhilb & 
Winsauer, 1976) occurred between 36% and 41% of total tree height. 
Fridley and Tufts ( 1989) reported that the CM of Loblolly pine (Pinus 
taeda) occurred between 36% and 44% of tree height. In all these studies 
of tree CM, the height above ground of the CM is directly correlated with 
AGB. For the FEA field plots, the mean P25 height above ground oc­
curred at 35% of the mean plot-level99th percentile height (P99). P99 
corresponds to plot canopy near-maximum height. (Lidar return maxi­
mum height ( Pl 00) is not always a reliable measure of maximum can­
opy height because the lidar point cloud can include returns from birds 
or other anomalous returns above the canopy that are not filtered out of 
the raw lidar data). The P25 lidar metric is likely to be well correlated 
with the CM of the AGB of other tree species and, by summation of indi­
vidual plot trees, correlated to the CM of plot -level AGB. Interestingly, .in 
a study in which trees were destructively sampled by Beets et al. 
(2011 b), the 30th percentile height (P30) of all returns was highly pre­
dictive of AGB in young radiata pine (Pinus radiata) plantations. P30 and 
a lidar percent cover metric were the lidar explanatory variables used to 
predict carbon in a nation-wide forest inventory of New Zealand forest 
plantations established after 1989 as required under the United Nations 
Kyoto Protocol (Beets et al., 2011a). 

The VAR lidar metric (variance oflidar return heights above ground, 
including all returns) is related to both the variability of the canopy 
height and its transparency with regards to passage of lidar pulses 
through gaps in foliage and branches. In areas with tall canopy, if the 
canopy is dense. there are proportionally fewer second and third 
returns reducing VAR: whereas, if the canopy is sparse, a lidar pulse 
has a greater probability of generating a second or third return from 
below the canopy surface, increasing VAR. Additionally, in areas with 
dense canopy the distance from the first return at the canopy surface 
to second or third returns would likely be less than in areas with sparse 
canopy, again resulting in lower values for VARin dense canopy. At the 
same time. the value of P25 would be higher for dense canopy areas 
compared to the same canopy height with sparse cover. The all­
returns lidar VAR explanatory variable is strongly correlated with the 
P99 canopy height (r= 0.81) and has a positive coefficient in the AGB 
model (Table 4 ). Thus. in this type of forest with highly variable canopy 
height, VAR not only characterizes canopy surface variability and trans­
parency, but to a large extent, canopy dominant height. 

5.2. Improvement of AGB area estimates by use of lidar-based methods 

The bootstrap variance estimation technique for the regression es­
timator in two-phase analysis produced AGB inventory estimates that 
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Fig. 8. Bootstrap distributions under null hypothesis (no difference between means) 
for impacted vs. non-impacted areas (vertical dashed line indicates observed value) 
using: a) li<lar synthetic estimation (ASL= 0.01 ); b) lidar model-assisted estimation 
( ASL = 0.75 ); and c) plot-based estinMion (ASL = 0.80). 

were more precise (i.e., lower standard errors) than estimates based 
solely on the field plots. Our AGB standard error (5.5 Mg ha- 1

, 2.45l; 
of mean) was similar in magnitude to AGB errors reported b~r 
Gonzalez et al. (201 0) for temperate conifer forests using a Monte 
Carlo model-assisted approach. Because lidar data were collected 
over the entire site, it was possible to map lidar estimates of AGB at 
50 m resolution, which, along with the CHM, provides forest planners 
with more spatially accurate and detailed planning information than 
is possible via ground data collection methods. 

