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Abstract 

Climate change is already affecting many fish and wildlife populations. Managing these populations requires an 
understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and 
managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such 
an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of 
climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on 
individual species distributions and populations. We present a framework for how climate-impacts modeling can be 
used to address management concerns, providing examples of model-based assessments of climate impacts on 
salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the 
Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the 
northeastern United States and southeastern Canada. We also highlight some key limitations of these models and 
discuss how such limitations should be managed. We conclude with a general discussion of how these models can be 
integrated into fish and wildlife management. 
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Introduction 

Climate change has the potential to greatly alter fish 
and wildlife populations and their habitats (Parry et al. 
2007). Increasing temperatures and altered precipitation 
patterns are likely to affect species distributions as well 
as hydrological cycles, fire regimes, and vegetation 
communities. In many cases, successful fish and wildlife 
management will require proactive measures to address 
climate change. To develop these measures, managers 
will need a basic understanding of the ways in which 
ecological systems are likely to respond to climate 
change (Littell et al. 2011). Models that project the 
potential ecological effects of climate change will play a 
critical role in providing such an understanding. Specif- 
ically, these models can contribute to climate change 
vulnerability assessments, aid in the development of 
climate change adaptation strategies, and help in setting 
management priorities and goals as part of a larger 
and iterative planning and decision-making process 
(Figure I). 

Here, we provide an overview of some of the types of 
models that can be used to project the effects of climate 
change on ecological systems (summarized in Table I), 
and we describe a framework for the effective use of 
models (Box I). We begin with a brief discussion of 
climate models. We then focus on four areas of climate 
impacts that are critical to fish and wildlife habitat and 
population management: hydrology, fire, vegetation, 
and individual species responses. We describe the types 

of models that are available, discuss model limitations, 
and provide examples of model applications. We develop 
some of those examples into case studies in which we 
describe the methods and model interpretation in 
greater detail and apply a simple climate-impacts 
modeling framework. We conclude by making recom- 
mendations for incorporating climate-impacts modeling 
into fish and wildlife management, being careful to 
consider the limitations of existing tools° This review is a 
general introduction to modeling tools for projecting 

climate impacts. It does not provide a comprehensive 
review of the history or the state-of-the-art in any of the 
four fields of modeling. Instead, it is meant to be an 
accessible overview of how ecological models can 
potentially contribute to climate-impacts assessments. 

Modeling Approaches 

Climate models 
General circulation models (GCMs) are numerical 

models that simulate the physical processes of climate. 
These models are the complex dynamic models upon 
which the Intergovernmental Panel on Climate Change 
(IPCC) has based many of its conclusions and whose 
outputs biologists and modelers in other fields have 
used to forecast potential ecological climate impacts. 
The GCMs used in the IPCC Fourth Assessment Report 
(IPCC AR4) were coupled atmosphere-ocean general 
circulation models that incorporate processes of thermal 
energy storage and release in the oceans as well as the 
atmosphere (Solomon et al. 2007). Most of these models 
included sea-ice dynamics and an interactive land- 
surface component with hydrologic effects, and some 
included effects of simulated vegetation. The complexity 
of these models derives from the physical equations 
used to calculate the movement of mass, momentum, 
and energy through the climate system and the multiple 
layers of the atmosphere and ocean for which energy 
inputs and outputs are calculated. A very simple climate 
model might include three layers--the sun and outer 
space, the Earth’s atmosphere, and the Earth’s surface-- 
and model three atmospheric processes: solar radiation, 
thermal radiation, and absorption. The greenhouse effect 
is an emergent property of this system in which thermal 
radiation from the Earth’s surface is absorbed by the 
atmosphere and re-radiated back toward the Earth, 
maintaining the surface temperature within a range 
suitable for life..General circulation models explicitly 
model energy transfer processes such as the greenhouse 
effect and include many more mechanisms of climate 

Figure I. Integration of climate-impacts modeling into an iterative decision-making process whose goal is to implement and 
evaluate climate-resilient management strategies. 
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forcing and feedback. A forcing is any model input that 
directly impacts either the amount of solar radiation 
reaching the Earth’s surface or the amount of thermal 
radiation exiting to space (Hartmann 1994). Forcings may 
be natural, such as aerosols of volcanic origin, or 
anthropogenic, such as increases in greenhouse gases 
due to the burning of fossil fuels. Climate feedbacks 
respond to changes in global mean temperature and 
also directly or indirectly affect the Earth’s solar and 
thermal radiation budgets (Bony et al. 2006). Examples 
of feedbacks include humidity (warmer air holds more 
water vapor, a greenhouse gas that contributes to 
further warming), clouds (may result in warming or 
cooling depending on the cloud type), and ice- and 
land-surface albedo (melting ice results in additional 
warming because ice cools the Earth’s surface by 
reflecting incoming solar radiation). 

Limitations and uses. Variability in climate projections 
provides a significant challenge for modeling ecological 
climate impacts. Climate sensitivity is a standardized 
measurement used to quantify this variability. It is the 
change in global mean temperature that occurs when 
the global average surface air temperature reaches 
equilibrium in response to a doubling of atmospheric 

CO2 (Bony et al. 2006). Projections of climate sensitivity 
range from 2.0 to 4.5° C (Solomon et al. 2007), but they 
may be significantly higher than this projection (Roe and 
Baker 2007). Some of this variability stems from variation 
in GCM structures and inputs. Each of the 23 GCMs 
involved in the IPCC AR4 simulates climate processes 
differently, producing different projections of future 
climates (Solomon et al. 2007). Gaps in our 
understanding of the climate system also generate 
uncertainty. For example, GCMs are currently unable to 

accurately simulate precipitation (especially in the 
tropics), oceanic oscillations, and cloud dynamics 
(Solomon et al. 2007). Forcing components are also a 
source of uncertainty in GCM projections, particularly 
the effect of aerosols and greenhouse-gas emissions 
(Solomon et al. 2007). Finally, the different greenhouse- 
gas emissions scenarios used to define anthropogenic 
forcings in GCMs’ result in a range of projections. For 
continental- or global-scale projections or for more than 
about two decades into the future, greenhouse-gas 
emission scenarios and GCM structure are the two 
greatest sources of variability in climate projections 
(Hawkins and Sutton 2009, 2011). The differences in 
emissions scenarios account for the greatest amount of 
variation in projections farther than about 50 y into the 
future. In subcontinental and regional projections of the 
next one or two decades, internal variability in model 
runs (i.e., climatic variability) is the primary source of 
uncertainty, followed by variability due to GCM structure 
(Hawkins and Sutton 2009). Improved understanding and 
validation of climate feedback mechanisms may further 
reduce uncertainties in projected climate sensitivities 
(Bony et al. 2006) and improve confidence in short-term 
regional projections, but they are unlikely to alter long- 
term global projections (Hawkins and Sutton 2009) or 
reduce the occurrence of extreme projections (Roe and 

Baker 2007). 
General circulation model resolution is often too 

coarse (15,000-25,000 km2) for outputs to be used 
directly by regional or local climate-impacts models 
(Solomon et al. 2007). Therefore, projections must be 
downscaled to finer resolutions, either statistically or 
dynamically. Statistical downscaling translates climate 
projections to a finer scale (I-50 km2) grid cells or a 
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single site by using statistical relationships based on 
historical climate records, topography, or both (Salathe 
et al. 2007). General circulation model outputs also can 
be downscaled dynamically with regional climate models 
(RCMs). These models are similar to GCMs, but they 
model dominant regional climate mechanisms at finer 
scales (<20 kin2). Generally, RCMs differ from statistical 
downscaling because they model drivers of local climate 
explicitly (Salathe et al. 2007; Solomon et al. 2007). 
However, RCMs can be as difficult to build and time- 
consuming to run as GCMs. Both statistical and dynamic 
(e.g., RCM) downscaling methods introduce additional 
uncertainty in climate projections. Statistically and 
dynamically downscaled climate projections have been 
made publicly available at resolutions ranging from I 
to 50 km2 (e.g., Maurer et al. 2007; Ramirez and Jarvis 
2008; Girvetz et al. 2009; Mearns et al. 2009) at regional 
and global scales, so that ecological and other climate- 
impacts modelers can avoid the task of manipulating the 
raw GCM output or performing the downscaling. 

Comparative studies of output across multiple GCMs 
coordinated by the Coupled Model Interco.mparison 
Project (Meehl et al. 2007; CMIP 2010) found that 
projected changes in decadal mean surface tempera- 
tures are most informative at approximately 40 y into the 
future and noisier with increasing latitude (Hawkins and 
Sutton 2009). This finding has led, in part, to a new 
emphasis on decadal prediction that may increase the 
availability of medium-term (10-30 y) regional climate 
projections (Meehl et al. 2009) and is integrated into the 
latest Coupled Model Intercomparison Project 5 (Taylor 
et al. 2012). When studying longer term projections, out 
100 y or more, an explicit characterization of uncertain- 
ties becomes more important, typically by using an 
ensemble of GCM simulations (e.g., Mote et al. 2011). 
Ensembles combine projections from multiple GCMs, 
emissions pathways, or a combination (Tebaldi and 
Knutti 2007; Knutti et al. 2010) and can help quantify 
the variability and inherent uncertainty in future climate 
projections (e.g., Garcia et al. 2012). 

In spite of the many known uncertainties described 
above, the climate projections produced by GCMs and 
RCMs are useful for assessing ecological climate impacts. 
The strength of the GCMs lies in their foundation in 
physical principles (as opposed to applying purely 
statistical projections), and their robustness is evident 
in their ability to recreate broad patterns of climate 
variability and simulate past climates (Solomon et al. 
2007). The latest generation of coupled atmosphere- 
ocean general circulation models and Earth System 
Models that include carbon cycling (e.g., http://www. 
cesm.ucar.edu) are a promising improvement. They 
include advances in simulations of important phenom- 
ena such as the El Ni~o Southern Oscillation (Guilyardi 
et al. 2012), and they outperform the previous generation 
of GCMs in their ability to simulate historical temperature 
changes at fine spatial and temporal scales (Sakaguchi et 
al. 2012). Despite these models representing more 
processes in greater detail and including more explicit 
feedback mechanisms, the variation among model 
projections has not increased (Knutti and Sedlacek 2012). 

There have been many attempts to guide the selection 
of which GCMs should be included in a particular 
impacts study (e.g.,Tebaldi and Knutti 2007). However, 
using the ability of GCMs to reproduce historical climate 
(i.e., model skill) to rank models is difficult to implement 
consistently (Knutti et al. 2010; Weigel et al. 2010). The 
magnitude of projected impacts has generally shown 
little dependence on the skill of the GCMs included in 
an ensemble (e.g., Brekke et al. 2008; Pierce et al. 2009). 
So, it is unclear whether the ability to simulate past 
conditions results in greater certainty in future forecasts, 
leading to the common conclusion that model skill may 
be less important in estimating climate change impacts 
as long as a large ensemble of GCMs is used (Mote et al. 
201 I). 

Hydrological models 
Among other things, hydrological models can simulate 

climate-driven changes in the timing and quantity of 
stream flow, snowpack dynamics, and evapotranspira- 
tion, all factors with potential to influence fish and 
wildlife populations both directly and through indirect 
effects on habitat suitability. Model outputs can be 
useful for developing land-management policy. For 
example, projected downstream impacts of climate 
change on freshwater species may support upstream 
habitat restoration or land-use planning, particularly 
when model outputs suggest future increases in extreme 
hydrological events, such as drought and flooding. 
Outputs from hydrological models also provide inputs 
to other climate-impacts models, including fire and 
vegetation models. 

There are a wide variety of hydrological models, and 
they differ in their structure and application (Kampf and 
Burges 2007). Most hydrological models include equa- 
tions that account for the major components of water 
and energy budgets as well as a flow-routing scheme to 
redistribute water through a catchment. Spatially explicit 
hydrological models divide the study area into discrete 
elements, such as a regular grid. Meteorological data are 
passed to each grid cell, and the model produces 
estimates of important hydrological variables such as 
runoff, evaporation, and snowpack. Runoff is typically 
routed through a river network to produce flow 
estimates at strategic points. 

Coarse-scale (15,000-25,000 km2), one-dimensional 
hydrological models are embedded in many GCMs. 
These models can be used to examine global patterns 
of runoff and soil moisture, but they have trouble 
simulating historical flows because they are one-dimen- 
sional and therefore lack routing in two-dimensional 
space (Parry et al.. 2007). The coarse resolution of GCMs 
and runoff-estimate biases make these models difficult to 
use at subcontinental scales. 

Macroscale hydrological models (e.g., Liang et al. 1994) 
are typically applied at grid resolutions that range from 4 
to 25 kin. They generally represent hydrological process- 
es in more detail than GCM-embedded models (Cher- 
kauer and Lettenmaier 2003). Macroscale models also 
can be driven by weather station data, regional climate 
model output, or statistically downscaled GCM output. 
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Table I. Types of climate-impacts models, their potential applications and limitations. Information adapted from reviews by 

Keane et al. (2004), Botkin et al. (2007), Kampf and Burgess (2007), Solomon et al. (2007), Flannigan et al. (2009), Lawrence et al. 

(2011), Littell et al. (2011), and Seidl et al. (2011). 

Ecological process 

Climate Solomon et al. 
2007) 

Hydrological (Kampf 
and Burgess 2007) 

Fire (Keane et al. 
2004; Flannigan et al. 