5.3. Selective logging impacts 

Assessment and monitoring of small scale forest disturbance (e.g., 
single tree and small group selection logging) using passive remote sens-· 
ing techniques in natural tropical forests is particularly difficult. Passive 
optical remote sensing techniques (e.g., aerial photography and multi·· 
spectral satellite imagery) are limited in their capacity to distinguish 
structural changes occurring below the top of the canopy (Coops et al., 
2007). When viewed from above, the post-disturbance canopy surface 
is within the range of variability observed in undisturbed areas. Canopy 
cover of residual dominant and codominant tree crowns can be very 
high, obscuring roads, skidtrails, landings, and removal of individual 
trees. Thus, selective logging impacts are very difficult to assess from 
remotely-sensed data (e.g., Asner eta!., 2004 ). 

We found in this study that information from field plots combined 
with conventionallidar-derived products such as a CHM (Fig. 5) and 
predicted AGB (Fig. 4) at relatively fine scales (1m and 50 m, respec­
tively) did not provide sufficient information to locate and character­
ize selective logging disturbances. The lidar model-assisted prediction 
of the mean AGB did not show a significant difference between 
undisturbed areas and those portions of the selectively logged man­
agement unit where roads, skidtrails, landings and harvested tree 
gaps occurred. The fact that there was a highly significant difference 
between mean AGB estimates obtained using the lidar synthetic esti­
mator indicates that increased efforts to improve the lidar regression 
models (i.e. reducing residual error due to plot location error, impre­
cision of allometric models, etc.-see Section 5.4) will allow for im­
proved estimates of reduction in biomass (and carbon) due to 
selective logging activities. 

Because lidar is an active remote sensing technology that provides a 
measure of the three-dimensional structure of the canopy, different 
portions of the lidar point cloud can be used to measure different por­
tions of the canopy structure (Andersen et al., 2006). The ROM provided 
a characterization of the canopy structure for the height stratum be­
tween 1 and 5 m above ground where many of the effects related tore­
cent logging activities were likely to be evident In areas where no 
selective logging had occurred, dense overstory canopy often complete­
ly blocked the passage of lidar pulses in this height layer, resulting in no 
logical mathematical value for the RDM cell (division by zero).ln areas 
with sparser overstory canopy a sufficient portion of laser energy pas­
sed into or completely through this ROM height layer. If numerous 
lidar returns were generated in this layer, it was assumed that foliage 
and branches occurred in the layer, indicating that the canopy midstory 
layer was not heavily impacted. However, if most of the laser energy 
passed through this layer (i.e., there were no returns or only a few 
returns in this layer) and reflected from vegetation below 1 m or the 
ground, the midstory might have been heavily impacted by logging or 
the area might have experienced a natural disturbance. 

The ROM was used to identify specific features associated with se­
lective logging (truck roads, skidtrails, landings, and tree gaps) where 
there were low numbers of midstory lidar returns. These features 
were not evident in the 1-m resolution CHM (Fig. 5) because they 
were concealed by the high level of residual overstory canopy that 
remained after selectively logging. These features have distinctive char­
acteristics in the ROM that assist in their identification: roads and 
skidtrails are narrow, linear features; landings and tree gaps are 
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typically 20-25 m roughly circular shapes connected by roads and 
skidtrails. 

The additional criterion for separating features in the ROM due to 
natural disturbances from recent logging features is imposed by the 
systems used to extract logs. In FEA all logging was carried out with 
ground-based systems: log skidders and trucks. Therefore. all 
harvested tree locations were connected by roads, landings, or 
skidtrails that appear as linear features in the ROM. Only those 
areas that had low ROM values and were near these linear features 
were identified as logged areas. Other scattered dark areas that 
were not connected by dark linear features were likely natural open­
ings in the canopy midstory. Obviously, this approach would not be 
effective in areas that were selectively logged with aerial systems 
such as helicopter or full-suspension cableways. 