2009; Seidl et al. 2011) 

Model categories 

Global climate models 

(GCMs) 

Regional climate models 

Downscaled GCM output 

Global climate models 

Macroscale hydrological 
models 

Subregional hydrological 
models (also see coupled 
hydrological-vegetation 

models) 

Fire hazard and fire 
weather models 

Fire occurrence and area 
burned models 

Fire behavior and effects 
models 

Landscape fire succession 

models (also see 
landscape models) 

Description Applications Limitations 

Coupled AOGCMa simulate 

movement of mass, 
momentum, and energy 
through layers of the 
atmosphere and ocean 

Dynamic downscaling of 
GCM output simulating 
regional climate 
phenomena 

Statistically downscale 
GCM output based on 

historical climate, 
topography, or both 

One-dimensional 
empirical models of 

runoff and soil moisture 

Two-dimensional models 
incorporating soil moisture, 
runoff, and flow routing 
(4-25-km grid cell size) 

Including more processes 

than macroscale, such as 
groundwater movement 
and effects of shading 
and vegetation 

Fine resolution (can be 
<100 m) 

Empirical index of fire 
risk based on present 
and future fuel availability 
and weather conditions 
suitable for fire 

Empirical model relating 
meteorological variables 
to fire occurrence or 
historical area burned 

Process-based models 
simulate fire spread 
and impacts on a real 
or representative 
landscape 

Process-based models 
simulate fire behavior 
and effects as well as 
vegetation succession 

Estimate climate sensitivity Coarse spatial resolution 
Project global and regional Variability among GCMs 
changes in temperature, Uncertainty around modeling 
precipitation, and other of climate feedback 
aspects of climate mechanisms 

Inability to capture regional 
climate phenomena 

Estimate regional projected Variability among GCMs 
changes in temperature, 
precipitation, and other 
measures of climate 
Provide inputs to other 
climate-impacts models 

Same as regional models 

Continental-scale patterns 

of runoff and soil 
moisture 

Global and subcontinental 
patterns of runoff and 
soil moisture 
Drought and flow 
forecasting 
Hydropower planning 
Impacts of land-use 
change 

Impacts of land-use 
change (e.g., forestry and 

restoration) 
Potential for erosion and 
mass wasting 
Valuation of ecosystem 

services 

Uncertainty associated with 
modeling regional processes 

Variability among GCMs 
Finer spatial resolution does 
not imply the inclusion of 
regional climate processes 

Coarse spatial resolution 

One-dimensional 
representation 
Uncertainty in precipitation 
projections 

Uncertainty in precipitation 
projections 
May not include changes in 

land-use, disturbance, and 
vegetation cover 

Uncertainty in precipitation 
projections and changes in 
land cover 
Improved representation of 
local processes requires more 
data and time to parameterize 
and run the model 

Detect change in fire 
danger, season length, 
potential fire behavior, 
and resulting haze 

Estimate area burned 
and fire frequency 
Identify sites for 
management 
Estimating future wildfire 
suppression costs 

Stand level 
Estimate fire effects 
including area burned, 
mortality,. 
age-class distribution, 
smoke, and soil heating 

Spatially explicit estimates 
of fire regime, fire season 
length, area burned, 
carbon flux, mortality, 
age-class distribution, 
fire effects, and vegetation 

succession 

Static models of current 
conditions 
Limited by the resolution of 
model inputs (e.g., 

characterization of fuels) and 
uncertainty in precipitation 
projections 

Assume that past climate and 
fire relationships will 
continue in the future 
Do not consider feedbacks 
between vegetation and fire 

Rely upon historical 
relationships for specification 
of key parameters, such as 
ignition probabilities and fire 
severity, for each vegetation 
types 

Rely upon historical 
relationships for specification 
of key parameters, such as 
ignition probabilities and fire 
severity, for each vegetation 
types 
Complex models difficult to 
learn 
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Table 1, Continued. 

Ecological process 

Vegetation (Lawrence 
et al. 2011; Littell et at. 
2011) 

Model categories Description Applications Limitations 

Forest gap models Simulate forest dynamics Simulated forest species Stand-level projections 
at the stand or patch composition, biomass, Impacts of increased C02 on 
level seed dispersal, and stem WUEb across life stages still 

density poorly understood 

Landscape models 

Dynamic global 
vegetation models 

Some processes (e.g., grazing 
and disease) may be left out 
of models 
Absence of future land-use 
change 

Impacts of increased C02 on 
WUE across life stages still 
poorly understood 
Complex models difficult to 
learn 

Biogeochemical models 

Coupled hydrological 
vegetation models 

Individual species Empirical and statistical 

(Botkin et al. 2007) models 

Mechanistic models 

Simulate multiple 
processes (e.g., 
management, disturbance, 
competition, and 
dispersal) occurring at 
the scale of the landscape, 
stand, species, and 
individual tree 

Simulate percent cOver 
of globally distributed 
plant functional types 

Simulate forest- 
atmosphere processes 
(e.g., gas exchange and 
hydrology) and carbon 
and nutrient budgets 

Simulates hydrologic, 
biogeochemical, and 
vegetation processes 

Use statistical or 
algorithmic techniques 

to relate historical climate 
to current species’ 
distributions 

Spatially explicit 
population models 
Cellular automata 
Connectivity models 
Bioenergetic models 

Simulated forest species 
composition, biomass, 
and disturbance regimes 

Simulate growth and 
disturbance (including 
fire), percent cover of 
plant functional types, 
and seed dispersal 

Used to identify rate- 
and process-limiting 
factors across biomes or 
geographic regions 
Track multiple processes 
such as changes in net 
primary productivity, 
abiotic soil processes, 
and nutrient cycles 

Simulate stream flow, 
net primary productivity, 
nutrient cycling, and 
dynamic land cover in 
responses to variation in 
topography, vegetation, 
and climate 
Often embedded in 
global or regional climate 
models 

Model range contractions 
and expansions 
Identify threatened species 
Highlight areas for 
conservation action 

Simulate population 
abundance and dynamics, 
dispersal, gene flow, 
phenology, connectivity, 
range contractions, and 
expansions 
Identify threatened species 
Cumulative impacts 

assessment 

Simulate a limited number of 
plant functional types 
Often unable to simulate 
individual stands 
Impacts of increased CO2 on 
WUE across life stages still 
poorly understood 
Complex models difficult to 
learn 

Based on plant functional 
types rather than species 
Input variables not readily 
available 
Highly technical and difficult 
to learn 

Uncertainty in precipitation 
projections 
Limited number of plant 
function types or land cover 
classes 
Uncertainty in 
parameterization of complex 
biogeochemical processes 
and feedbacks 
Highly technical and difficult 

to learn 

Assume that the current 
distribution represents the 
climatic limit of the species 
Does not consider 
phenotypic plasticity or 
evolution, dispersal ability, 
interspecific interactions, or 
varying climate tolerances 
across life stages 
Projections vary across 
modeling approaches 

Complex models with many, 
sometimes unknown, 
parameters can introduce 
uncertainty 
Time-consuming to build and 
run simulations 

a AOGCM = atmosphere-ocean global climate model. 
b WUE = water-use efficiency. 
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Macroscale models are often used to examine how 
climate affects the hydrologic cycle at continental and 
subcontinental scales (e.g., Maurer 2007). 

Subregional hydrological models (e.g., Wigmosta et al. 
1994) represent terrain at finer resolutions (i.e., <100 m) 
and may contain more processes than macroscale 
models, such as lateral distribution of groundwater, 
shading in areas of high topographic relief, or vegetation 
effects. Subregional models also are driven by meteoro- 
logical data, although the data must often be interpo- 
lated. Subregional models are appropriate for simulating 
the effects of climate and land use on the hydrology of 
small catchments, for which representing topographic 
complexity is important. 

Limitations and uses. Hydrological models are limited 
by uncertainties in the parameterization of underlying 
physical equations, model structure, and model inputs, 
such as climate data and land-surface parameterizations 
(Parry et al. 2007). These models are particularly sensitive to 
uncertainties in precipitation data, the primary driver of 
hydrology. Precipitation is difficult to measure and is sparsely 
measured (e.g., one National Oceanic and Atmospheric 
Administration cooperative observer station per -700 km2; 
Maurer et alo 2002), leading to uncertainties in the charac- 
terization of spatial distribution of precipitation used to force 
a hydrological model. Projections of future precipitation 
carry the additional uncertainties related to emission 
scenarios (Christensen et al. 2007), GCMs (Graham et al. 
2007), and downscaling (Fowler et al. 2007). Because future 
temperature projections are generally more consistent 
among GCMs than precipitation projections, modeled 
hydrologic impacts driven by temperature, such as 
changes to snow-dominated basins (e.g., McKelvey et alo 
2011), are less variable than impacts that are driven by 
precipitation. 

Nonclimatic factors influence hydrology and may 
complicate interpretation of simulations if not included 
in a model. Land-use change, including climate-induced 
vegetation change, may alter hydrology as much as 
climate change (Parry et al. 2007). For example, the tree 
line may shift upward in elevation with warming (Harsch 
et al. 2009), and wildfires may increase in size and 
frequency in response to warmer, drier conditions (Littell 
et al. 2009; Littell and Gwozdz 2011). A warmer, drier 
climate also could increase irrigation demand such that 
even when coupled with more efficient irrigation 
technologies, in-stream flows could be reduced. Changes 
in agriculture, irrigation practices, and reservoir opera- 
tion are as likely as climate-induced change, and 
previous study shows that such changes can affect 
model results (Haddeland et al. 2007). These additional 
factors are often addressed in a separate model that uses 
hydrological model output to assess water-system 
changes (e.g., Vicuna et al. 2007). Dynamic vegetation 
responses, such as effects of increased CO2 concentra- 
tions on biomass production and transpiration rates, can 
be important at the continental scale (Betts et al. 2007). 
However, these vegetation responses are rarely included 
in hydrological models because their hydrologic impact 
is considered substantially smaller than climate or land 
use (Piao et al. 2007; but see Lawrence et al. 2011)i 

Hydrological models are useful for developing adap- 
tation strategies to address climate change. Macroscale 
models have been used for land-management impact 
assessment (e.g., Haddeland et al. 2007) and mapping of 
suitable wolverine Gulo gulo habitat based on projected 
spring snowpack (McKelvey et al. 2011). Subregional 
models have been used to test the effect of land-use 
change and forestry practices on flows (e.g., VanShaar 
et al. 2002) and to compare the impact of climate and 
habitat restoration on salmon populations (e.g., Battin et 
al. 2007). Selecting the right model to address the spatial 
scale of interest is crucial, but it often involves balancing 
accuracy with cost while ensuring the model is capable 
of simulating the most important aspects driving local 
ecosystem impacts. Models are constantly evolving to 
simulate more aspects of the environment driving or 
responding to hydrologic change, such as urban and 
agricultural water management (e.g., Yates et al. 2005), 
sediment production and transport (e.g., Doten et al. 
2006), and stream temperatures (e.g., Ficklin et al. 2012). 
Subregional hydrological models may be necessary for 
capturing local-scale dynamics and climate-induced 
impacts not captured by coarse-resolution models. 
However, a subregional model requires additional time 
to parameterize, calibrate, and run compared with the 
simpler process of setting up and running a macroscale 
model, and many macroscale models do have the ability 
to account statistically for subgrid scale variability in 
elevation, rainfall, or other characteristics. Greater avail- 
ability of downscaled climate data may increase the use 
of subregional hydrological models. Climate change 
adaptation strategies for freshwater systems will benefit 
from hydrological modeling projections that characterize 
the direction, magnitude, and uncertainty of future 
change as well as evaluate the benefits of proposed 
management. 

Case study. Changing river flow rates can have 
significant ecological consequences. Flow rates 
influence the extent of available freshwater habitat, 
mediate changes in habitat condition over time, regulate 
the input and output of nutrients and waste, and can 
restrict habitat connectivity (Rolls et al. 2012). Assess- 
ing the consequences of altered flows on species of 
management concern is therefore a high priority for the 
conservation of freshwater species and ecosystems. 
Furthermore, identifying areas in which habitat 
preservation or restoration may mitigate these changes 
is needed for climate change adaptation. 

Battin et al. (2007) linked climate, hydrological, land- 
use~ and wildlife population models to assess the effects 
of climate change on habitat restoration for Chinook 
salmon Oncorhynchus tshawytscha (Box 2). The system of 
linked models allowed the researchers to simultaneously 
consider scenarios for both climate change and habitat 
restoration and tO assess their relative impact on salmon 
abundance. Battin et al. (2007) found that climate change 
is likely to impact both peak winter and minimum 
summer flows, with potential negative impacts on 
salmon recruitment that outweigh gains from habitat 
restoration in most places. They addressed uncertainty 
by using outputs from two GCMs and two habitat 
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restoration scenarios, but they used only a single CO2 
emissions scenario because variability among emissions 
scenarios is modest in 25- and 50-y projections. 
Hydrological outputs from the two GCMs agreed on 
the simulated magnitude and spatial pattern of change 
in summer minimum flows, but they differed for winter 
peak flows. Given these uncertainties, Battin et al. (2007) 
suggested focusing on downstream portions of the 
watershed with greater model agreement and less 
projected change. These downstream areas had fewer 
simulated declines in salmon populations under all 
scenarios. A focus on the restoration of low-elevation 
sites for their potential resilience to climate change is a 
strategy that may apply to other basins supporting 
salmon populations or other fish populations sensitive to 
flow rates. 

Fire models 
Fire is an essential ecological process affecting nutrient 

cycling, regulating the density Of young trees and the 
redistribution of water and sediment, and creating 
habitat for fish and wildlife (Noss et al. 2006). Widespread 
changes in these processes may alter the habitat and 
food sources forentire wildlife communities, in some 
cases reducing habitat availability and connectivity. 

Fire-climate models estimate the effects of climatic 
variability and change on components of fire regimes, 
including frequency, extent, severity, seasonality, and 
spatial pattern. These models can be empirical (e.g., 
based on correlative relationships derived from current 
or historical patterns; Flannigan et al. 2005), process- 
based (e.g., based on rules or functions that together 
simulate one 0r more processes; Andrews et al. 2004), or 

Journal of Fish and Wildlife Management I www.fwspubs,org June 2013 I Volume 4 I Issue I I 227 



Tools for Assessing Climate Impacts C.B. Wilsey et al. 

some combination of the two (Keane et al. 2004), and 
they have been used at many spatial and temporal scales 
(Flannigan et al. 2009). Given the critical role that fire 
plays in shaping the composition and distribution of 
vegetation, understanding the effects of climate change 
on fire regimes will be critical for wildlife management. 

Fire is a contagious disturbance process that spreads 
across a landscape based on local weather and the 
spatial connectivity of fuels (Peterson 2002; McKenzie 
et al. 2011). Climate drives fire regimes through the 
short-term effects of weather on fuel moisture and the 
long-term effects of climate on vegetation growth and 
distribution. Vegetation patterns combine with climate 
and topography to influence fire regimes (Swetnam and 
Betancourt 1998) whose pattern, severity, and seasonal- 
ity then strongly influence vegetation composition and 
structure (Lenihan et al. 2008). Viewed at coarse scales 
(e.g., subcontinental regions), fire is driven by climate 
(Littell et al. 2009). At finer scales (e.g., a watershed or 
forest stand), fuel loads and topography can have 
substantial effects, except under extreme weather 
conditions (Turner and Romme 1994). Consequently, 
coarse-scale fire models tend to be empirical models of 
fire weather, occurrence, or area burned based on the 
climatic conditions that drive extreme weather events 
(Lenihan et al. 2008). Fine-scale process-based models, 
including models of fire behavior and landscape 
succession models, often take a wider array of inputs, 
including vegetation structure and available fuels, 
topography, and ignition sources, in combination with 
climate-driven weather. 