Once these logging features were identified, the synthetic esti­
mator was used to test for differences in lidar-predicted AGB (at 
50 m resolution) between undisturbed areas and impacted areas 
within the selectively logged unit. Although a low percentage of 
the total volume (less than 1 0%) was harvested, the difference in 
the AGB means (7.7 Mg ha _,) was highly significant (p<0.01) 
and of the same magnitude as the planned harvest volume (12-
18 Mg ha _, planned removals). A pre-logging, spatially-explicit 
map of AGB would be needed to definitively attribute this differ­
ence to logging. However, because the impacted areas are dis­
persed throughout the entire unit (Fig. 5) and spatially associated 
with logging features, it is likely that the difference in AGB is asso­
ciated with selective logging and not due simply to natural varia­
tion in the unit. 

The area impacted by selective logging as determined from the 
ROM layer was 15.4% of the management unit. This is similar to 
what Asner et al. (2004) calculated through intensive field mapping 
of roads, skidtrails, landings, and tree gaps for conventional selective 
logging in eastern Amazonia. The lidar ROM approach to identifying 
logging impact areas may be a viable alternative to such intensive 
field surveys. Further research is needed to test whether object­
based image analysis methods can be used to automate the delinea­
tion of roads, skidtrails, landings, and tree gaps within the ROM. 
Additionally, although not the focus of our study, a robust estimate 
of canopy gap fraction associated with the selective logging is easily 
computed from the lidar point cloud. Canopy gap fraction is a key 
data element in the regional selective logging satellite mapping 
approach presented by Asner et al. (2004). 

More research is needed to determine what density of lidar is nec­
essary to reliably identify skidtrails and small logging roads under 
heavy residual canopy. The density of our lidar acquisition (25 pulses 
m- 2

) was high, allowing generation of the ROM at 1 m resolution 
with extremely high levels of detail. For example, several manually 
cleared walking trails used by rubber tappers and forestry inventory 
crews were evident in the ROM. This level of detail is beyond that 
needed for monitoring selective logging. 

Logging in our study area had started about a month before lidar 
data were acquired. Therefore. regenerating vegetation in tree gaps, 
skidtrails, and landings had not grown over 1 m tall, the lower limit 
of the ROM layer. If the lidar acquisition had been delayed, the 
lower and upper limits of the ROM would likely need to be adjusted. 
Further research is needed to evaluate if the ROM approach can be 
used when logging has occurred one or more years prior to lidar 
acquisition. 

By using two scales of analysis and the lidar synthetic estimator 
we were able to identify a statistically significant difference in esti­
mates of AGB between selectively logged and unlogged areas that 
was not evident from ground plots or from model-assisted lidar pre­
dictions. In our study, we had lidar coverage over the entire study 
area; however, a similar approach for estimating area recently selec­
tively logged versus undisturbed could be incorporated into a multi­
level inventory framework (Andersen et al., 2011 ). 

5.4. Factors affecting the accuracy and precision of lidar-based AGB 
estimation 

There are two likely major sources of unexplained variance of the 
AGB regression model (Mascaro et al.. 2011 ). The first is mis­
registration of the ground plot locations to the Jidar point cloud. The 
second is poor estimation of AGB due to limited allometric equations 
and ground measurements. 

While we tried to obtain the most accurate positions possible for 
the plot corners. the dense, multi-layered canopy and tall. large­
diameter stems in our study site represent difficult conditions for ac­
q~iring accurate GNSS positions. Na>sset (2001 ), Clarkin (2007), 
Andersen et al. (2009) and Valbuena et al. (2010) have all completed 
studies of GNSS accuracy in conifer dominated forests; however. we 
have not found similar studies in dense tropical rainforests where 
GNSS signal tracking may be considerably more difficult. In heavy 
canopy, the direct path from a satellite to the GNSS receiver can be 
completely blocked and only the reflected (multipath) signal is re­
ceived. Multipathing occurs when the signal reflects off of a nearby 
reflective surface (e.g., large tree bole) before being detected by the 
receiver. Because the multipath signal has traveled farther than the 
straight-line distance to the satellite, it can cause large positional er­
rors in heavily forested areas, particularly when only a low number 
of satellites can be tracked, making it impossible to identify and elim­
inate the multipath signal from the position solution. 