The temporal scale of a study also influences which 
processes are included in process-based simulation 
models and which variables are used for empirical 
models. For example, short-term dynamic predictions 
of fire behavior and fire effects usually simulate fire 
spread combined with calculations of consumption, 
smoke emissions, and plant mortality (Keane et al. 
2003). Long-term projections can be based on empirical 
models derived from paleo-fire records (Higuera et al. 
2009) and climate reconstructions, 20th century meteo- 
rological and fire observations (Littell et al. 2009), or 
multidecadal simulations that couple GCM outputs with 
a dynamic vegetation model that includes a fire module 
(Lenihan et al. 2008). 

Among the most integrative modeling approaches are 
the so-called landscape fire succession models that 
combine process-based simulation methods with empir- 
ical relationships between climate and fire, to project 
the impacts of climate on vegetation, fire, and their 
interaction (Keane et al. 2004). These models typically 
produce spatially explicit estimates of vegetation suc- 
cession, fire ignitions, fire spread (area burned), and fire 
effects (e.g., mortality, consumption, smoke, and soil 
heating), but they come in many forms and vary widely 
in complexity (Keane et al. 2004). There are four general 
components of the ideal landscape fire succession 
model: I) ecological processes; 2) climate dynamics; 3) 
disturbance interactions; and 4) spatially explicit struc- 
ture and process, but no models currently in use have all 
of these components (R. E. Keane, USDA Forest Service, 

Rocky Mountain Research Station, Missoula Fire Sciences 
Laboratory, personal communication). More sophisticat- 
ed landscape fire succession models--particularly those 
that are to be applied to mountainous and semiarid 
landscapes--could incorporate topographically relevant 
hydrological models. 

Limitations and uses. One of the largest limitations of 
using empirical models to predict future fire regimes is the 
assumption that historical relationships among climate, 
fuels, and fire will hold in the future. Novel climates, new 
vegetation communities, and future management policies 
may alter many of these historical relationships, particularly 
at finer spatial scales (McKenzie and Littell 2011). Process- 
based simulation models are similarly limited by their 
reliance on historical relationships for the specification of 
key fire-regime parameters, such as distributions of 
ignition probabilities and metrics of fire severity for 
specific vegetation types. Furthermore, process-based 
models vary in the extent to which human impacts, such 
as ignition probabilities, or the impacts of other natural 
disturbances, such as insect outbreaks and plant disease 
(Seidl et al. 2011), are considered. 

Although it may be difficult to predict future fire 
regimes accurately for a given location, the differences 
between simulations run under a range of conditions will 
inform management decisions (Keane et al. 2004). For 
example, when given a range of possible outcomes, 
managers can w.eigh the relative need for prescribed 
burning, firefighting, and buffering of wildlife habitats. 
Empirical models have illustrated relationships between 
20th century climate and area burned (Littell et al. 2009) 
and fire frequency (Gedalof et al. 2005), suggesting 
increased fire risk given projected future climate. 
Process-based fire simulation models suggest that 
negative feedback from forest clearing and previous 
fires may reduce, but not eliminate, projected climate- 
induced increases in area burned (Krawchuck and 
Cumming 2010). These models, along with near- and 
long-term climate projections, may help to identify 
where adaptive management techniques might be 
cost-effective and how much fire-control costs may 
escalate (Corringham et al. 2008). Reliable climate 
forecasts a season or two in advance could inform 
national fire management plans in time for proactive 
management. Long-term projections of climate can be 
used to assess potential impacts of climate-altered fire 
regimes on vegetation.. 

Case study. Wildfire impacts nutrient cycles, young 
trees and understory vegetation, and the distribution of 
water and sediment, all of which can impact fish and 
wildlife habitats (Noss et al. 2006). Changes in wildfire 
may benefit some wildlife species at the expense of 
others (e.g., Smucker et al. 2005), making it critical to 
characterize the direction and magnitude of projected 
change. Annual area burned, fire season length, and the 
frequency of large fires have been used to characterize 
regional changes in wildfire (Westerling et al. 2006) and 
can be estimated from GCM outputs (e.g., Westerling and 
Bryant 2007). Identifying regions with increasing risk of 
fire under climate change would alert managers to the 
need for planning and treatment to protect critical 
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wildlife areas as well as to potentially looming 
suppression costs. 

Flannigan et al. (2005) used statistical models to 
predict annual forest area burned across Canada under 
simulated future climates (Box 3). Models were con- 
structed for eight ecozones reflecting broad-scale 
historical differences in fire frequency and extent. Models 
used historical meteorological data as predictors of area 
burned calculated from a large fire database spanning 
1959-1997 (Stocks et al. 2002). Projections were made 
using outputs from two GCM models run for a single 
emissions scenario that simulated a tripling of atmo- 
spheric CO2 concentrations by the end of the century. 
Outputs suggest that annual area burned by wildfires will 
likely increase across Canada. There is some uncertainty 
among the GCM models used regarding the magnitude 
of the increase, but no ecozones were projected to 
experience declining wildfire. The potential addition of 
millions of hectares burned annually could result in 
dramatic changes in the distribution of vegetation and 
associated wildlife across Canada. These results are most 
informative for improving regional forest management 

policy, but they are too coarse in resolution for assessing 
the impacts at a specific location. Furthermore, outputs 
from a larger number of GCMs would better characterize 
the uncertainty surrounding the magnitude of projected 
increases. In spite of their limitations, these results 
suggest that evaluating fire impacts on fish and wildlife 
habitats across the boreal forest and taiga regions of 
Canada would be useful to identify wildlife species that 
may require protection or assistance under increasing 
wildfire. 

Vegetation models 
Vegetation is fundamental for terrestrial food webs 

and is an essential element in the habitat of many animal 
species. As climates change, plant species ranges will 
shift; biomes will exhibit altered characteristics; and the 
structure and composition of vegetation communities 
will adjust, all influencing habitat and food resources for 
many animals. Therefore, vegetation models have the 
potential to provide insight for local- to continental-scale 
management, policy and for planning decisions regard- 
ing wildlife. 
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Vegetation models range from statistical models that 
identify relationships between plant distributions and 
environmental variables to mechanistic models that 
simulate the physical processes controlling the distribu- 
tion of vegetation. Statistical models are often used to 
project changes in the distributions of individual plant 
species or communities (e.g., Rehfeldt et al. 2012). These 
models are described in the Individual Species Models 
section below. Here, we focus on process-based vege- 
tation models. 