In our first CNSS field campaign, only CPS satellite signals were 
available from the Rio Branco base station. Examination of the indi­
vidual epoch positions post-processed using only GPS data revealed 
widely scattered clouds of positions that varied by as much as 50 m 
horizontally. This was particularly pronounced at plot corners 
where a low number of GPS satellites were tracked due to heavy can­
opy. Clarkin (2007) found that increasing the number of satellites 
tracked and used in the calculation of a position increases the accura­
cy of the position when surveying locations in heavy forest. As the 
number of tracked satellites increases, the likelihood of having suffi­
cient non-multipath satellite signals increases, allowing better detec­
tion and elimination of any multipath signals, resulting in more 
reliable post-processed positions. 

In our second GNSS field campaign, we established a temporary base 
station that tracked both GPS and GLONASS satellites and then 
resurveyed a subset of the plot corners that had the poorest calculated 
positional precision from the first CPS-only campaign. For 98 field loca­
tions for which both GPS and GLONASS base station data were collected, 
the number of satellites tracked increased from 6.6 with GPS alone to 
11.5 with GPS and GLONASS. The mean post-processed precision of 
the field locations improved from 0.45 m (SO= 0.44 m) for GPS alone 
to 0.31 m (S0=0.16m) when both CPS and CLONASS data were 
used. The mean horizontal difference in field locations computed from 
CPS alone versus CPS and GLONASS was 1.71 m (SO= 1.99 m). Howev­
er, 7 field locations had horizontal differences greater than 5 m. The 
mean number of CPS signals available for post-processing these posi­
tions was only 4.3, compared to 8.5 signals with GPS and GLONASS. 
We believe the reason for these large differences in GPS-only versus 
GPS and GLONASS positions is due to multi path signals that the post­
processing software was unable to eliminate due to the minimal num­
ber of available GPS satellite signals. For this reason, we recommend 
that GNSS systems capable of collecting and post-processing CPS and 
GLONASS data be used when surveying plot locations under heavy, 
non-deciduous forest canopy. For the final set of plot corner locations, 
we used the GNSS rover file that had the greatest number of satellites 
available for post-processing. 

The precision of plot corner locations reported by the GNSS post­
processing software was generally less than 0.5 m which is similar 
to location precision reported by Valbuena et al. (201 0) using similar 
equipment. processing, and field protocols. However, the accuracy of 
the locations cannot be determined without a rigorous ground survey 
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using conventional closed traverse methods. Such a ground survey 
was not possible for this study due to time ,md cost limitations. The 
Valbuena et al. (2010) study, which was conducted in mature conifer­
ous forests in Spain, reported actual horizontal error of plot positions 
approximately 2-3 times the precision reported by the post­
processing software. Therefore, we would expect our horizontal 
error to likely be greater. in the range of 2-5 m, due to the dense. 
tropical canopy. 

Frazer eta!. (2011) examined the influence of sample plot size and 
location errors on accuracy and uncertainty of lidar biomass estimates 
using simulated stand and lidar datasets. Their results indicated that 
with large plot sizes (> 0.125 ha), plot positional errors of up to 5 m 
had little effect on lidar-derived estimates. With a plot size of 
0.25 ha and estimated plot location error of less than 5 m. the results 
of Frazer et al. (2011) would suggest that our lidar explanatory met­
rics for each plot should not have been strongly affected by mis­
registration of ground plots to the lidar point cloud. However. their 
simulated stand was composed of a single conifer species (Douglas­
fir) that has a well behaved conical or cylindrical crown form, unlike 
many of the dominant tropical tree species found in our study site 
that have widely spreading, irregular crown shapes. Asner et al. 
( 2009) also reported that AGB estimation errors due to misalignment 
of lidar and field plot data were in the range of 0 to 10 Mg ha- 1 in a 
study of tropical forests conducted in Hawaii. More research is need­
ed to better estimate GNSS positional errors in dense tropical forests 
and to establish guidelines for minimum data collection time at 
each plot location, the most robust GNSS post-processing methods, 
and whether post-processing using multiple GNSS constellations is 
required to insure plot location accuracy of 5 m or better. 