Process-based vegetation models simulate aspects of 
plant physiology (e.g., photosynthesis), carbon and 
nutrient cycles, competition between individual plants 
or vegetation types, disturbance regimes, hydrology, and 
other processes. They include forest gap models (e.g., 
Bugmann 2001; Larocque et al. 201 I), landscape models 
(e.g., Keane et al. 2004; Keane et al. 2011), terrestrial 
biogeochemistry models of carbon and nutrient cycles 
(e.g., Parton et al. 2007), dynamic global vegetation 
models (Cramer et al. 2001; Quillet et al. 2010), and 
coupled hydrology-vegetation models (e.g., Tague and 
Band 2004; Lawrence et al. 2011). Vegetation in these 
models is represented as individual species, plant 
functional types (e.g., deciduous broadleaf trees and 
grass), or by using general measures of vegetation (e.g., 
net primary productivity). The models may simulate 
processes on subdaily to annual time-steps and over 
spatial extents ranging from individual plot to global. 
Input data for these models typically include climate data 
(e.g., temperature and precipitation), atmospheric C02 
concentrations, and soil characteristics (e.g., soil texture). 
The models may specify bioclimatic limits (e.g., lethal 
temperatures) and other biophysical parameters (e.g., 
rooting depth and fire resistance) for particular species 
or vegetation types. Dynamic vegetation models can 
simulate changes in vegetation over time in response to 
changing climate, whereas equilibrium vegetation mod- 
els simulate vegetation under a static climate (e.g., 
average conditions). 

Limitations and uses. The ecological processes 
simulated in vegetation models are complex. In many 
cases, the calculations of particular processes may 
require empirical parameters that are not well known. 
For example, changes in atmospheric CO2 concentra- 
tions can affect plant water-use efficiency, but more 
information about how this effect varies among different 
plant species and life stages is needed to better represent 
this response in vegetation models. Furthermore, 
individual vegetation models may explicitly simulate 
some processes, such as fire, but either ignore or 
simplify other processes, such as grazing and insect 
outbreaks, that may be as important in determining the 
distribution of vegetation in certain areas (Seidl et al. 
2011). As one might expect, the assumptions made in the 
building and parameterization of vegetation models can 
substantially affect model projections (Cramer et al. 2001; 
Quillet et al. 2010). 

Vegetation models vary in their complexity and ease 
of use. Applying these models to particular manage- 
ment and research questions can require a detailed 
understanding of ecosystem processes and computer 

programming expertise to correctly parameterize a 
model. Vegetation models also differ in their ability to 
account for the effects of land-use practices and land- 
cover changes that may alter the flow of water or 
nutrients, fire regimes, or the vegetation itself. To more 
accurately project future climate-driven vegetation 
changes, future vegetation models will need to incor- 
porate land-use projections and simulate their effects 
on vegetation. 

Despite their limitations, all of the types of process- 
based vegetation models discussed above have been 
applied to conservation and natural resource manage- 
ment questions, including silvicultural applications 
(Pabst et al. 2008), forecasting areas of potential fire risk 
(Lenihan et al. 2008), and simulating future changes in 
habitat (Morin and Thuiller 2009). The choice of which 
model or combination of models to apply to a particular 
management question will depend on the specific 
aspects of vegetation one wishes to simulate; its spatial 
and temporal resolution; and the importance of partic- 
ular processes, such as fire. For example, forest gap 
models simulate stand-level processes, but many are 
limited in their ability to predict vegetation responses 
across broader spatial scales (Bugmann 2001). In 
contrast, a dynamic global vegetation model may 
simulate basic plant functional types that can be 
translated into vegetation types or biomes (e.g., broad- 
leaf evergreen forest, grassland, and conifer woodland) 
over regional to global scales, but it may not be able to 
simulate gradients in species composition or forest stand 
structure. 

Some limitations can be overcome by integrating 
models of varying complexity and scale. For example, 
aspects of forest gap models have been incorporated 
into both landscape models (e.g., He et al. 2005; Keane 
et al. 2011) and dynamic vegetation models (e.g., Smith 
et al. 2001) to improve their simulations of plot-level 
vegetation dynamics. Another approach uses a mathe- 
matical approximation to scale-up the outcome of 
stochastic gap model processes to resolutions suitable 
for subcontinental scales (Moorcroft et al. 2001), resulting 
in output that is both locally accurate and transferable 
across regions (Medvigy et al. 2009). Although vegeta- 
tion models generally cannot predict future vegetation 
changes with high accuracy and spatial resolution, the 
models can help managers to characterize the future 
rates and magnitudes of potential vegetation changes 
and to identify species and regions that may be 
particularly sensitive (or particularly resilient) to future 
climate changes (e.g., Lenihan et al. 2008). These results 
in turn can be used to help inform the management of 
animal species and their habitat in the face of climate 
change. They can provide guidance on where to restore 
and where not torestore habitats, which populations to 
monitor, and where populations will need to be 
intensively managed. 

Case study. Prairies and savannahs are some of the 
most threatened ecosystems in the United States 
(Hoekstra et al. 2005). Consequently, the prairies and 
savannas of the Pacific Northwest are home to a large 
number of state-listed and federal candidate species, 
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including the streaked horned lark Eremophila alpestris 
strigata, Taylor’s checkerspot butterfly Euphydras editha 
taylorL Mazama pocket gopher Thomomys mazama, 
and western gray squirrel Sciurus griseus. Managing 
populations of these species requires an understanding 
of how climate change will alter their habitats. Projected 
changes in vegetation across the Pacific Northwest will 
have the potential to inform decisions about which 
populations to monitor, where to put limited restoration 
dollars, and how to plan for connectivity. Bachelet et al. 
(2011) summarized output from a dynamic global 
vegetation model (Rogers et al. 2011) projecting 
potential climate-driven changes in vegetation in the 
Willamette Valley-Puget Trough-Georgia Basin ecoregion 
(Box 4). From all of the GCMs in the IPCC AR4, they 
selected three GCMs whose projections captured the 
range of outputs for the region and included three C02 
emissions scenarios. Of the nine model runs considered, 
none projected an increase in prairie and savanna 
habitats for the end of the century, likely because the 
dynamic global vegetation model simulated higher 
water use efficiency in trees accompanying greater 
atmospheric C02 concentrations, thereby increasing 
their tolerance of drought. Instead, the cool and wet 
climate projection produced no change in simulated 
vegetation distributions, the hot and dry projection 
simulated the western expansion of dry forest from the 
eastern Cascades, and the hot and wet projection 
simulated the northward expansion of warmer forests. 
Thus, prairie and savanna ecosystems appear likely to 
remain rare with climate change. Yet, empirical evidence 
assembled by Bachelet et al. (2011) suggests that prairies 
and savannas may be more resilient than forests to warm 
and dry summers, particularly if climate change brings 
more extreme drought and fire. Bachelet et al. (2011) 
therefore advise managers to restore prairies in 
unproductive agricultural lands and forest lands that 
are likely to become warmer and drier with climate 
change. Managers also may want to consider assisted 
migration within the ecoregion to increase populations 
of rare species. Finally, managers may want to monitor 
and improve existing sites that are likely to continue 
functioning as prairies over the coming century. 

Individual species models 
The ultimate goal of fish and wildlife management is 

stable, resilient animal populations that can only be 
assessed with species-specific models. Individual species 
models can be designed to estimate habitat suitability, 
species distributions, movement, and population-level 
(i.e., demographic) responses. Many modeling approach- 
es that estimate historical changes in populations of 
threatened and endangered species also can be used to 
simulate future climate-induced changes. 

Empirical approaches, typically referred to as climate- 
envelope, niche, or bioclimatic models, are used to 
project potential climate-driven shifts in species distri- 
butions (Pearson and Dawson 2003; Heikkenen et 
2006). These models use either statistical or machine- 
learning methods to identify relationships between 
current species distributions and current climate, and 

they use future climate to generate projected distribu- 
tions. Most empirical models use only climatic variables 
as predictors (e.g., temperature, precipitation, growing 
degree days, and drought indices), but some have 
incorporated other variables, such as land cover, 
elevation, or soil type (Prasad et al. 2006). 