In this study, stem diameters were measured using the generally 
applied rules for tropical forests (diameter measurement at breast 
height ( 1.3 m) or above basal buttress). DBH measurements by field 
personnel can vary depending on the field crew's experience, tree 
characteristics (e.g. bark, trunk irregularity, bifurcated trunks,lianas ), 
and topography (slope). In addition. variations on the height of the 
DBH measurement can produce significant differences on the esti­
mated parameters (e.g., Brokaw & Thompson, 2000). The equation 
used to compute above ground biomass had only diameter as the in­
dependent variable. Diameter alone is used, especially in tropical for­
ests, because it is easy to obtain with a relatively high accuracy. The 
use of height as a second independent variable would likely improve 
individual tree AGB estimates; however. it is extremely difficult to 
measure accurate tree heights in tropical forests (e.g., Asner et a!., 
2011; d'Oiiveira eta!.. 2011 ). Thus, biomass equations based only on 
DBH are generally used and accepted in tropical forests studies 
(Brown. 1997; Chave et al., 2008: Higuchi et al., 1998; Nogueira et 
a!., 2008; Sierra et al., 2007). It is very likely that diameter will contin­
ue to be the main variable measured for biomass studies in tropical 
forests. We also recognize that using a single biomass equation in 
an ecosystem with hundreds of tree species (with different growth 
patterns. crown architecture. and crown expansion as a result of can­
opy position) may introduce high levels of measurement error for in­
dividual tree AGB and likely contributes significantly to the remaining 
unexplained variance in our lidar AGB model. Further tests are need­
ed to determine if use of allometric equations for individual species 
and adjustments for regional wood density differences would reduce 
ground plot AGB measurement error and improve model fits. as 
reported by Asner eta!. (201 1 ). 

As several previous studies have found (Drake et a!., 2003; 
Gobakken & Naesset. ?008; Hopkinson. 2007; Rombouts et al., 2010), 
we also would expect the AGB model would be affected by lidar sensor 
parameters, acquisition mission specifications. and seasonal conditions. 
In our study, lidar data were flown at the end of the rainy season before 
any significant leaf fall. We would expect that results would be different 
if lidar data were reacquired with the same sensor and mission specifi­
cations in the dry season with significant leaf-off conditions. The lidar 

sensor used in this study was a discrete-return system that did not pro­
vide calibrated return intensity data; therefore, we did not use any lidar 
metrics related to portion of energy returned from the canopy (intensi­
ty of discrete returns). Instead, we were limited to metrics which de­
scribe the vertical structure of the lidar point cloud. 

5.5. Direct lidar models and applications for forest management 

There are several products that can be derived directly from the 
LIDAR point cloud that are not dependent on ground plot measure­
ments. Specifically, these are: bare earth, canopy surface, canopy 
height, canopy cover, and canopy relative density models and high-· 
resolution orthographic intensity images created from return intensi-· 
ty values. Lidar bare earth models describe topography and drainages 
at unprecedented resolution, allowing reliable road and operations 
planning with greatly reduced field work. Canopy height and cover 
models provide a direct method for monitoring change over time of 
the canopy surface. Lidar-based high-resolution orthographic images 
are useful as base maps where recent photographic imagery of com .. 
parable scale is not available. As shown in the FEA site, the ROMs pro .. 
vide a method to detect fine-scale disturbance in the under- and 
midstory canopy. For all these products, further tests are needed to 
determine if lidar acquisitions with lower pulse densities and greater 
flying heights can provide sufficiently accurate products as lower 
costs. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at http:// 
dx.doi.org/1 0.1 016/j.rse.2012.05.014. 
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