Whereas empirical models have generally been used 
to project changes in species’ potential distributions, 
process-based models have been used to simulate a 
wider array of species-specific ecological effects. For 
example, dispersal models can simulate movement in 
response to climate change (e.g., Iverson et al. 2004); 
population models can simulate annual recruitment as 
a function of climate-driven changes in habitat, food 
resources, predators, or competitors (e.g., Carroll 2007); 
distribution models can make projections based on 
phenology, reproduction, and survival (e.g., Morin and 
Thuiller 2009); and bioenergetic models can project the 
responses of trophic groups (e.g., phyto- and zooplank- 
ton) to climate-driven changes in total energy (e.g., 
Peeters et al. 2007). Generally, climate is incorporated 
into these models through empirical relationships 
between temperature, precipitation, or both and indi- 
vidual fitness, such as making growth and reproduction a 
function of water temperature (Clark et al. 2003) or 
varying survival with annual snowfall (Carroll 2007). 
Empirical and process-based models also can be linked; 
for example, using empirical models of habitat suitability 
as input to a process-based population model (e.g., 
Carroll 2007; McRae et al. 2008; Franklin 2010; Lawson 
et al. 2010). 

Limitations and uses. Empirical species distribution 
models provide a preliminary estimate of how plant and 
animal distributions may respond to climate change, but 
they have several limitations. First, empirical models do 
not directly model biotic interactions (e.g., predator- 
prey dynamics, keystone species, competition, or host 
specificity) that may influence potential range shifts 
(Pearson and Dawson 2003; Zarnetske et al. 2012). 
Second, these models generally do not address 
dispersal capacity or barriers to dispersal that may 
influence colonization of projected habitats (Pearson 
and Dawson 2003; Schloss et al. 2012). Third, empirical 
models do not consider evolutionary adaptation 
(Pearson and Dawson 2003). Fourth, it is unclear how 
models parameterized under present-day climates will 
perform in simulated future climate with no present-day 
analog (Williams and Jackson 2007; Williams et al., 2013). 
Fifth, bioclimatic tolerances may vary across life stages, 
impacting persistence and colonization (Jackson et al. 
2009; Mclaughlin and Zavaleta 2012). Sixth, different 
types of empirical models can produce very different 
projected shifts in the potential range of a species, 
sometimes introducing more uncertainty than the 
underlying GCM projections (Garcia et al. 2012), 
necessitating care in model selection and testing 
(Thuiller 2004) or using ensembles of multiple models 
(Ara6jo and New 2007). 

Given these limitations, empirical species distribution 
models are not currently accurate enough to be the sole 
source of information for selecting reserve networks, 
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identifying translocation sites, or deciding to abandon 
management of a population. However, they are likely to 
be useful for identifying populations at risk due to a 
significant climate-driven range contraction (Pearson 
and Dawson 2003). These models also can help focus 
conservation efforts and monitoring programs by 
identifying habitats where we might expect to see the 
largest changes in flora or fauna (AraOjo et al. 2006). For 
specific management decisions regarding individual 
species, these models can be used in conjunction with 
experimental information, paleoecological records, and 
simulations from detailed process-based models to 
increase projection accuracy. 

Although process-based models of species distribu- 
tions and populations have the potential to provide 
more accurate projections than empirical models, they 
also have limitations. Many of these limitations are similar 
to those discussed above in reference to the vegetation 
models. First, many of the parameters and relationships 
that would ideally be incorporated into these models are 
poorly known, such as dispersal rates and temperature 
and precipitation effects on survival and reproduction. 
Second, the structure of process-based models may limit 
their application. Some are built to investigate the effect 
of one particular aspect of climate (e.g., temperature) on 
reproduction, growth, or survival (Kell et al. 2005) and may 
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exclude other critical factors (e.g., dispersal, Clark et al. 
2003). Still, when sufficient empirical information is 
available to parameterize a process-based model, the 
model is useful for characterizing population-level re- 
sponses to climate change. Furthermore, process-based 
models linked with other empirical (e.g., habitat) or 
process-based models (e.g., vegetation, hydrology, and 
fire) can be used to simulate cumulative effects (Lawson et 
al. 2010) or to compare the relative effects of stressors 
(Battin et al. 2007; Carroll 2007; McRae et al. 2008) on 
species’ populations. 

Case study. Marten and lynx Lynx canadensis in the 
northern Appalachians of the United States and Canada 
forage on top of snowpack during the winter, making 
them sensitive to rising temperatures and declining 
snowfall. Both are exploited populations occurring at the 
southern limit of their distributions. Marten, in particular, 
has recovered from near extirpation in the 1930s. 
Marten populations are also sensitive to the loss and 
fragmentation of mature forest stands with structurally 
complex understories (Ray 2000). In an approach similar 
to that taken by Battin et al. (2007), Carroll (2007) linked 
multiple models to estimate the relative impacts of 
climate change, logging, and hunting on marten pop- 
ulations in the northern Appalachians (Box 5). The 
system of linked models allowed for scenarios 
addressing stressors individually and in combination. 
Simulations demonstrated that declining snowpack may 
have a greater impact than logging or trapping alone 
and that logging may interact synergistically with climate 
change to decrease marten populations. Carroll (2007) 
summarizes results by state and province and makes 
region-specific recommendations for habitat restoration, 
logging, exploitation, and reintroduction potential. These 
types of outputs would be very useful for species and 
habitat management as well as decisions on logging and 
hunting. However, the use of a single GCM and single 
emissions scenario puts into question the generality of 
these findings. Carroll (2007) does note that there is 
agreement among all IPCC AR4 GCMs regarding the 
direction and magnitude of projected changes in 
temperature and precipitation for this geographic 
region. However, representing that variability explicitly 
would strengthen his conclusions. 

Discussion 

Using models for managing natural resources 
Given the wide array of available models and their 

numerous limitations (Table 1), fish and wildlife manag- 
ers often wonder which model to use and how to apply 
model projections to a given management decision. We 
have provided a basic framework for climate-impacts 
modeling (Box 1) and used it to discuss the results of 
several climate-impact studies (Boxes 2-5). In general, 
selecting one or more models to assess potential climate 
impacts requires an understanding of the underlying 
question and the key ecological processes involved. For 
example, modeling climate impacts on fire-dependent 
wildlife habitats will require, at the minimum, a 
vegetation model that adequately addresses the effects 

of climate on fire. Selecting an appropriate model also 
requires matching the spatial and temporal scale of the 
assessment with that of the model. For example, 
although a macroscale hydrological model may provide 
a useful estimate of runoff for a watershed, it may 
provide relatively poor estimates of changes in stream 
flow for a specific stream reach. The selection of a 
particular model also will depend on the time, resources, 
and technical capabilities available to the user. Here, the 
difference between empirical and statistical models and 
simulation models is paramount. Empirical models are 
less complex, require fewer inputs, and are generally 
more accessible; but they include a suite of biological 
assumptions that observational data suggest are violat- 
ed. Therefore, they are most appropriate for coarse-scale 
projections of climate responses. A complex simulation 
model may provide the best estimate of a species’ 
response to climate change, but often data, time, 
modeling expertise, or a combination are lacking. In 
those cases, first consider whether a broad-scale 
modeling analysis including the geographic area of 
interest has already been completed. Alternatively, 
rethink the management question to no longer require 
the additional accuracy (or ecological realism) that might 
be provided by a more complex model, for example, 
choosing to focus on changes in habitat suitability 
instead of population demographics. 

Increasingly, downscaled climate projections are avail- 
able online (e.g., ClimateWizard, http:llwww.climatewi- 
zard.org and the Oregon Climate Change Research 
Institute, http:lloccri.net), and projections from hydro- 
logical, fire, and vegetation models are being shared 
through cooperative associations such as the U.S. 
Department of Interior’s Landscape Conservation Coop- 
eratives (http://Www.doi.govllcclindex.cfm), the U.S. 
Geological Survey’s National Climate Change and Wildlife 
Science Center (https://nccwsc.usgs.gov), and nongov- 
ernmental data-sharing portals such as Data Basin 
(http://www.databasin.org). As these datasets become 
more ubiquitous, it is critical for nonspecialists to 
understand appropriate uses for model outputs. 

Understanding the thornier issue of how model results 
can inform management is as important as selecting the 
best set of models for an assessment. No model can 
predict the future with certainty. Furthermore, the 
uncertainties inherent in future climate-change projec- 
tions are increased when linked to ecological climate- 
impacts models that have their own associated uncer- 
tainty (Maslin and Austin 2012). In the case studies 
described above, both Battin et al. (2007) and Carroll 
(2007) linked multiple models to explore climate impacts 
in conjunction with other stressors. Similar studies have 
been completed for songbirds (McCrae et al. 2008), 
wolverine (McKelvey et al. 2011), and plants (Lawson 
et al. 2010). The best applications of these models treat 
uncertainty explicitly. Thorough sensitivity analyses 
calculating the impact of varying all components in a 
system of linked models are currently rare (but see Fuller 
et al. 2008; Conlisk et al. 2013), but they should be 
pursued when possible to better understand the 
behavior of any complex model. Evaluating projections 
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from multiple GCMs and emissions scenarios is also 
critical for quantifying uncertainty. For example, studies 
indicate that using an ensemble of GCM projections, 
preferably more than 10, is more important than the 
careful selection of one or two projections for charac- 
terizing future hydrologic impacts of climate change 
(Pierce et al. 2009). Such approaches bracket potential 
future outcomes of climate change and can be used in 
making consensus recommendations for conservation or 
in designing management actions robust to a range of 
climate impacts (e.g., Bachelet et al. 2011). 

Ensemble modeling combines the outputs of multiple 
model projections, allowing the modeler to quantify the 
confidence in model outputs across an array of different 
inputs or model structures (AraOjo and New 2007). For 
example, ensembles of models can project mean or 
median warming with associated confidence bands 
(Solomon et al. 2007). Alternatively, ensembles can be 
used to report the degree of agreement in model 
projection; for example, 80% of modeled future climates 
project at least a 50% change in the fauna of a given 
region (Lawler et al. 2009). Although depicting only 
mean values or the degree of consensus among model 
projections can be useful, it also can be misleading. 
Agreement within a set of model projections does not 
mean that those models are correct. In some cases, such 
as projecting the severity of future drought or flood 
events, projections of extremes (minimums or maxi- 
mums) may be more critical than consensus or mean 
projections (e.g., Deser et al. 2012). However, agreement 
among models with different structures does suggest 
that those projections are robust to the assumptions of 
multiple model designs (Morin and Thuiller 2009), 
implying that the projections reflect a true underlying 
pattern or trend. 

Scenario-based modeling provides another approach 
to exploring the potential effects of varying model inputs 
or parameterizations. A scenario is a set of model 
inputs reflecting how a system may behave or change. 
Examples of scenarios include differing CO2 emissions 
rates, patterns of urban development, and estimates of 
plant water-use efficiency responses. Scenario-based 
modeling contributes to the process of scenario-based 
planning in which decisions are made by exploring the 
impacts of several different potential future outcomes 
(Peterson et al. 2003). Scenario-based modeling can be 
used to compare the effects of particular climatic 
changes (e.g., warmer and wetter vs. warmer and drier 
climates) or to compare the potential effects of extreme 
and mean projected changes. The IPCC, among others, 
has provided guidance on scenario-based planning in 
the context of climate change (IPCC-TGICA 2007). 

Climate change vulnerability assessment provides a 
framework for integrating climate-impacts projections 
with empirical information to characterize the vulnera- 
bility of species or ecological systems to climate change 
(Williams et al. 2008; Glick et al. 2011). Vulnerability 
depends on a species’ exposure and sensitivity to climate 
change as well as its adaptive capacity and therefore 
integrates information from diverse sources, including 
modeling, natural history, experimental science, and 

paleoecological records (Dawson et al. 2011; and, e.g., 
http://climatechangesensitivity.org). Vulnerability scores 
and rankings can then point toward additional studies or 
information gaps that help integrate climate change into 
natural resource management decisions. 

Another, complementary, way to use uncertain infor- 
mation in the decision-making and planning process is 
through adaptive management /Holling 1978; Peterson 
et al. 2011). Adaptive management is an iterative process 
in which multiple management actions are evaluated 
with long-term monitoring, the outcome of which is 
used to inform future management (Figure 1). The 
inherent uncertainty of the ecological impacts of cli- 
mate change makes it an appropriate application of an 
adaptive management framework (Arvai et al. 2006). 
Outputs of climate-impacts models can be used to 
design a suite of short-term management prescriptions 
and then be recalibrated with data or knowledge gained 
from their monitoring. In one example, a hydrological 
model will be used within an adaptive management 
framework to reduce the frequency of algal blooms 
under future climates (Viney et al. 2007). Adaptive 
management will likely be a key tool for dealing with 
the uncertainties inherent in climate-impacts projections 

(West et al. 2009; Littell et al. 2011). 

Conclusions 

Climate-impacts modeling is a rapidly expanding field 
of research. Models are becoming more sophisticated 
and better able to capture physical and ecological 
processes. Yet, at best, models will be an approximation 
of an uncertain future. Therefore, it will always be critical 
to address model uncertainty through model ensem- 
bles and a range of future scenarios and to reevaluate 
decisions regularly, ideally in a framework of adaptive 
management. Also of value are ways of integrating 
model outputs with experimental results, paleoecologi- 
cal records (e.g., Martinez-Meyer et al. 2004), and expert 
opinion. Questions to ask of any climate-impacts study 
include the following: How well do you capture the 
range of potential futures? How much agreement is 
there among those models and scenarios? Can you 
develop management strategies that are resilient to all 
potential futures? This last question points toward 
climate change adaptation for which many institutional 
frameworks exist (8achelet et al. 2010) and toward which 
climate-impacts modeling can contribute. 

Models play a critical role in our understanding of 
climate-change impacts on ecological systems. For these 
models to be useful, the uncertainties in model 
projections need to be understood. However, these 
uncertainties should not prevent researchers and man- 
agers from using models to explore potential future 
climate impacts, assess vulnerabilities, and develop 
adaptation strategies. 

Supplemental Material 

Please note: The Journal of Fish and Wildlife Management 
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corresponding author for the article. 
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